
I.J. Intelligent Systems and Applications, 2018, 12, 56-68
Published Online December 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2018.12.06

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 12, 56-68

Load Balancing in Multicore Systems using

Heuristics Based Approach

Shruti Jadon
Motilal Nehru National Institute of Technology, Allahabad, India

E-mail: rcs1301@mnnit.ac.in

Rama Shankar Yadav
Motilal Nehru National Institute of Technology, Allahabad, India

E-mail: yadavrs64@gmail.com

Received: 18 May 2018; Accepted: 15 July 2018; Published: 08 December 2018

Abstract—Multicore processing is advantageous over

single core processors in the present highly advanced

time critical applications. The tasks in real time

applications need to be completed within the prescribed

deadlines. Based on this philosophy, the proposed paper

discusses the concept of load balancing algorithms in

such a way that the work load is equally distributed

amongst all cores in the processor. The equal distribution

of work load amongst all the cores will result in enhanced

utilization and increase in computing speed of application

with all the deadlines met. In the heuristic based load

balanced algorithm (HBLB), the best task from the set of

tasks is selected using the feasibility check window and is

assigned to the core. The application of HBLB reduces

imbalance among the cores and results in lesser migration

leading to low migration overhead. By utilizing all the

cores of the multicore system, the computing speed of the

application increases tremendously which results in the

increase in efficiency of the system. The present paper

also discusses the improved version of HBLB, known as

Improved_Heuristic Based Load Balancing

(Improved_HBLB), which focuses on further reducing

the imbalance and the number of backtracks as compared

to HBLB algorithm. It was observed that

Improved_HBLB gives approximately 10% better results

over the HBLB algorithm.

Index Terms—Load balancing, imbalance, heuristic,

backtracking, feasibility check window, real time system.

I. INTRODUCTION

Devices like smart phones, play stations, switching

routers are things of daily need in today’s life. These are

portable in nature and make the best use of multicore

architecture processor. Earlier, such devices used the

concept of single core processor but today designers have

adopted multicore processors because of their fast

processing. In a multicore processor, multiple instructions

are computed simultaneously on different cores hence

this increases the speed of computation. Multicore

processor gives the functionality of parallel processing

with reduced sustainable computation time [1, 2].

Generally, multiprocessor systems are used to provide

parallel environment to the system so that the processing

becomes fast. However, in multicore processor, each core

has its own local cache and core searches its own cache

whenever it needs the data, resulting in lesser searching

time compared to that required for the case of

multiprocessor systems [3]. Fig. 1 shows the

configuration of a single core in a multicore processor.

Presently, the primary objective of multicore processor

is to divide the workload among every core of the

processor such that the utilization of each core is equal or

approximately equal. For a given set of tasks, the

resource manager first distributes the tasks among the

cores. The tasks are then scheduled on their assigned

cores using any of scheduling algorithms, mostly rate

monotonic or earliest deadline first scheduling algorithm.

The tasks are assigned to the cores in such a manner that

the load is balanced among each of the cores, so that each

core is utilized equally.

Fig.1. Configuration of a single core [3].

If the cores are fully utilized, it results in high

computation speed with reduced response time. If the

cores are not balanced then the tasks are migrated from

highly utilized core to the least utilized core to reduce the

imbalance factor amongst the cores.

Whenever a migration is to take place one has to

decide about following parameters:

 Load Balancing in Multicore Systems using Heuristics Based Approach 57

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 12, 56-68

 When a task should be migrated?

 Which task should be migrated?

 Where that task should be migrated?

 What will be the load imbalance created amongst

the cores after migration?

A load balancing algorithm for multicore system

requires taking care of above questions in an optimal way.

The transfer of task may reduce the imbalance factor but

might add considerable migration cost. The candidate

cores participating in migration process may have

competitive parameters such as utilization of cores, cost

etc. Further, it may be possible that a task is migrating

multiple times. In this paper, a heuristic based dynamic

load balancing (HBLB) algorithm is proposed that

utilizes the concept of feasibility check window to

balance the load amongst the cores such that the number

of migrations is minimum and all the tasks meet their

deadlines. The proposed paper also discuses improved

heuristic based load balancing (Improved_HBLB)

algorithm which is an improved version of HBLB. The

Improved_HBLB aims to further reduce imbalance and

the number of backtracks created by HBLB algorithm.

The paper discusses the related work in section II.

Sections III and IV discusses about the system model and

motivations for the proposed load balancing algorithm.

The heuristic based load balancing algorithm (HBLB) is

explained in section V. Improved_HBLB algorithm is

discussed in section VI. Experimental results are

discussed in section VII. Finally, section VIII concludes

the paper.

II. RELATED WORK

Many researchers have proposed different strategies to

schedule the tasks and balance the workload of the

system considering different areas of application [4-24].

Some application areas are load balancing in parallel

computing [4], fog computing [5], cloud computing [6, 7]

and real time environment [8-10, 19-24]. An efficient

load balancing real time algorithm is one in which the

tasks are schedulable, their deadlines are met and the load

is balanced after task assignment such that the resources

are effectively used with no overload or under load

constraints.

For scheduling or load balancing, the tasks can be

distributed to the cores using three approaches:

partitioned, global or semi partitioned approach. In

partitioned approach [11], tasks are assigned to cores

statically and are not allowed to migrate between cores.

The advantage of using partitioned scheduling is that

there is no migration overhead. However, partitioned

scheduling suffers from two main disadvantages. First,

such schemes are inflexible and cannot easily

accommodate dynamic tasks without a complete re-

partition. The repartitioning problem may be resolved by

allocating incoming dynamic tasks to the first available

core, but this may not be optimal in terms of overall

system utilization. Second, optimal assignment of tasks to

cores is an NP-hard problem for which polynomial-time

solutions result in sub-optimal partitions.

In global scheduling policies, tasks are allowed to

migrate between cores as required. Recently, several

optimal global scheduling policies have been proposed

[12-18]. While these schemes strive to overcome the

limitations of partitioned scheduling, they add migration

overhead to the tasks. In the context of real-time systems,

the addition of migration overheads changes the timing

behavior of tasks, thereby affecting the timing

predictability of the system. A third type of scheduling

approach is semi partitioned scheduling which is a

combination of both partitioned and global scheduling

approach. In this, first all the tasks are partitioned among

the cores and if there is load imbalance amongst them,

then an instance of the task is allowed to migrate from its

original core to the target core.

Several researchers have proposed their algorithm

which results in energy reduction by balancing the load

among the cores of multicore processor. Kang and

Waddington [19] proposed a Load Balancing Task

Partitioning (LBTP) algorithm which aims to distribute

computed load so that every core has the same amount of

work. The idea behind their approach was to first apply a

task partitioning mechanism that leads to good

schedulability and then apply the other partitioning steps

to improve load balancing test while guaranteeing a

solution satisfying deadline constraints. The algorithm

works in three steps by considering independent periodic

tasks. The first step is to sort the tasks in decreasing order

of their utilization. After sorting the tasks, the task sets

are partitioned on the basis of first available cores in

which they can be fit such that the utilization of each core

is less than or equal to one. In the last step, the tasks in

the cores are repartitioned or reassigned to the core with

least utilization in order to reduce the imbalance among

the cores. However, the major limitation of this approach

is that in the second step, the algorithm is creating the

load imbalance itself and in the third step, it is reducing

the imbalance created by the task assessment of second

step. Thus, this would result in unnecessary increase in

the migration overhead when the algorithm is made to run

in dynamic cases.
In one of the load balancing algorithm given by Park et

al. [20], partitioning of the tasks was used to adjust the

number of active cores to optimize the power

consumption during execution. It migrates the tasks from

the core with highest utilization to the core with lowest

utilization considering the fact that utilization of each

core should be less than or equal to one. The algorithm

works in two phases: dynamic repartitioning and dynamic

core scaling. The first phase uses the concept of dynamic

power and dynamic utilization to reduce the dynamic

energy consumption. The second phase reduces the

number of active cores by switching off the cores thus,

reducing the leakage energy. If the number of cores in

sleep mode is more than the required and increase in

frequency does not result in effectiveness, this means that

the cores' utilization is wasted and it is not beneficial to

use large number of cores. It also uses the fact that a task

once migrated to a foreign core can be further migrated to

58 Load Balancing in Multicore Systems using Heuristics Based Approach

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 12, 56-68

other core, if necessary. Thus, this would result in

unnecessary migrations and hence increases the migration

overhead.

March et al. [21] proposed two algorithms- Single

Option Migration (SOM) and Multiple Option Migration

(MOM). They allowed task migration, to reduce energy

consumption in multicore embedded systems with real-

time constraints, by implementing Dynamic Voltage

Frequency Scaling (DVFS) capabilities. As the name

suggests, SOM checks a single target core before

performing a migration while the MOM searches the

optimal target core. Their work was focused on multicore

processors where the scheduler includes a partitioner

module to distribute tasks among the cores. This

partitioner readjusted all possible workload imbalances at

run-time that may occur at arrivals or exits of tasks by

applying task migration. The algorithm is applied at three

variants of time: when a task arrives, when a task leaves

the system and in both cases. They have considered

maximum of 4 cores and frequency levels up to 8. The

main contribution of their work is that the assignment of

tasks to the cores is done without sorting the tasks in

decreasing order of their utilization which may reduce

the number of migrations and further may reduce the

migration over head of the system. The number of cores

considered by March et al. [21] for experimental setup

was very less as compared to present use of large

numbers of cores in multicore processors.

The work of Cho et al. [22] included a Power and

Deadline Aware Multicore Scheduling (PDAMS) to

balance the consumption of load and save power. The

deadline aware load dispatch algorithm works at two

levels. The concept of load imbalance is at first level

while the novel load balancing strategy distribution of

task's deadline is at the second level. The tasks are

assigned to the cores on the basis of deadline uniformity.

The authors demonstrated that static power can be saved

by switching off the cores once they have finished the

execution of tasks assigned to the cores. The major

shortcoming of their approach was that the algorithm

allows the tasks to finish after their deadline. The

processing speed increases when the deadline is missed

so that the tasks can be finished faster. Further, missing

of the deadlines of the tasks leads to an increase in the

response time. If the tasks, which have missed their

deadlines, are re-executed at higher frequency levels then

this would result in higher energy consumption.

Based on the previous research works as reported

above on the load balancing strategies the main issues to

be addressed are:

 when and which task should be migrated

 decision of destination core

 cost effective migration and balancing of cores

Thus, load balancing of multicore processor is

necessary from the point of view of increased utilization

such that each core is fully utilized and the system results

in increased performance with good response time. The

next section discusses the system model for the proposed

Heuristic Based Load Balancing algorithm (HBLB) in

detail.

III. PROPOSED MODEL

This section deals with the assumptions, terms used

and the system model considered in this paper.

A. Assumptions

Following considerations are used in this paper:

 Assume a multicore system with a set of

independent tasks.

 Tasks are periodic in nature i.e. they tend to repeat

themselves after a certain interval of time.

 Consider dynamic priority scheduling algorithm

Earliest Deadline First (EDF).

 All overhead for scheduling and context switching

considered negligible.

B. Terms Used

The symbols and terms used in this paper are

summarized in Table 1 given below:

Table 1. Symbols and Terms Used

Terms Meaning

C
Set of cores in the multicore system consisting of M

number of cores

𝐶𝑗 A core from core set C where j=1 to M

T A task set consisting of N tasks

𝑇𝑖 A task from task set T where i = 1 to N

𝑒𝑖 Worst case execution time of the task 𝑇𝑖

𝑝𝑖 Period of task 𝑇𝑖

𝐷𝑖 Absolute deadline of the task 𝑇𝑖

𝑈𝑖 Utilization of task 𝑇𝑖

𝑈𝐶𝑖 Utilization of core 𝐶𝑖

𝑈𝑡𝑜𝑡 Total utilization of the multicore system

𝐻𝑇𝑘,𝑖 Heuristic value of task 𝑇𝑘 in FCW against core 𝐶𝑖

𝐼𝑇𝑘,𝑖
Maximum imbalance created by task 𝑇𝑘 in FCW when

assigned to core 𝐶𝑖

𝐷𝑘 Absolute deadline of the task 𝑇𝑘 in FCW

W Weight factor

FCW Feasibility check window

FT Feasibility task window

C. System Model

Consider a multicore system C with M number of

processing cores such that C= {𝐶1, 𝐶2 , 𝐶3 , … , 𝐶𝑀} and a

set of real time tasks T = {𝑇1, 𝑇2 , 𝑇3 , … , 𝑇𝑁} where N is

the total number of tasks in the task set T. These tasks are

periodic in nature and there is no task dependency. Each

task 𝑇𝑖 in T is represented as (𝑒𝑖 , 𝑝𝑖 , 𝑑𝑖) where 𝑒𝑖 is the

worst case execution time of the task 𝑇𝑖 , 𝑝𝑖 is the period

of the task 𝑇𝑖after which 𝑇𝑖 will repeat itself and 𝑑𝑖is the

relative deadline of the task 𝑇𝑖 which is equal to the

period 𝑝𝑖 of the task 𝑇𝑖 . The tasks are scheduled with

earliest deadline first scheduling algorithm on a multicore

processor system where the tasks are assigned priorities

on the basis of their absolute deadlines. Closer the

 Load Balancing in Multicore Systems using Heuristics Based Approach 59

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 12, 56-68

deadline, highest is the priority of the task [23]. Each

instance of the task is called a job and the 𝑘𝑡ℎ instance of

task 𝑇𝑖 is denoted as 𝑇𝑖,𝑘. A task set is said to be feasible

if all the jobs meet their deadlines.

The utilization of the task 𝑇𝑖 is given by 𝑈𝑖 = 𝑒𝑖 𝑝𝑖⁄

and the total utilization of the task set T is given as:

1

N

T i

i

U U

 (1)

When the tasks are allocated to cores of the multicore

processor then the utilization of a particular core Ci is

summation of utilization of all the tasks assigned to that

core and is denoted as:

i i

i i

C T

T C

U U

 (2)

The total utilization of the multicore system is

summation of utilization of all the cores,

1
i

M

tot C

j

U U

 (3)

One necessary condition that should be observed for

the task set to be schedulable is that the total utilization of

the multicore system should not be greater than the

number of cores and the utilization of each core should be

less than or equal to one, i.e.

; 1
itot CU M U (4)

If equation (4) is not satisfied, generating a feasible

schedule by the multicore processor is not guaranteed. All

the tasks scheduled on a particular core satisfying (4) may

guarantee a feasible schedule.

Fig.2. Parallel execution of scheduler and core using FCW.

Fig. 2 shows the system model of the proposed

approach. The input to the task system model is the set of

real time periodic tasks set T. All the tasks in the task set

T arrive at the dispatcher from where they are partitioned

among the cores of the multicore processor for their

execution. Each core has its own scheduler where the task

one assigned to the cores are scheduled and executed

using earliest deadline first scheduling algorithm. The

dispatcher is responsible for balancing the load amongst

the cores of the system and hence it applies the load

balancing algorithm to assign the tasks in the task set to

the cores. The dispatcher has to ensure that all the cores

have equal amount of workload and the difference

between utilization of cores should be minimum. The job

of dispatcher is also to update the scheduler of the cores

in parallel whenever new task or a task at its period

arrives to the system.

IV. MOTIVATIONAL EXAMPLE

A large number of components in a system may result

in more power requirement. Power of the multicore

system can also be decreased if all the cores of the system

are fully utilized and they are least imbalanced. Now-a-

days, multicore processors are preferred as all the

functionalities are embedded in a chip and the reduced

chip area would result in reduction of power supplied to

the chip and also increase the efficiency and speed of the

system. Hence, an attempt has to be made for balancing

the load of cores of the multicore processor. There are

two situations that lead to motivate for the proposed work.

These are the assignment of tasks and balancing of the

load among the processor of the multicore system when

the cores are underutilized or when the cores are normally

utilized.

A. Cores are underutilzed

Consider a multicore processor with three cores and a

set of periodic task set T with task utilization as 𝑈1 = 0.3,

𝑈2= 0.2, 𝑈3 = 0.2, 𝑈4= 0.1 and 𝑈5= 0.1. The tasks are

sorted in decreasing order of their utilization and are

assigned to the first available core [21].

Fig.3. Imbalanced cores and balanced cores.

From Fig. 3, it is clear that the approach is creating an

imbalance amongst the cores as core 𝐶1 is fully utilized

and cores 𝐶2 and 𝐶3 are having zero utilization. This is

because when the tasks in the task set are sorted in

decreasing order of their utilization and if the utilization

of all the tasks in the task set are very small then in such

cases all the tasks can easily be assigned to the first

available core and hence the remaining cores remain un-

utilized which is an underutilized situation. A remedy to

the above problem is that tasks are assigned to the core

with least utilization. Whenever a task arrives the system,

the core with least utilization is checked and the task is

allocated to that core as shown in Fig. 3.

B. Cores are normally utilized but imbalance exists

The solution given in Fig. 3 also suffers from certain

limitations. Consider another task set 𝑇1 , 𝑇2 , 𝑇3 with

utilization as 𝑈1 = 0.33, 𝑈2 = 0.25 and 𝑈3 = 0.66. The

tasks are assigned to the least utilized cores [19, 21] and

it can be seen that the cores suffers imbalance amongst

60 Load Balancing in Multicore Systems using Heuristics Based Approach

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 12, 56-68

them as explained in Fig. 4. First, the task with utilization

𝑈1 is assigned to core 𝐶1 then task with utilization 𝑈2 to

core 𝐶2 as its utilization is small. The task 𝑇3 is then

assigned to the core 𝐶2 as it has least utilization. As soon

as 𝑇3 is assigned to core 𝐶2, the utilization of core 𝐶2 is

0.91, and the difference between core 𝐶1and core 𝐶2 is 58%

which is more than the default threshold [24] assigned to

the kernel, which is either 0.25 or 0.33. Thus, migration is

required in order to reduce the load imbalance between

the cores 𝐶1 and 𝐶2 as shown in Fig. 4.

Fig.4. Migration of tasks in the cores.

Another load balancing strategy of task assignment

amongst the cores was discussed in PDAMS [22].

According to PDAMS algorithm, it distributes the tasks

on the basis of deadline uniformity. More uniform the

distribution of task deadlines is, the lower is the missing-

deadline probability. The variance of task deadlines was

used as the feature of deadline distribution. Smaller

variance of task deadlines implies that the time slot

between two task deadlines is shorter. The drawback of

their algorithm is that it allows the tasks to finish after

their deadline and missing of the deadlines of the tasks

leads to an increase in the response time.

The above examples make it very clear that the

workload difference among the cores should be minimum

else imbalance exists and migration of tasks may take

place. If the number of migration increases, migration

overhead increases and this would finally increase the

expense of the system. Thus, this motivates to propose a

load balancing algorithm that reduces the imbalance as

well as the migration of tasks among the cores.

V. HEURISTICS BASED LOAD BALANCING

This section discusses the heuristic based load

balancing (HBLB) algorithm which uses the concept of

heuristics to balance the load among the cores of the

multicore systems. The HBLB algorithm uses a function

which calculates the heuristics for a set of tasks in FCW.

In other words, the heuristics function is computed for

each task lying in the window. The size of feasibility

check window simply says that how many tasks are

required to compute the heuristic function for each

selection of best suitable task. Larger size of feasibility

check window gives better opportunity to select more

suitable task whereas less suitable task is selected for the

case of smaller size of feasibility check window. Further,

larger feasibility window size requires larger computation

overhead than that compared with smaller one. The

proposed heuristic function is a function of imbalance

factor among the cores and deadlines of the tasks in FCW

and is given below in expression (5):

, ,
/

i k i kT T kH I D W (5)

where, 𝐻𝑇𝑖,𝑘
 is the heuristic value for a task 𝑇𝑘, 𝐼𝑇𝑖,𝑘

 is the

maximum imbalance among the cores when a task 𝑇𝑘 will

be assigned to a core 𝐶𝑖, 𝐷𝑘 is the absolute deadline of the

task 𝑇𝑘 and W is the weight factor. The weight factor

decides the dominance between imbalance and deadline

of the task while computing the heuristic function of the

task.

The tasks in the task set are ordered in increasing order

of their deadlines using earliest deadline first (EDF). In

deadline based ordered task set, heuristic function is

computed for first K tasks, where K is the size of

feasibility check window and select the best suitable task

decided on the basis of heuristic function, from K tasks.

The selected task is assigned to the respective core and

window size is moved by one. With this new task in

window, heuristic function is computed again and the

suitable task is selected. The forward process is repeated

until either of these conditions is met,

1) Window is empty, or

2) A selected task becomes infeasible.

In case a task becomes infeasible, it backtracks to the

previous selected task level and looks for next suitable

task. The algorithm repeats this forward and backward

operation until either,

1) Task set is feasibly scheduled, or

2) All the possible search space of the tasks selection

is exhausted.

Suppose a task set T has N number of tasks such as: T=

{ 𝑇1 , 𝑇2 , 𝑇3 , …, 𝑇𝑁 }. The tasks are arranged in non

decreasing order of their deadlines and the tasks in

feasibility check window are {𝑇1, 𝑇2, 𝑇3}, considering the

size of feasibility check window equal to 3. The heuristic

for all the three tasks is calculated using (5) against the M

cores. The imbalance 𝐼𝑇𝑖,𝑘
 in (5) calculates the maximum

imbalance created in all other cores other than 𝐶𝑖 when

task 𝑇𝑘 is assigned to core 𝐶𝑖 . Let the imbalance is

checked for task 𝑇1 against the core 𝐶1. The utilization of

core 𝐶1, when task 𝑇1considered for partitioning will be:

1 1 1C C TU U U (6)

The imbalance created between 𝐶1 and each core

selected from remaining M-1 core is computed as (7)

where m= 2 to M:

1, 1m mT C CI U U (7)

Out of these M-1 imbalances computed for each pair of

cores, (𝐶1, 𝐶𝑚), the maximum imbalance is selected as:

 Load Balancing in Multicore Systems using Heuristics Based Approach 61

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 12, 56-68

1, 1,2 1,3 1,4 1,
max(, , , ,)

k MT T T T TI I I I I (8)

Using this maximum imbalance factor, the heuristics of

the tasks in feasibility check window is calculated using

(5). The heuristic function of task 𝑇1against core 𝐶1 is:

1,1 1,1 1(/)T TH I D W (9)

Similarly the heuristic of task 𝑇1 against core 𝐶2 is:

1,2 1,2 1(/)T TH I D W (10)

Likewise, the heuristic function is computed for all the

tasks 𝑇1, 𝑇2, 𝑇3 in feasibility check window against all the

cores and the heuristic function with minimum value is

selected, as is given in (11):

1,2 1,3 1, 2,1 2,3
() min(, , , , , , ,

MT T T T TH T H H H H H

2, 3,1 3,2 3,
, , , ,)

M MT T T TH H H H (11)

Suppose the minimum value of heuristic obtained from

(11) is 𝐻𝑇3,2 then the task 𝑇3 will be assigned to core 𝐶2 .

Algorithm 1 Heuristic Based Load Balancing (HBLB)

1. Arrange the tasks in non-decreasing order of

their deadlines.

2. For all tasks in FCW calculate heuristics using

equation (5).

3. 𝐻𝑇
𝑘′,𝑖′

= min (𝐻𝑇𝑘,𝑖
) where 𝐻𝑇

𝑘′,𝑖′
 is the best

heuristic value for all k tasks in FCW against

𝑖𝑡ℎ core for k=1 to K and i= 1 to M.

4. Allocate the task 𝑇𝑘′ to core 𝐶𝑖.

5. If utilization of all cores is greater than 1.0 then

6. Backtrack to previous search level.

7. Extend the partitioning by selecting the task

having the next best H value.

8. Repeat step 5 until task set is feasibly scheduled

or all the possible search space of the tasks are

exhausted.

9. Increment the size of FCW by 1.

10. If all the tasks are assigned then

11. If imbalance > 0.33 then

12. Backtrack to previous search level.

13. Extend the partitioning by selecting the

task having the next best H value.

14. Else
15. Partition successful.

16. Else

17. Go to step 18.

18. Repeat steps 2 to 16 until termination condition

is met.

As soon as a task is assigned to a particular core based

on the best heuristic value, the size of feasibility check

window is incremented by 1. With this new task say 𝑇4,

the feasibility check window now has 𝑇2, 𝑇3, 𝑇4.

Again the heuristic value is computed for all the tasks

against all the cores so the next core can be selected.

Thus, the heuristic function can be generalized as (12)

where k is the number of tasks in feasibility check

window and M is the number of cores, 𝐻(𝑇𝑗,𝑖′) is

heuristic for a task 𝑇𝑗 selected for allocation to core 𝑖′ is

given in (12):

'
1,2 1,3 1, 2,1 2,3,

() min(, , , , , , ,
MT T T T Tj t

H T H H H H H

2, ,1 ,2 ,
, , , ,)

M K K K MT T T TH H H H (12)

The HBLB algorithm backtracks to the previous level

in the case when a task cannot be assigned to any of the

cores as the utilization of a core is more than the feasible

condition of the tasks to schedule, that is, U >1. Once the

algorithm is backtracked, the next best minimum value of

heuristic is selected and the partitioning process is

extended.

The termination condition of HBLB algorithm is either:

1) all the tasks are scheduled or

2) all possible search space of the tasks selection is

exhausted and no more backtracking is feasible.

The algorithm clearly shows that once the heuristics

for the tasks in the FCW are computed, the task with best

heuristic value is assigned to the core for which the best

value is obtained. After assignment of best task, load

imbalance is checked out against the default set threshold.

If the imbalance between the two cores is more than 0.33

[24], migration of task is performed. If the best task

allocated to the core does not reduce the imbalance after

the migration process, the algorithm backtracks to

previous search level and selects the task with next best

heuristic (H) value in FCW. The pseudo code of HBLB

approach is discussed in algorithm 1.

Table 2. An Example

Tasks Execution Time Period Deadline Utilization

T1 2 6 6 0.33

T2 1 12 12 0.083

T3 2 12 12 0.17

T4 2 4 4 0.50

T5 3 4 4 0.75

T6 2 7 7 0.29

Table 2 shows a task set consisting of six tasks, each of

it with their execution time, period, deadlines and

utilization. Suppose the number of cores is 3. The

ordering of tasks in increasing order of their deadlines

will be 𝑇4, 𝑇5, 𝑇1, 𝑇6, 𝑇2, 𝑇3. The size of FCW is equal to

number of cores, which is 3. Initially, the FCW contains

tasks 𝑇4, 𝑇5, 𝑇1. The heuristics for all the tasks is

calculated against core C1, C2, C3 ; and 𝐻𝑖𝑗 represents the

heuristic of task 𝑇𝑖 on core 𝐶𝑗.

After calculating heuristics, the minimum heuristic

𝐻11 is selected and task 𝑇1 is assigned to core 𝐶1 . The

FCW is then increased by one and it now contains tasks

62 Load Balancing in Multicore Systems using Heuristics Based Approach

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 12, 56-68

𝑇4, 𝑇5 and 𝑇6. Again, the heuristics is calculated for these

three tasks in the FCW and task with minimum heuristic

is selected, which is 𝐻62 in this case. This process is

continued till all the tasks are assigned to the cores and

imbalance is less than 0.33. It can be seen from Fig. 5 that

all the tasks other than 𝑇5 are assigned to the cores and

𝑇5 cannot be fit in any of the cores.

Thus, the algorithm backtracks to previous level when

FCW has 𝑇2 and 𝑇5 (Fig. 6). It then selects the heuristic

with next minimum value. Again, task 𝑇2 is selected and

𝑇5 will again become infeasible (Fig. 7). The algorithm

then backtracks to level where FCW have 𝑇5, 𝑇2 and 𝑇3.

It then selects next minimum heuristic value, which is

𝐻21. The selection of task 𝑇2 will again further make 𝑇5

infeasible. Thus, the algorithm now backtracks to the

level where 𝑇4, 𝑇5 and 𝑇2 are in FCW (Fig. 8). The HBLB

algorithm now selects the next minimum heuristic value

at this level, which is 𝐻53. So, task 𝑇5 is assigned to core

𝐶3. Now, FCW have 𝑇4, 𝑇2 and 𝑇3.

The process of calculating heuristics, selecting

minimum heuristics and assigning appropriate task to the

core is continued until all the tasks are assigned to the

cores and the load amongst the cores is balanced (Fig. 9).

Fig.5. Example showing selection and allocation of best heuristic value task.

Fig.6. 𝑇5 become infeasible and the process backtracks.

Fig.7. Selecting next best value, 𝑇5 again become infeasible and process backtracks.

 Load Balancing in Multicore Systems using Heuristics Based Approach 63

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 12, 56-68

Fig.8. Process backtracks to one level up and selects next best value.

Fig.9. All tasks are assigned to the cores.

Thus, it could be seen that the maximum imbalance

among core is 0.20 whereas the same example when

tested for LBTP and PDAMS gives an imbalance of 0.63

and 0.79 respectively with six backtracks in LBTP and

one infeasible task in PDAMS. If in this example, after

assigning all the tasks to the cores, imbalance exists the

algorithm again backtracks level by level such that the

imbalance can be reduced.

VI. IMPROVED_HEURISTIC BASED LOAD BALANCING

Heuristic based load balancing algorithm (HBLB) is a

useful concept for gaining minimum imbalance than to

allow more number of migrations and backtracks.

Although, the simulation results in section VII shows that

the imbalance factor among the cores generated by

HBLB algorithm is less than the algorithms LBTP and

PDAMS for different parameters but there are certain

limitations with HBLB. These limitations are as follows:

 Infeasible task carry forward assignment algorithm.

 Even if a task is not feasible for a particular core,

HBLB approach still calculates the heuristic

function for it.

 Level by level backtracking is done when cores

are not balanced or a task becomes infeasible, in

which some cases are left out.

 Backtracking is done with no guarantee of re-

backtracking.

 Increases computation cost and complexity.

Whenever a task gets infeasible, the HBLB algorithm

checks for the feasibility of other tasks in FCW and

assign them to the suitable cores. In this way, the

infeasible task remains in the FCW till the last level

where all the tasks other than this task are assigned to the

cores of the system. This causes unnecessary

backtracking from last level. Another limitation is that

when a backtracking is performed, the HBLB checks for

a feasible solution at every predecessor level. This

increases the computation cost because at every previous

level the core are checked in order to make the infeasible

task feasible. This can be avoided if via some condition it

could be known priory as up to which level the algorithm

should be backtracked such that the infeasible task can be

made feasible. Previously, the algorithm backtracks when

a task is infeasible on a core. Other than these limitations

some more conflicts must be taken into account such that

64 Load Balancing in Multicore Systems using Heuristics Based Approach

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 12, 56-68

the feasibility of the tasks in the task set can be

guaranteed. These conflicts can be:

1. Conflict 1: A task X is feasible for a single core C

and heuristic function selects some other task, the

task X gets infeasible in future.

2. Conflict 2: More than one task is feasible for a

single same core (Say C).

3. Conflict 3: Two tasks (𝑇1, 𝑇2) are feasible for two

different cores (𝐶1 , 𝐶2) respectively but the

heuristics selects a third task (𝑇3) which occupies

any of cores 𝐶1or 𝐶2 making the task set infeasible

in further steps.

4. Conflict 4: A task is not feasible for any of the

cores.

In regard of these conflicts, a remedy is to be find out,

which may be checking the feasibility of each core at

every FCW level. For conflict 1, the task X is assigned to

that only core C for which it is feasible reducing the

chances of infeasibility and backtracking. If any of the

conflicts 2, 3 or 4 occurs in the task set, backtracking is

done. But the backtracking should include following

points to avoid level by level backtracking: (a) Level up

to which the tasks are backtracked and (b) this new path

guarantees that same infeasible situation will not occur in

future for same path when new tasks arrives in FCW?

For these questions, it can be justified as the level up to

which this backtracking should be done will be that level

for which all tasks are feasible for all the three cores and

no conflicts have aroused. Once backtracked to that level,

a combination of the infeasible task and core is selected

for which core fragment is minimum. The main idea

behind the selection of least fragment value is that while

assigning the tasks to the cores, the cores with such

minimum fragments are not selected and hence are left

out causing the task set infeasible. Selecting the least

fragment valued core minimizes this problem of

fragmentation. This can be easily understood using

Improved_HBLB algorithm shown in algorithms 2, 3 and

4, followed by an example which explains how the

Improved_HBLB algorithm rectifies the limitation

observed in HBLB.

The termination condition of Improved_HBLB is

either:

1) all the tasks are scheduled, or

2) all possible search space of the tasks selection is

exhausted and no more backtracking is feasible

The Improved_HBLB algorithm is similar to the

HBLB algorithm except that in Improved_HBLB, there is

a feasible task (FT) window for every task in FCW. The

FT window keeps track of all the feasible cores where the

tasks can be fit at a particular level such that the

utilization of any core is less than or equal to 1. The FT

window makes a check on the conflicts discussed

previously in this section and handling them in

Improved_HBLB. The Check_Heuristic() function, in

algorithm 3, checks for a condition when two tasks are

feasible for two same set of cores. In such case, if the

selected task core combination is different from these two

tasks and the selected core is anyone of these two cores in

the set then it is guaranteed that any of the two tasks will

become infeasible in future. So, the algorithm backtracks.

Algorithm 2 Improved_Heuristic Based Load

Balancing (Improved_HBLB)

1. Arrange the tasks in non-decreasing order of

their deadlines.

2. If Utilization(System) <= M then

3. Go to step 6.

4. Else

5. Task set is infeasible.

6. Add K tasks to FCW.

7. For all tasks in FCW, update FT[] against

every core 𝐶𝑖.

8. New_utilization (𝐶𝑖,𝑗) = U(𝑇𝑗) + U(𝐶𝑖) for all i

= 1 to M and j= 1 to K.

9. If New_utilization (𝐶𝑖,𝑗) <= 1 then

10. Add 𝐶𝑖,𝑗 to FTj[].

11. If FTj[] == NULL then

12. Backtrack.

13. Else if FTj[] has a single core entry (Say C)

then
14. Assign the task 𝑇𝑗 to core C without

calculating

 heuristics.

15. Else if two or more tasks in FT[] are feasible

for same core C then

16. Backtrack.

17. Else if FTx[] and FTy[] (for two tasks 𝑇𝑥, 𝑇𝑦)

have same entery for two core 𝐶𝑎 and 𝐶𝑏 then

18. Go to step 13.

19. Check_Heuristic (FCW, FTx[], FTy[]).

20. Else

21. Calculate heuristics for the tasks in FCW.

22. 𝐻𝑇
𝑘′,𝑖′

= min (𝐻𝑇𝑘,𝑖
) where 𝐻𝑇

𝑘′,𝑖′
 is the best

heuristic value for all k tasks in FCW against

𝑖𝑡ℎ core for k=1 to K and i= 1 to M .

23. Allocate the task 𝑇𝑘′ to core 𝐶𝑖.

24. Maintain a record of cores' utilization at every

level of assigning tasks.

25. If utilization of all cores is greater 1.00 i.e. the

tasks becomes infeasible then

26. Backtrack to previous feasible level.

27. Repeat step 8 to 22 until tasks set is feasibly

 scheduled, or

28. All the possible search space of the tasks

 selection is exhausted.

29. Increment the size of feasibility check window

by 1.

30. Repeat steps 2 to 29 until termination

condition is met.

 Load Balancing in Multicore Systems using Heuristics Based Approach 65

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 12, 56-68

Algorithm 3 Check_Heuristic(FCW, FTx, FTy)

1. If minimum heuristic selected is 𝐻𝑇
𝑘′,𝑖′ and 𝑘′ ≠

𝑇𝑥 or 𝑇𝑦 and i= 𝐶𝑥 or 𝐶𝑦 then

2. Backtrack(FCW).

3. Else

4. Go to step 23 in Improved_HBLB algorithm.

Algorithm 4 Backtrack(FCW)

1. Using step 24, find a level L at which all the tasks

in FCW are feasible for all core 𝐶𝑖 where i=1 to

M.

2. Backtrack to level L.

3. Select the task in FCW for which fragmentation

among the cores is minimum, say for 𝑇𝑝 core 𝐶𝑞.

4. Assign the task 𝑇𝑝 to core 𝐶𝑞.

5. Go to step 7 in Improved_HBLB algorithm.

Now, consider the same example as discussed in

section V using Improved_HBLB approach. At level 2,

when FCW have 𝑇4, 𝑇5 and 𝑇2, the FT[𝑇5] has an entery

of 𝐶3 which means that the task 𝑇5 can only be feasible

on core 𝐶3. So, at this level the task 𝑇5 is assigned to core

𝐶3 and FCW now contains 𝑇4 , 𝑇2 and 𝑇3. The

Improved_HBLB gives same imbalance for this example

as of HBLB but considering the number backtracks

required, the HBLB algorithm has three backtracks

whereas Improved_HBLB algorithm reduces this number

to zero. This shows that Improved_HBLB is an

improvement over HBLB on the basis of number

backtracks, number of infeasible tasks and in some cases

in terms of imbalance also.

VII. SIMULATION RESULTS

To evaluate the performance of proposed heuristic

based load balancing, it has been compared to the two

well known approaches: LBTP, in which tasks are

scheduled such that the load balancing is maintained, and

PDAMS, in which the tasks are assigned to the cores on

the basis of deadline uniformity. The load imbalance is

evaluated using equation (8). Every task set is generated

randomly on the basis of execution time and period range.

The execution time of tasks ranges from 1 to 50 and the

period of the tasks ranges from 1 to 100. The relative

deadlines of the tasks are equal to their periods. The

simulation parameters are discussed in Table 3. The

number of tasks in the task set is not restricted.

Table 3. Simulation Parameters

Parameters Value

Execution time [1, 50]

Period [1, 100]

Number of cores 03

Size of FCW 03

Weight Factor (W) 11

Imbalance allowed 0.33

The algorithm HBLB is not core dependent and hence

the number of core does not affect the outcome of the

result. However, if the number of cores is more, the size

of the feasibility check window increases equal to the

number of cores and hence, the look ahead nature of the

algorithm will be improved. So, for the ease of

comparison, only three cores are considered for result

computation.

The experimental results for proposed study are

discussed under following points:

A. Effect on imbalance created amongst the cores:

Fig.10. Comparison on the basis of average imbalance v/s system load.

Fig.11. Imbalance in LBTP approach before and after partitioning
of tasks.

The algorithms HBLB, Improved_HBLB, LBTP and

PDAMS were tested on the same task sets generated

randomly. Fig. 10 shows the average imbalance amongst

the cores with respect to the system load, when the

system load is varied from 1.5 to 3.0. From Fig. 10, it can

be seen that PDAMS creates maximum imbalance

amongst all the four approaches and as the system load

increases HBLB and Improved_HBLB performs better

than LBTP generating minimum possible imbalance

amongst the cores. Thus, for M=3, HBLB and

Improved_HBLB gives an improvement of 15% and 23%

over LBTP respectively and 72%, 75% over PDAMS

respectively. Also it can be seen from Fig. 11, that the

LBTP algorithm is first creating an imbalance and then

correcting it, which reduces the overall efficiency of the

66 Load Balancing in Multicore Systems using Heuristics Based Approach

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 12, 56-68

LBTP algorithm.

B. Effect on number of backtracks:

Fig.12. Comparison on the basis of number of backtracks v/s
system load.

Another parameter for which algorithms were tested is

the effect on number of backtracks when the system load

is varied from 1.5 to 3.0. The PDAMS algorithm does not

use the concept of backtracking and hence, it has zero

number of backtrack. From Fig. 12, it can be seen that

Improved_HBLB requires least number of backtracks

when compared to HBLB and LBTP. Thus, in regard of

backtracks, Improved_HBLB gives an improvement of

57% and 84% over HBLB and LBTP whereas HBLB

algorithm gives an improvement of 63% over LBTP.

C. Effect on number of infeasible tasks:

Fig.13. Comparison on the basis of number of infeasible tasks v/s

system load.

In a hard real time multicore system, it is important

that that all the tasks are assigned to the cores and when

executed, meet their deadlines. Hence, the other

parameter on which the efficiency of an algorithm can be

judged is the number of infeasible tasks left out when the

system load is varied from 1.5 to 3.0. From Fig. 13, it can

be seen that in PDAMS, maximum number of tasks are

getting infeasible as compared to the other three

algorithms. The Improved_HBLB gives the best results

amongst the four approaches. The reason is that

Improved_HBLB uses the concept of FT window that

keeps a track on feasibility condition for every task in

FCW.

D. Effect of weight parameter W:

The heuristic function value depends on value of W.

Fig. 14 above shows the variation in imbalance among

the cores for different values of W. For utilization from 0

to 1, it can be seen that the value of imbalance is constant

for all the value of W.

Fig.14. Imbalance variation of HBLB on different values of W and
utilization from 0 to 3.

When the utilization ranges from 1 to 2, then with

increase in W, imbalance amongst the cores increases.

When the utilization of the system is varied from 2 to 3, it

can be seen from Fig. 14 that the average imbalance first

decreases and then increases providing a minimum

imbalance at W=11, which is the midpoint in the range

considered for W.

E. Performance of HBLB and Improved_HBLB:

Fig.15. Performance of HBLB and Improved_HBLB approach when
system utilization is varied from 0.5 to 1.0.

The parameter considered for measuring and

comparing the performance amongst the four approaches

will be acceptance ratio. Acceptance ratio is the ratio

between the tasks sets that are scheduled by the total

number of task sets considered during the experiments.

The task sets are generated randomly for total system's

utilization of 0.5 to 1.0 with a step size of 0.5. The tasks'

utilization is varied from 0.1 to 1.0. Over 500

experiments were made to run for each case and the

 Load Balancing in Multicore Systems using Heuristics Based Approach 67

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 12, 56-68

results are shown in Fig. 15. It can be seen from Fig. 15

that the tasks' maximum utilization is varied. A variation

in task's maximum utilization is inversely proportional to

the number of tasks generated in the task set and it leaves

the algorithm with a lesser choice of selection of tasks. In

other words, if maximum utilization of tasks is increased

then the number of tasks generated in the task set will be

less. Due to this reason, it can be seen from results that as

the maximum utilization of the tasks increases the

performance of all the approaches degrades. However, for

every case discussed above, it can be seen that HBLB and

Improved_HBLB approaches works better than the other

two approaches and has a better performance over LBTP

and PDAMS approaches.

VIII. CONCLUSIONS

The main goal of real time load balancing algorithm is

meeting the deadlines of the tasks and to increase the

utilization of the cores which indirectly increases the

utilization of the system. Many algorithms are present in

the literature that provides such functionality. However,

to reduce the load balance among the cores, the tasks are

migrated from one core to another and this may result an

increase in cost of the algorithm. Prior selection of

optimal task using look ahead feasibility check window is

an intermediate solution which assigns the best task to the

cores that reduces workload of the system as well as the

migration of the tasks. In this paper, a heuristic based

load balancing algorithm (HBLB) is proposed for

dynamically balancing the load in real time multicore

systems. HBLB reduces the imbalance amongst the cores

but it also faces some limitations. These limitations were

solved by Improved_HBLB algorithm which is an

improved version of HBLB algorithm. Through

simulation studies, it is demonstrated that heuristic

function is a useful concept for gaining minimum

imbalance than to allow more number of migrations and

backtracks. The simulation results show that the

imbalance factor among the cores generated by

Improved_HBLB and HBLB algorithms is less than the

compared algorithms of LBTP and PDAMS for different

parameters. From simulation analyses, following results

are drawn:

 For a utilization between (0,M], the

Improved_HBLB and HBLB algorithm gives

better results than LBTP and PDAMS in terms of

balancing workload amongst the cores.

 The impact of backtracks is less as compared to

that in LBTP. This clearly indicates that the cost of

algorithm is less in terms of migration overhead.

 Improved_HBLB algorithm provides better results

than HBLB, LBTP and PDAMS, thus, reducing

the overall number of migration of tasks from one

core to another.

 The success ratio of the tasks in Improved_HBLB

and HBLB is more as compared to that in LBTP

and PDAMS algorithms.

 The different values of W predicted that the value

of imbalance remain ineffective when total system

utilization is less than 1 and after it as the value of

W increases, the imbalance increases.

REFERENCES

[1] A. Vajda, “Programming many-core chips”, Springer

Science and Business Media, 2011. DOI: 10.1007/978-1-

4419-9739-5.

[2] J. W. Langston and X. He, “Multi-core processors and

caching-a-survey”, Tennessee Technological University,

2007.

[3] S. Jadon and R. S. Yadav, “Multicore processor: Internal

structure, architecture, issues, challenges, scheduling

strategies and performance”, IEEE International

Conference on Industrial and Information Systems, pp.

381-386, 2016. DOI: 10.1109/ICIINFS.2016.8262970.

[4] R. Mohan and N. P. Gopalan, "Dynamic Load Balancing

using Graphics Processors", International Journal of

Intelligent Systems and Applications (IJISA), Vol.6, No.5,

pp.70-75, 2014. DOI: 10.5815/ijisa.2014.05.07.

[5] M. Verma, N. Bhardwaj, and A. K. Yadav, "Real Time

Efficient Scheduling Algorithm for Load Balancing in

Fog Computing Environment", International Journal of

Information Technology and Computer Science (IJITCS),

Vol.8, No.4, pp.1-10, 2016. DOI: 10.5815/ijitcs.2016.

04.01.

[6] M. Mesbahi and A. M. Rahmani, "Load Balancing in

Cloud Computing: A State of the Art Survey",

International Journal of Modern Education and Computer

Science (IJMECS), Vol.8, No.3, pp.64-78, 2016. DOI:

10.5815/ ijmecs.2016.03.08.

[7] P. S. Kshirsagar and A. M. Pujar, "Resource Allocation

Strategy with Lease Policy and Dynamic Load Balancing",

International Journal of Modern Education and Computer

Science (IJMECS), Vol.9, No.2, pp.27-33, 2017. DOI:

10.5815/ijmecs.2017.02.03.

[8] X. Zhang, J. Li, and X. Feng, "A Dynamic Feedback-

based Load Balancing Methodology", International

Journal of Modern Education and Computer Science

(IJMECS), Vol.9, No.12, pp. 57-65, 2017. DOI:

10.5815/ijmecs. 2017.12.07.

[9] L. L. Pilla , C. P. Ribeiro, P. Coucheneyb, F. Broquedis, B.

Gaujal, P. O. A. Navauxa, and J-F Méhaut, “A topology-

aware load balancing algorithm for clustered hierarchical

multi-core machines”, Future Generation Computer

Systems, Vol. 30, pp. 191-201, 2014. DOI: 10.1016/

j.future.2013.06.023.

[10] V. Thakur and S. Kumar, “Load Balancing Approaches:

Recent Computing Trends”, International Journal of

Computer Applications, Vol. 131, No.14, 2015.

[11] K. M. Katre, H. Ramaprasad, A. Sarkar, and F. Mueller,

“Policies for migration of real-time tasks in embedded

multi-core systems”, Real Time System Symposium, pp.

17–20, 2009.

[12] J. Luo and N. Jha, “Power-efficient scheduling for

heterogeneous distributed real time embedded systems”,

IEEE Transaction Computer-Aided Design of Integrated

Circuits and Systems, pp. 1161–1171, 2007. DOI:

10.1109/TCAD.2006.885736.

[13] A. Srinivasan and J. Anderson, “Optimal rate-based

scheduling on multiprocessors”, ACM Symposium on

Theory of Computing, pp. 189–198, 2002. DOI:

10.1145/509907.509938.

[14] J. Anderson and A. Srinivasan, “Early-release fair

scheduling”, Euromicro Conference on Real-Time

https://doi.org/10.1109/ICIINFS.2016.8262970
https://doi.org/10.1109/TCAD.2006.885736
https://doi.org/10.1145/509907.509938

68 Load Balancing in Multicore Systems using Heuristics Based Approach

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 12, 56-68

Systems, pp. 35–43, 2000. DOI: 10.1109/EMRTS.

2000.853990.

[15] H. Anderson and A. Srinivasan, “Mixed pfair/erfair

scheduling of asynchronous periodic tasks”, Euromicro

Conference on Real-Time Systems, pp. 76–85, 2001. DOI:

10.1109/EMRTS.2001.934004

[16] M. Moir and S. Ramamurthy, “Pfair scheduling of fixed

and migrating periodic tasks on multiple resources”, IEEE

Real-Time Systems Symposium, pp. 294–303, 1999. DOI:

10.1109/REAL.1999.818857.

[17] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. Varvel,

“Proportionate progress: A notion of fairness in resource

allocation”, Algorithmica, Vol. 15, pp. 600–625, 1996.

DOI: 10.1007/BF01940883.

[18] S. Baruah, “Techniques for multiprocessor global

schedulability analysis”, IEEE Real-Time Systems

Symposium, pp. 119–128, 2007. DOI: 10.1109/RTSS.

2007.35.

[19] J. Kang and D. G.Waddington, “Load balancing aware

real-time task partitioning in multicore systems”,

Embedded and Real-Time Computing Systems and

Applications (RTCSA), pp. 404-407, 2004. DOI:

10.1109/RTCSA.2012.71.

[20] S. Park, E. Seo, J. Jeong, and J. Lee. “Energy efficient

scheduling of real time tasks on multicore processors”,

IEEE Transaction on Parallel and Distributed Systems,

Vol. 19, pp. 1540-1552, 2008. DOI: 10.1109/TPDS.

2008.104.

[21] J. L. March, J. Sahuquillo, S. Petit, H. Hassan, and J.

Duato, “A dynamic power-aware partitioner with task

migration for multicore embedded systems”, Parallel

Processing, Springer, 2011, pp. 218-229. DOI:

10.1007/978-3-642-23400-2_21.

[22] K.-M. Cho, C.-W. Tsai, Y.-S.Chiu, and C.-S. Yang, “A

high performance load balance strategy for real-time

multicore systems”, The Scientific World Journal, Vol. 14,

2014. DOI: 10.1155/2014/101529.

[23] J. A. Stankovic, M. Spuri, K. Ramamritham, and G.

Buttazzo, “Deadline scheduling for Real-Time Systems”,

The Springer International Series in Engineering and

Computer Science, Vol. 460, 1998. DOI: 10.1007/978-1-

4615-5535-3.

[24] I. Chai, Ian K. T. Tan, and P. K. Hoong, “Dynamic

threshold for imbalance assessment on load balancing for

multicore systems”, Computers & Electrical Engineering,

Vol. 39, pp. 338-348, 2013. DOI: 10.1016/j.compeleceng.

2012.10.013

Authors’ Profiles

Shruti Jadon received her B. Tech degree in

Computer Science and Engineering from

Uttar Pradesh Technical University,

Lucknow (U.P.), India in 2011 and M.Tech

in Computer Science from Banasthali

University, Banasthali (Rajasthan) India in

2013. Presently she is pursuing PhD from

Motilal Nehru National Institute of

Technology Allahabad (U.P.), India since July, 2013. She has

also worked with Dr. Amey Karkare, Computer Science and

Engineering Department, IIT Kanpur (U.P.), India from July

2012 to June 2013. Her area of interest includes real time

embedded systems and parallel and distributed systems.

Rama Shankar Yadav is currently a professor

at Motilal Nehru National Institute of

Technology, Allahabad, India. He received

his Ph.D. degree from the Indian Institute of

Technology (IIT) Roorkee, M.S. degree from

Birla Institute of Technology and Science

(BITS) Pilani, and B. Tech. degree from the

Institute of Engineering and Technology

(I.E.T.), Lucknow, India. Dr. Yadav has extensive research and

academic experience. He has worked in leading institutions

such as Govind Ballabh Pant Engineering College (GBPEC),

Pauri, Garhwal, and Birla Technical Training Institute (BTTI),

Pilani. He has authored more than 70 research papers in

national/international conferences, refereed journals, and book

chapters. Dr. Yadav’s areas of interest are real time systems,

embedded systems, fault-tolerant systems, energy aware

scheduling, network survivability, computer architecture,

distributed computing, and cryptography.

How to cite this paper: Shruti Jadon, Rama Shankar Yadav,

"Load Balancing in Multicore Systems using Heuristics Based

Approach", International Journal of Intelligent Systems and

Applications(IJISA), Vol.10, No.12, pp.56-68, 2018. DOI:

10.5815/ijisa.2018.12.06

https://doi.org/10.1109/EMRTS.2000.853990
https://doi.org/10.1109/EMRTS.2000.853990
https://doi.org/10.1109/EMRTS.2001.934004
https://doi.org/10.1109/REAL.1999.818857
https://doi.org/10.1109/RTSS.2007.35
https://doi.org/10.1109/RTSS.2007.35
https://doi.org/10.1109/RTCSA.2012.71
https://doi.org/10.1109/TPDS.2008.104
https://doi.org/10.1109/TPDS.2008.104
https://dx.doi.org/10.1155%2F2014%2F101529
https://doi.org/10.1016/j.compeleceng.2012.10.013
https://doi.org/10.1016/j.compeleceng.2012.10.013

