
I.J. Intelligent Systems and Applications, 2018, 12, 80-91
Published Online December 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2018.12.08

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 12, 80-91

Quality Evaluation of Component-Based

Software: An Empirical Approach

Prasenjit Banerjee
National Institute of Technology, Durgapur, West Bengal-713209, India

E-mail: prasenjitmca7@gmail.com

Anirban Sarkar
National Institute of Technology, Durgapur, West Bengal-713209, India

E-mail: sarkar.anirban@gmail.com

Received: 20 July 2017; Accepted: 20 December 2017; Published: 08 December 2018

Abstract—In recent days, component-based software

engineering has become popular in the software industry

for its reuse property. A suitable component-based

software model is crucial for the effective design of the

component-based software engineering. Quality

assessment, evaluation, and analysis of a component

model are highly essential to maintain the efficient design

in the development of such system. Quality measurement

for the component model will be more accurate, if it can

be measured by a set of valid and meaningful metrics.

This paper has proposed an empirical approach to

validate a set of quality metrics along with a set of quality

attributes for the design model of component-based

software. In the proposed approach, metrics

interdependencies have described using a Chi-Square

non-parametric test. This paper has considered six

different case studies of a well-known library

management system to establish the metrics

interdependency along with several quality attributes of a

component model. This helps to identify the practically

useful set of metrics for the quality assessment of high

cohesive and low coupling metrics of the component-

based system. A massive dataset has been collected from

the 34 students of the institute on these six case studies.

The Pearson's correlation method has been applied on the

collected data set to identify the several correlations

between the set of metrics and the set of quality attributes

in terms of operation time. This facilitates to assess

different crucial quality attributes of component-based

system (CBS) design like complexity, analyzability,

expressiveness etc.

Index Terms—Component-based system, component

model, component quality metrics, software measurement,

empirical validation.

I. INTRODUCTION

In last two decades, Component-Based Software

Engineering (CBSE) has emerged as a popular approach

in the software industry for its reusing property. In CBSE,

component represents a software element or modular unit

of a system, which is not tied to any fixed set of other

software elements and can be reused also. Thus, CBSE

becomes one of the key ideas for a development

paradigm in terms of time and cost. In last few years,

researchers have proposed several component models for

developing CBSE. However, assessment, evaluation, and

analysis of those models are highly essential to maintain

the quality towards the effective and efficient

developmental approaches for those component models.

Most of the time, quality assessment of any product or

model is evaluated before its deployment. This produces

several problems, such as modification of any unit into a

model due to bad design and many more. It makes the

design model faulty. Therefore, if the quality assessment

is evaluated at the design phase then it can yield an

efficient model, which can further result in good end

product. The most challenging issue in this context is to

deal with a large number of quality attributes such as

expressiveness, completeness, structural complexity,

analyzability, safety, availability, reliability, reusability,

and interoperability. Proper identification of suitable

design level quality attributes are needed and accurate

measurements to each of them individually are important

to consider.

Furthermore, the quality of any software system can be

assessed by two related but distinct ideas of quality

(functional quality and structural quality). Software

functional quality shows how well it collaborates or

satisfies a given design depending on the functional

requirements or specifications. Additionally, it represents

as the compatible software piece or it correlates to

competitors in the marketplace as a worthwhile product

[32]. Functional quality uses different functions or codes

for measurement purpose. Thus, LOC (Line of Code),

Fan-In Fan-Out, Cyclomatic complexity or size-based

metrics are widely used to measure the functional quality

of a model. In other words, software structural quality

reflects that how software functional quality is being used

to define the non-functional quality of software. It uses

different structural parts of the model to specify the non-

functional quality such as the number of hierarchies for

identifying the complexity of a model and more.

 Quality Evaluation of Component-Based Software: An Empirical Approach 81

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 12, 80-91

However, sufficient and expressive measurements

towards the quality attributes are also important for

customer satisfaction and project success. As the quality

of a component model depends on the individual

component, thus, the basic constructs, inner and inter-

relationships of the individual component are essential

considerations for effective quality measurement.

Moreover, quality can be assessed through some

statistical methods using an automated tool to get

accurate results.

Various literatures [16, 29, 30, and 31] exist towards

the quality measurement of the component model. Either

these proposals are, dedicated to some specialized

evaluation method of quality such as, performance

predictions, safety predictions and reliability predictions,

or they are dedicated to some generic evaluation methods

of quality, which do not have sufficient valid description

of measurements. However, the quality measurement will

be more accurate if it is measured by a set of metrics [4, 8,

13, 22, 27 and 28]. Valid and significant metrics will help

the practitioners for better understanding. According to

[4], metrics will be meaningful if it successfully passes

through the quality assessment questions (QAQs) related

to the necessity of metrics, specific hypothesis of

proposals, proper identification of users and more. These

QAQs will help to improve the quality of any component

model. Moreover, this quality measurement metrics will

be valid if it is measured by the theoretical validation and

empirical validation. The theoretical validation endorses

that any necessary properties of the elements of

measurement will not be violated by measurement, and

the empirical validation endorses that measured values of

attributes are consistent with values predicted by models

involving the attribute. The empirical methods are

authenticated evidence of validity or invalidity and the

theoretical methods of validation allow valid

measurements with respect to few convinced defined

criteria [33, 34, and 35].

In this context, a set of quality metrics and a set of

quality attributes have been proposed for quality

measurement of Z-Formal Specification of Component

Model (ZFSCM). The quality attributes such as,

structural complexity, analyzability, expressiveness,

reliability, reusability, etc. have been evaluated using

these metrics and validated theoretically. However, the

metrics have been validated empirically in this paper. The

major contributions in this paper are (I) Chi-square non-

parametric test for metrics interdependency, (II)

Correlation analysis using Pearson's Correlation. It will

help to identify metrics interdependency to define high

cohesive and low coupling metrics. The empirical study

has experimented on six different case studies of a

library-management system with 34 trained students.

Though this proposal is based on ZFSCM, it can be

effective for other formal component models also.

The remaining sections of this paper have been

organized as follows: several related research proposals

have been discussed in section 2 towards the quality

evaluation of the component-based system. Set of quality

metrics have been discussed in section 3 integrating

ZFSCM constructs and quality evaluation framework.

The empirical experiment has been discussed in section 4

with the data collected from 34 knowledgeable students

of the Institute using Pearson's correlation method and

finally, this paper has been concluded in section 5 with

future direction.

II. RELATED STUDY

In this section, a short survey has been presented on

quality evaluation methods using software metrics for

component-based software model with selected few

research studies that are closely related to this proposal.

The line of code (LOC) [37] is the simple software metric,

which is used to measure the size of a software product

by counting the number of lines of the program's source

code. However, size oriented metrics are not universally

accepted as the best way to measure the process of

software-development [38] and LOC measurement is the

programming language dependent also. Furthermore, size

of a component and line of codes are unknown to the

component developer at the design level. Therefore, LOC

is not applicable for measuring the quality of a

component-based system. In other words, Cyclomatic

complexity [39] cannot be applicable to the component-

based system as the flow graph is used to depict

procedural details and measuring the number of operators

and operands exists in a component-based system are still

unknown. Similarly, Function point metrics [41] are used

to measure the total function point value of software

system using the number of user inputs, number of user

outputs, number of user inquiries, number of files and

number of external interfaces with a set of weight factors

[40]. In this case, function point represents a normalized

value, which is used to measure the functionality to an

application. However, usage of weighting factors in the

component-based system is not a good practice of

measurement and is also difficult to measure the

complexity adjustment values used in function point

measurement. Therefore, these traditional software

metrics are not useful to measure the quality of the

component-based system

Moreover, component level design metrics focus on

the internal characteristics of a software component with

coupling metrics, cohesion metrics, and interface metrics

to measure the quality of a component-based system. In

[6], three metrics have been defined to measure the

component level complexity of a component system and

then derived a unique component complexity metric

along with three weight values. Furthermore, this

proposal has described many components assembly

metrics such as system coupling metric, system cohesion

metrics, system actual interface metrics, sole system

complexity metric and more along with weight factors.

Similarly, in [10], software complexity-level metrics has

been discussed using a modified use case point to

measure unadjusted use case weight (UUCW). Several

complexity metrics have proposed for this purpose such

as Use Case Type (UCT), Use Case Priority (UCP), Use

Case Goal Levels (UCGL), Type of Relative Actors

82 Quality Evaluation of Component-Based Software: An Empirical Approach

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 12, 80-91

(TRA), Business Rule (BR) etc. A number of weight

factors have considered from historical data to measure

the value of UUCW. The correctness of this metrics has

not been identified and thus the validations of all these

metrics are unclear. Moreover, collections of the proper

value for these weight factors are not clear and usage of

that type of weight factors seem that these can be misused

to evaluate the results as expected.

In [18], different types of complexity metrics have

been discussed such as weighted per method, depth of

inheritance, response for class, coupling between objects,

lack of cohesion methods, Cyclomatic complexity, line of

code, metrics for integration of software component,

criticality metrics, composition metrics, composition ratio

metrics and many more. However, this proposal does not

light on several important areas of complexity such as

structural complexity, time complexity, and cost

estimation complexity, etc. Although few metrics of these

proposals are useful for measuring some quality attributes

of the component-based system, the validity is unknown.

Moreover, this paper has claimed that component-based

software metrics research is still immature but no proper

discussion about immaturity in what sense.

In [17], a software metric has been proposed in terms

of component balance (CB) to achieve the optimal

analyzability of system decomposition. The component

balance is a combination of two other metrics, system

breakdown (SB) and component size uniformity (CSU)

and considers the number of components and their

relative size for measurement purpose. An empirical

study and as well as a correlation test have been done

over 80 systems to represent the metric independency

among several definitions of CB and the validation of

proposed metric. However, this proposal has developed

for a single level of decomposition.

Similarly, in [12], reliability modeling and prediction

technique have been introduced, which explicitly models

the execution environment and component usage profile.

The proposal has considered relevant architectural factors

of software systems. The prediction technique has offered

a UML-like modeling notation whose models can be

automatically transformed into a formal analytical model.

This proposal is validated with sensitivity analyses and

simulation and is based on the Palladio component model.

In [20], another approach of reliability has been proposed

for component-based software architecture. This method

is based on Rich Architecture Definition Language

(RADL) oriented towards different industrial platforms

such as MS-DOT NET, EJB, etc. A reliability model has

been parameterized by required component reliability in a

deployment context. The reliability of different services

have been defined as the product of the three reliabilities

such as reliability of service call and return, the reliability

of structural and operation part for the service and the

reliability of the external method call. However, this

approach enables the user to compute directly the

reliability of a component as a function of the usage

profile. Moreover, this paper has also measured the

proposed reliability model empirically to show the

accuracy of the proposal. These proposals are useful for

measuring some specific properties of quality

measurement. Although, they have important links and

clues to some extent but that are not useful for generic

evaluation of quality measurement for the component-

based system.

In other words, the literature [5] has described a

component quality model for component evaluation at

run time and during the project life cycle. Three metrics

have been used namely, Presence, Ration, and IValue, to

measure the different quality attributes of the component-

based system. The model has composed several

characteristics and sub-characteristics such as

functionality, reliability, usability, efficiency,

maintainability, portability fault tolerance, deploy-ability

and much more. ISO 9126 standard has been followed by

this model with few extra characteristics such as

configurability and scalability in runtime and self-

contained and reusability in the life cycle. Similarly,

several component metrics have been proposed in [7] to

provide baselines for quality and productivity

improvement program within organizations adopting

component based software engineering. In this proposal,

component quality measurement has been categorized

into four areas namely, component granularity,

component interoperability, quality of the integrated

system and performance and reliability of components.

Several metrics have been proposed for the four

categories. In [11], a generic quality assurance model has

been proposed for component-based software

development, which is accounted for component

requirement analysis, component development,

component certification, component customization, and

system architecture design, integration, testing, and

maintenance. This paper has also described several

advantages and disadvantages of component-based

software technologies. In [14], a flexible and extensible

formulation of the design space for optimizing any CBS

model has been proposed for a number of quality

properties and an arbitrary number of degrees of freedom.

This paper has also proposed a novel meta-model for

describing degrees of freedom (DoF) for any CBS meta-

model that uses the OMG EMOF as meta-meta-modelling

language. This paper has demanded that the proposed

quality framework can evaluate any quality parameters of

the component-based system using this formula. However,

no guideline has been discussed about the identification

of this formula to evaluate the quality parameters. The

main crises of these proposals are proper metrics

validation. However, few metrics are helpful towards the

quality measurement of the component-based system but

are failed to provide valid metrics.

Thus, LOC is not applicable for quality measurement

of CBS as it is size oriented and programming language

dependent, Cyclomatic complexity is not applicable on

CBS as the measurement of procedural details are

immature, and function point measurements are difficult

and weight factor's dependent. Therefore, these

traditional software metrics are not so useful to measure

the quality of CBS. Although coupling metrics, cohesion

metrics, interface metrics, are useful for quality

 Quality Evaluation of Component-Based Software: An Empirical Approach 83

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 12, 80-91

measurement of CBS, there is a lack of identifying the

validity and correctness of this metrics. Most of the

proposals have either used weight factors, which are very

difficult to measure or have not used valid metrics. Thus,

there is a need for identifying correct and valid metrics to

measure the quality attributes for the component-based

system. However, metrics are easy to invent but getting

the right and valid metrics that measure the thing that

needs measuring is much tougher. Theoretical validation

and empirical experiments may solve these difficulties to

make it easier. In this context, metrics independency may

support high cohesive and low coupling property of the

system.

III. QUALITY EVALUATION OF COMPONENT-BASED

SYSTEM

The quality of a component-based system can be

evaluated in double-fold viewpoints, Designer viewpoint

and User viewpoint. Each viewpoint is correlated with a

set of criteria, which is further defined using proposed

metrics. Both efficiency and effectiveness are affected by

the component model's quality for component-based

system development. In this case, efficiency may be

measured in terms of time, cost & effort, and

effectiveness may be measured in terms of quality of the

results. Therefore, efficiency may be affected by the

complexity and reusability of the component model, and

effectiveness may be affected by the completeness and

interoperability of the component model. Thus, for

quality evaluation of a component-based system, the

Designer viewpoint is determined by the criteria like

structural complexity, completeness reusability, and

interoperability. Furthermore, the component model

conveys the user analysis requirement and background of

the application domain with fault free and correct

operation. Thus, the User viewpoint for the quality

evaluation of the component-based system is identified

by the criteria like expressiveness, analyzability,

reliability, and availability. These quality measurement

criteria or attributes have been evaluated using a set of

proposed metrics.

A. Set of Proposed Metrics and Measurements

In this section, a set of metrics has been discussed to

measure several quality attributes for the conceptual

design model of the component-based system (ZFSCM)

to resolve the issues, which have already described earlier.

This component model consists of three basic elements

namely, class, interface, and service. In this model, the

necessity of defining a class is to provide different

services for other classes and requires several services

from them. Each class interacts with other classes either

within its own component or outside of the component.

Furthermore, a specialized class inherits other classes.

Similarly, a component needs to define for a complete

understanding of different component interactions. It is

also important that hierarchy represent as the

correspondence inheritance tree of the interaction. Thus,

it is necessary to define few metrics using the number of

basic elements and the number of relationships of

different interactions of the ZFSCM. This will help to

identify complexity, expressiveness, completeness, and

analyzability of the model. However, the only necessary

condition is to express these proposed metrics in terms of

ZFSCM modeling elements. The abstraction of inward

interaction, outward interaction, hierarchies are done

using different relationships in ZFSCM (aggregation,

inheritance, etc.). Considering S is an operation for

ZFSCM, the set of proposed metrics with their

interpretation for ZFSCM model have been summarized

in Table 1.

Table 1. Set of Quality Metrics and Attributes with its Description

Metrics Description and formulation Elements of ZFSCM used

NCO (S) Number of components in the operation S. Components

NCi(S) Number of classes in component i of operation S. Classes

NSij(S) Number of services in class j of component i for operation S. Services

NIi(S) Number of interfaces in component i of operation S. Interface

NC (S)

Number of classes in component of operation S. Therefore,

NCO

i

i SNCSNC

1

)()(
Class

NS (S)

Number of services in component of operation S. Therefore,

NCO

i

NC

j

ij

i

SNSSNS

1 1

)()(
Service

NI (S)

Number of interfaces in component of operation S. Therefore,

NCO

i

i SNISNI

1

)()(
Interface

NISj(S)
Number of services , which are belong to class j and are involved in the component

interaction of the operation S within class j.
Service

NOSj(S)
Number of services , which are belong to class j and are involved in the component

interaction of the operation S outside of class j.
Service

NIIi(S) Number of inward interactions in the component i of operation S.
Components, Classes,

Services, Interface

84 Quality Evaluation of Component-Based Software: An Empirical Approach

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 12, 80-91

Metrics Description and formulation Elements of ZFSCM used

NOIi(S) Number of outward interactions in the component i of operation S.
Components, Classes,

Services, Interface

NIRi(S)
Number of interactions in the component i of operation S. Therefore,

)()()(SNOISNIISNIR iii

Components, Classes,

Services, Interface

NICLi(S)
Number of classes , which are belong to component i and are involved in the component

interaction of the operation S within component i.

Class

NOCLi(S)
Number of classes , which are belong to component i and are involved in the component

interaction of operation S outside of component i.
Class

NIILi(S)
Number of interfaces , which are belong to component i and are involved in the component

interaction of operation S within component i.
Interface

NOILi(S)
Number of interfaces , which are belong to component i and are involved in the component

interaction of operation S outside of component i.
Interface

NHi(S)

Number of hierarchy in the component i of operation S. Therefore,

NCO

i

i SNHSNH

1

)()(
Inheritance, Aggregation

NR(S) The number of relationship types exists in the operation S.

One-to-one, one-to-many,

many-to-one, inheritance,

aggregation

MDH(Hi) Maximum depth in the hierarchy)(SNHH ii for component i in operation S.
Components, Classes,

Services, Interfaces,

Inheritance, aggregation.

MWH(Hi) Maximum width in the hierarchy)(SNHH ii for component i in operation S.
Components, Classes,

Services, Interfaces,

CPV(S)

Class Point Value is used to measure the class-level complexity of an operation S and is
measured by the following equation

)(

1

]))(())([()(

SNC

i

iiii tSNOStSNISSCPV
NIS, NOS

IPV(S)

Interaction Point Value is used to measure the behavioral-level complexity of an operation

S and is measured by the following equation

)(

1

43]))(())([()(

SNI

i

ii tSNOItSNIISIPV
NII, NOI

SC(S)

SC(S) is used to measure the structural complexity of an operation S and is measured by

the following equation

)(

1

))()(()(

SNCO

i

ii SIPVSCPVSSC
CPV, IPV

Compleness(S)

Degree of fulfilled requirement of an operation S and is measured by the following

equation

)()()()(

)()()()(
)(

SNOISNOILSNOCLSNOS

SNIISNIILSNICLSNIS
SssCompletene

NIS, NICL, NIIL, NII,

NOS, NOCL, NOIL, NOI

Expressiveness(S)

Degree of expressiveness of an operation Sand is measured by the following equation

)(

)()(

)()()(

)(

1

1 SNR

SNSSNIR

SNISNSSNC

SnessExpressive
NCO

i

ii

NCO

i

iii

NC, NS, NI, NIR, NR

Analyzability(S)

capability of software product to be diagnosed for deficiencies of an operation S and is

measured by the following equation

)(

1

)(

1

)()()()(

SNCO

i

SNH

j

ijji SNIMWHMDHSNSSityAnalyzabil
MDH, MWH, NI

 Quality Evaluation of Component-Based Software: An Empirical Approach 85

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 12, 80-91

Metrics Description and formulation Elements of ZFSCM used

Interoperability(S)

It indicates the effort required to couple one component to another in the operation S and is
measured by the following equation

)(

1 43

21

)(

)(

)(

)(

)(

)(

)(

)(

)(

SNCO

i
i

i

i

i

i

i

i

i

SNIR

SNOI
C

SNI

SNOIL
C

SNC

SNOCL
C

SNS

SNOS
C

SbilityInteropera

NOS, NOCL, NS, NC NI,

NOIL, NOI, NIR, (C1, C2,

C3, C4)
*1

Reliability(S)

Reliability is the probability of failure free operation of a component interaction in

component model for a specified time and it is measured by the following equation

)(

1

)(

1

)(
100

)(

)(Re
SNCO

i

i
i

i

R
SNCO

i

ii

F

SNIR
P

K

T

SNIRP

T
Sliability

NCO, NIR, (TF, TR, Pi,

Ki)**2

Availability(S)

Availability is the probability that a program is operating according to requirements at a

given point of time and it is measured by the following equation

%100
)(Re

)(

)(

)(

1

SliabilityT

SNIRP

StyAvailabili
F

SNCO

i

ii

NIR, NCO, PF, TF,
Reliability

Service-level

reusability(S)

Service-level reusability (SLR) is the ability of services to be reused in the operation S and
is measured by the following equation

)(

1
)(

)(
)(__

SNCO

i

i

SNS

HNS
SyreusabilitlevelService

NS, NCO, Hi
***3

Class-level

reusability(S)

Class-level reusability (CLR) is the ability of classes to be reused in the operation S and is

measured by the following equation

)(

1
)(

)(
)(__

SNCO

i

i

SNC

HNC
SyreusabilitlevelClass

NC, NCO, Hi

Component-level

reusability(S)

Component-level reusability (SLR) is the ability of a component to be reused in the

operation S and is measured by the following equation

)(

)(
)(__

SNCO

HNCO
SyreusabilitlevelComponent

NCO

*1 C1, C2, C3, C4 are the regression coefficients, which represent the rate of change for interoperability as a function of changes in the others such as

services, classes, interfaces.
**2 Pi is the probability of ith component interaction to be failure and Ki is the probability to recover that ith interaction from failure, then if P is low,

the reliability will high. TF is the total time caused for failure i.e. the total amount of time for which, the calling services had waited and TR is the total
time spent for repair.

***3 Hierarchy for component i in the operation S.

IV. PROPOSED EMPIRICAL VALIDATION OF CBS QUALITY

EVALUATION FRAMEWORK

Empirical validation is one of the major important

ways through which academicians and scientists can

assist industry in selecting new technology. In this section,

empirical validation of the proposed metrics and quality

attributes has been described to demonstrate their

interdependencies. The main aim is to measure of

different crucial quality attributes of CBS design like

structural complexity, expressiveness, analyzability,

reusability etc. There is an arrangement for this empirical

validation through a practical experiment to check

whether these set of proposed metrics and attribute's

measurements can identify the quality of component

model or not. In this context, operability is an important

influential factor on these quality attributes and metrics.

In CBSE application domain's concern, operability factor

can be adopted as the effort to execute some component

modification and operations on any component model.

However, the operation time is a convenient

measurement of the operability factor. Functional aspect

may help to evaluate the operation time of the operation

and the user's feedback with the condition that same

operability factor will be applied on every operation.

A. Experimental Preparation

The goal of this experiment is to analyze the efficiency

of the set of metrics for the component model for quality

attributes and operability in user's circumstances.

Users: Thirty-four students from the institute have

participated in this experiment. These students have

knowledge in component-based software engineering,

formal specification of the component model, component

model design, and concept of ZFSCM model. The

experiment has been distributed among six cases along

with few questions related to component operations and

modifications among all students and evaluated them

independently.

Cases: To perform this experiment, six conceptual

86 Quality Evaluation of Component-Based Software: An Empirical Approach

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 12, 80-91

component operations have been used in different

operation domains. The main intentions were to select

real-life example and to have operations with different

metrics and attribute values. Furthermore, an example

case of the component diagram of library management

system has been chosen as Issue_Book (Fig. 1). For

further cases, readers may contact the author. Here, three

questions have been raised related to the operation and

modification of the component model. (Q1) which

component do you need to operate for issuing a book in

one specific model? (Q2) which components do you need

to operate the list of all authenticate member? And (Q3)

modify the model to specify the student member and staff

member separately. The main focus is on the operation

time taken by the users to answer these questions, which

will help to identify and calculate the operation time and

operability factor respectively. The set of metrics and

measurement values are shown in Table 2.

Hypotheses: The following hypotheses have been used

for the experiments:

• Null hypothesis (H0): No significant correlation

exists between the quality attributes and set of metrics

along with operability factor of the component model.

• Alternative hypothesis (H1): Significant correlation

exists between the quality attributes and set of metrics

along with operability factor of the component model.

Fig.1. Example case (Case 1) for Issue_Book operation with questionnaires

As described earlier, total six component operations of

different domain areas have been chosen for the

experiment with different complexities. The operation

times have been evaluated for the 34 students who have

the knowledge of CBSE and ZFSCM model for each case.

It has also verified about the correctness and

completeness of all the evaluations before choosing the

operation time for an experiment. The operation time for

all cases has been collected and shown in Table 3.

Effective variables for the study:

• Independent variables: The effects of independent

variables have been evaluated. The set of proposed

metrics has been chosen as independent variables in this

experiment, which associates the proposed quality

attributes and the operability factor.

• Dependent variables: Correlation will perform

between the independent variables and the quality

attributes like structural complexity, expressiveness,

completeness and analyzability and the operability factor.

So, these are dependent variables.

B. Experimental Steps

The total experiment has been divided into four phases.

It has been checked that whether these set of proposed

metrics are independent or not in first phase. In the

second phase, the correlation has been analyzed between

the set of metrics and the proposed quality attributes to

confirm the usability of the metrics, which control the

quality of component operation. In the third phase, the

correlation between the average operation time and the

proposed metrics has been evaluated to identify that

whether these metrics have a strong impact on the

operability factor of the component model or not. And

finally, the strong impact of the proposed attributes has

been analyzed on the operability factor of the component

model.

It has been assumed that the collected data follows free

distribution. It was not sure that the collected data (Tables

2 and 3) would follow a common statistical distribution

for a limited number of cases and users for this

experiment. Thus non-parametric independency test and

correlation analyses have been applied. The

interdependence test has been performed using non-

parametric Chi-square test and the correlation analysis

using Pearson's correlation analysis method. It has been

used 0.05 as a level of significance (∝) in both types of

analysis and so in the null hypothesis, H0 will be rejected

if P-value (2 tailed) <0.05.

1) Phase 1:

This experiment has tested the set of proposed metrics

for independency using non-parametric Chi-square test

and Table 4 shows the result. However, it has considered

the following hypothesis for this purpose,

H01: All attributes are independent.

H11: Not independent.

If P-value<0.05, then reject H01.

Since, all the P-values collecting in Chi-Square test

(Table 4) is greater than the ∝ value 0.05. Thus, it is

significant that all proposed metrics are independent.

2) Phase 2:

The correlation has been evaluated between the

proposed quality attributes and the set of proposed

metrics in this phase using Pearson correlation analysis

 Quality Evaluation of Component-Based Software: An Empirical Approach 87

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 12, 80-91

method both to analyze the metrics from the set of

proposed metrics, which are usable to control the quality

of component operations. The results have been shown in

Table 5.

Table 2. Proposed Metrics and Measurement Value of Each Case

Metrics Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

NCO 4 3 2 5 5 4

NC 6 4 2 7 7 5

NS 8 9 3 10 8 6

NI 6 6 1 5 5 4

NIS 1 1 0 0 1 1

NOS 8 8 3 10 7 5

NII 8 8 1 8 7 5

NOI 7 7 2 5 5 4

NICL 2 1 0 2 1 0

NOCL 7 3 2 5 5 5

NIIL 1 1 0 1 1 0

NOIL 5 5 1 4 4 4

NH 2 0 0 2 0 0

Structural Complexity 396 352 20 288 238 130

Completeness 0.444 0.478 0.125 0.458 0.476 0.333

Expressiveness 6 5.5 0.33 5.62 5.20 3.17

Analyzability 96 54 3 80 40 24

Table 3. Collected Operation Time (S)

Users Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

U1 171 138 109 160 143 98

U2 174 155 107 129 120 110

U3 178 157 85 164 124 107

U4 185 143 108 119 135 99

U5 175 153 99 128 131 90

U6 149 140 79 150 142 97

U7 160 160 120 179 153 117

U8 147 153 83 146 157 120

U9 142 171 81 175 145 77

U10 164 178 133 174 133 90

U11 150 185 89 169 128 110

U12 180 120 85 170 123 143

U13 155 171 80 130 157 75

U14 149 149 108 131 132 112

U15 163 165 92 151 139 103

U16 160 149 102 126 141 120

U17 183 171 121 123 147 135

U18 140 116 80 140 143 80

U19 190 131 110 133 139 133

U20 171 173 90 158 132 123

U21 146 151 94 155 140 108

U22 139 167 85 148 127 117

U23 163 141 125 139 147 133

U24 162 170 90 171 150 100

U25 185 135 65 150 138 76

U26 179 139 105 130 151 135

U27 137 149 112 152 116 155

U28 179 139 77 161 149 71

U29 152 129 89 164 145 139

U30 173 160 119 180 150 120

U31 183 168 76 166 131 75

U32 174 178 83 167 150 101

U33 178 152 88 153 153 83

U34 172 155 94 175 155 115

Total 5608 5211 3263 5166 4766 3667

Average 164.9411765 153.2647059 95.97058824 151.9411765 140.1764706 107.8529412

Standard

Deviation
15.42123914 17.00678799 16.33268761 18.0771766 11.03292754 22.03596558

88 Quality Evaluation of Component-Based Software: An Empirical Approach

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 12, 80-91

Analyzing Table 5, a conclusion can be done that the

schema level metrics NI(S), NII(S), NOI(S), NICL(S),

NIIL(S), and NOIL(S) have strong correlation with the

quality attribute structural complexity as the P-

value<0.05 and other metrics do not correlated with

structural complexity. Similarly, NS(S), NI(S), NOS(S),

NII(S), NOI(S), NICL(S), NIIL(S) and NOIL(S) metrics

are strongly correlated with expressiveness and NOS(S),

NII(S), NOI(S), NICL(S), and NH(S) are strongly

correlated with the analyzability.

3) Phase 3:

The correlation has been evaluated between the

average operation time and the set of proposed metrics in

this phase to identify the set of metrics that has strong

impact over the operability factor of the component

model.

Analyzing Table 6, a conclusion can be done that the

proposed metrics NOS(S), NOI(S), NICL(S) and NIIL(S)

and the operation time have strong correlation as P-

value<0.05 and other metrics do not correlated with

operation time. Therefore, the quality metrics have strong

impact over the operability factor of component model.

4) Phase 4:

In this phase, the correlation has been evaluated

between the average operation time and the proposed set

of quality attributes to identify the existence of any

significant impact of the proposed attributes on the

operability factor of component model (Table 7).

Table 4. Chi-Square Test for Metrics Independency

 NCO(S) NC(S) NS(S) NI(S) NIS(S) NOS(S) NII(S) NOI(S) NICL(S) NOCL(S) NIIL(S) NOIL(S) NH(S)

Chi-Square 0.667 0.667 0.667 0.667 0.667 0.667 2.000 0.667 0.000 2.000 0.667 1.000 0.667

Df 3 4 4 3 1 4 3 3 2 3 1 2 1

Asymptotic

Significance
0.881 0.955 0.955 0.881 0.414 0.995 0.572 0.881 1.000 0.572 0.414 0.607 0.414

Table 5. Pearson’s Correlation between Proposed Metrics and Quality Measurement

 NCO(S) NC(S) NS(S) NI(S) NIS(S) NOS(S) NII(S) NOI(S) NICL(S) NOCL(S) NIIL(S) NOIL(S) NH(S)

Structural

Complexity

Correlation 0.450 0.583 0.859 0.947 0.457 0.861 0.937 0.975 0.846 0.595 0.891 0.891 0.574

P-value 0.371 0.225 0.029 0.004 0.362 0.028 0.006 0.01 0.034 0.212 0.017 0.017 0.233

Completeness
Correlation 0.523 0.621 0.865 0.805 0.280 0.841 0.853 0.785 0.767 0.320 0.983 0.678 0.345

P-value 0.287 0.188 0.026 0.053 0.591 0.039 0.031 0.065 0.075 0.536 0.000 0.139 0.503

Expressiveness
Correlation 0.701 0.794 0.948 0.974 0.470 0.921 0.995 0.908 0.830 0.671 0.905 0.920 0.534

P-value 0.121 0.060 0.004 0.001 0.347 0.009 0.000 0.012 0.041 0.145 0.013 0.009 0.275

Analyzability
Correlation 0.540 0.664 0.804 0.809 0.179 0.881 0.851 0.811 0.961 0.732 0.804 0.746 0.860

P-value 0.269 0.150 0.054 0.051 0.735 0.020 0.031 0.050 0.002 0.098 0.054 0.088 0.028

Table 6. Pearson’s Correlation between Proposed Metrics and Operation Time

 NCO(S) NC(S) NS(S) NI(S) NIS(S) NOS(S) NII(S) NOI(S) NICL(S) NOCL(S) NIIL(S) NOIL(S) NH(S)

Average

Operation

Time

Correlation 0.365 0.511 0.779 0.767 0.163 0.836 0.806 0.829 0.917 0.440 0.949 0.642 0.639

P-value 0.477 0.300 0.068 0.075 0.758 0.038 0.053 0.041 0.010 0.382 0.004 0.169 0.172

Table 7. Pearson’s Correlation between Quality Attributes and Operation Time

 Structural Complexity Completeness Expressiveness Analyzability

Average

Operation

Time

Correlation 0.914 0.893 0.835 0.878

P-value 0.011 0.017 0.039 0.021

However analyzing Table 7, a strong correlation has

been found among the quality attributes like structural

complexity, expressiveness and analyzability, and

operation time as in each of those cases, P-value<0.05.

Hence, the proposed measures have an important impact

on the operability factor of component model. The

component model supports the designers and the users to

conceptualize and represent the CBSE requirements in

the premier design phase. Also, the operability factor of

the component model has significant influence on the

quality of premier design of the CBSE.

C. Discussion on Result

In this section, the collected results from this

experiment have been discussed. The main focus is on the

metrics independency to identify the highly cohesive and

low coupled metrics. In this regard, Table 3 indicates that

the collected operation times are consistent in all cases as

the standard deviations have not varied widely. This

proves that the collected operation times are almost

exactly correct in all cases. In phase 1, it has been found

that the value of asymptotic notation for each proposed

metrics is greater than the conventionally accepted

significance (i.e. >0.05). Therefore, it has been failed to

reject the null hypothesis. This concludes that all the

proposed metrics are independent of each other.

In phase 2 experiment, it has been found that structural

complexity is strongly correlated with the metrics like

 Quality Evaluation of Component-Based Software: An Empirical Approach 89

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 12, 80-91

NOI, NII, NOS, NI, NS, NICL, NIIL and NOIL.

Similarly, completeness is strongly correlated with the

metrics like NS, NII, NOS and NIIL, expressiveness is

strongly correlated with the metrics like NS, NI, NOS,

NII, NOI, NICL, NIIL, NOIL, analyzability is strongly

correlated with the metrics like NOS, NII, NICL, NH and

reusability is strongly correlated with NICL and NH. Fig

2 shows the results clearly. It has been observed that most

of these metrics are involved in either inward interaction

or within its own territory, i.e. class or component. This

indicates that these metrics are highly cohesive metrics

with respect to these quality attributes but low coupled.

Fig.2. Phase 2 Experiment for Identifying the Correlation between
Quality Metrics and Measurements

Moreover, in Phase 3 experiment, it has been also

observed that average operation time is strongly

correlated with NOS, NOI, NICL and NIIL. Fig 3 shows

the results more specifically. This indicates that operation

time has a strong impact on the proposed metrics.

Similarly, in Phase 4 experiment, it has been noticed that

average operation time is strongly correlated with

structural complexity, completeness, expressiveness, and

analyzability. Fig 4 shows the results clearly. This proves

that operation time or operability has a strong impact on

the proposed quality attributes.

Fig.3. Phase 3 Experiment for Identifying the Correlation between
Quality Metrics and Operation Time

However, few interesting results have been found by

this empirical experiment. The set of proposed metrics

are independent of each other (Phase 1). The metrics like

NII(S), NOI(S) and NICL(S) are strongly correlated with

structural complexity, expressiveness, and analyzability.

Therefore, the proposed attributes like structural

complexity, expressiveness, analyzability, and the

proposed metrics like NOS(S), NOI(S), NICL(S) and

NIIL(S) have a strong impact on the operability of the

component model in both designer and user aspects.

Fig.4. Phase 4 Experiment for Identifying the Correlation between
Quality Measurement and Average Operation Time

Therefore, a proper and relevant guideline has been

identified for the identification and measurement of

quality for individual component and as well as the

component model using a set of metrics for quality

assessment of a system. These set of metrics are not only

useful for individual component identification but useful

to deal with a large number of quality attributes of the

component-based system. Several quality attributes of the

component-based system have been evaluated statistically

using the set of metrics to achieve the accurate result. In

such statistical evaluation, Pearson's correlation method

has been followed and compared the results to increase

the accuracy rate throughout the experiment and come for

a decision that these metrics and measurement framework

are very useful to evaluate the quality attributes of any

individual component and as well as the component

model. In this context, usage of the ZFSCM component

model has made this measurement easy to identify the

proper metrics with their exact values. Therefore, these

metrics and attributes' measurements will be more useful

on ZFSCM or similar type component models.

V. CONCLUSION AND FUTURE WORK

In this paper, a set of metrics has been discussed for

quality attributes of the component model. This paper has

described how these proposed metrics can evaluate

different quality attributes such as structural complexity,

analyzability, expressiveness, reliability, completeness,

Interoperability, availability, reusability. The

interdependencies of the proposed metrics have been

described with the help of empirical study. There are

many potential quality metrics for the component-based

system. Since we have such a massive dataset (34

students, 6 cases, and at least 3 questions to each case)

based on the Z-Formal Specification of Component

Model (ZFSCM), it helped us to validate the quality

evaluation framework empirically using the non-

parametric chi-square test, and Pearson's correlation

90 Quality Evaluation of Component-Based Software: An Empirical Approach

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 12, 80-91

among the proposed metrics, quality measurements and

operation time. A four-phase experiment has been

organized on the dataset during empirical study to

identify the correlation of the quality attributes of CSB

design. The experiment results that all the metrics are

independent to each other, and the metrics like NII, NOI,

and NICL have strong correlation with the quality

attributes like structural complexity, expressiveness and

analyzability. We have also seen that the metrics like

NOS, NOI, NICL, NIIL, and the quality attributes like

structural complexity, expressiveness and analyzability

have the strong correlation with operation time. Though

this proposed mechanism is based on ZFSCM, but it can

be applicable to any design model of CBS.

In future, more quality attributes will evaluate

statistically using these sets of metrics and implement this

proposal with an automated tool to get more accurate

results.

REFERENCES

[1] R. Malhotra, A. Kaur, and Y. Singh, “Empirical validation

of object-oriented metrics for predicting fault proneness at

different severity levels using support vector machines,”

International Journal of System Assurance Engineering

and Management, vol. 1, No. 3, pp. 269-281, 2010.

[2] M. H. Olague, H. L. Etzkorn, S. Gholston, and S.

Quattlebaum, “Empirical validation of three software

metrics suites to predict fault-proneness of object-oriented

classes developed using highly iterative or agile software

development processes,” IEEE Transactions on Software

Engineering, vol. 33, No. 6, pp. 402-419, 2007.

[3] A. Bertolino, and R. Mirandola, “Modeling and analysis

of non-functional properties in component-based

systems,” Electronic Notes in Theoretical Computer

Science, vol. 82, No. 6, pp. 158-168, 2003.

[4] M. Abdellatief, A. B. M. Sultan, A. A. A. Ghani, and M.

A. Jabar, “A mapping study to investigate component-

based software system metrics,” Journal of systems and

software, vol. 86, No. 3, pp. 587-603, 2013.

[5] A. Alvaro, E.S. Almeida, and S. L. Meira, “Quality

attributes for a component quality model,” 10th

WCOP/19th ECCOP, Glasgow, Scotland, 2005.

[6] J. Chen, H. Wang, Y. Zhou, and D. S. Bruda,

“Complexity metrics for component-based software

systems,” International Journal of Digital Content

Technology and its Applications, vol. 5, No. 3, pp. 235-

244, 2011.

[7] N. S. Gill, and L. M. deCesare Sergio. "Measurement of

Component-based Software: Some Important Issues.":

373, 2002.

[8] C. Mayerl, K.M. Hüner, J.U. Gaspar, C. Momm, and S.

Abeck, “Definition of metric dependencies for monitoring

the impact of quality of services on quality of processes,”

2nd IEEE/IFIP International Workshop on Business-

Driven IT Management (BDIM'07), pp. 1-10, 2007.

[9] D.E. Geetha, T.S. Kumar, and K.R. Kanth, “Predicting the

software performance during feasibility study,” IET

software, vol. 5, No. 2, pp. 201-215, 2011.

[10] Y. Yavari, M. Afsharchi, and M. Karami, “Software

complexity level determination using software effort

estimation use case points metrics,” 5th Malaysian

Conference in Software Engineering (MySEC), pp. 257-

262, 2011.

[11] X. Cai, M.R. Lyu, K.F. Wong, and R. Ko, “Component-

based software engineering: technologies, development

frameworks, and quality assurance schemes,” In

Proceedings of the Seventh Asia-Pacific Software

Engineering Conference (APSEC), IEEE, pp. 372-379,

2000.

[12] F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner,

“Architecture-based reliability prediction with the

Palladio Component Model,” IEEE Transactions on

Software Engineering, vol. 38, No. 6, pp. 1319-1339,

2012.

[13] A. Aloysius, and K. Maheswaran, “A Review on

Component Based Software Metrics,” International

Journal of Fuzzy Mathematical Archive, vol. 7, No. 2, pp.

185-194, 2015.

[14] A. Koziolek, and R. Reussner, “Towards a generic quality

optimization framework for component-based system

models,” In Proceedings of the 14th international ACM

SIGSOFT symposium on Component based software

engineering, ACM, pp. 103-108, 2011.

[15] M. Anjum, M.A. Haque, and N. Ahmad, “Analysis and

ranking of software reliability models based on weighted

criteria value,” International Journal of Information

Technology and Computer Science (IJITCS), vol. 5, No. 2,

pp. 1, 2013

[16] L. Grunske, “Early quality prediction of component-based

systems–a generic framework,” Journal of Systems and

Software, vol. 80, No. 5, pp. 678-686, 2007.

[17] E. Bouwers, J.P. Correia, A. van Deursen, and J. Visser,

“Quantifying the analyzability of software architectures,”

9th Working IEEE/IFIP Conference on Software

Architecture (WICSA), pp. 83-92, 2011.

[18] P. Rana, and R. Singh, “A Study of Component Based

Complexity Metrics,” International Journal of Emerging

Research in Management & Technology, vol. 3 No. 11, pp.

159-165, 2014

[19] M. Padmaja, and D.D. Haritha, “Software Effort

Estimation using Grey Relational Analysis,” MECS in

International Journal of Information Technology and

Computer Science, vol. 5, pp. 52-60, 2017.

[20] R.H. Reussner, H.W. Schmidt, and I.H. Poernomo,

“Reliability prediction for component-based software

architectures,” Journal of systems and software, vol. 66,

No. 3, pp. 241-252, 2003.

[21] H. Koziolek, “Performance evaluation of component-

based software systems: A survey. Performance

Evaluation,” Elsevier, vol. 67, No. 8, pp. 634-658, 2010.

[22] M. Choi, I.J. Kim, J. Hong, and J. Kim, “Component-

based metrics applying the strength of dependency

between classes,” In Proceedings of the 2009 ACM

symposium on Applied Computing, pp. 530-536, 2009.

[23] J. Xu, D. Ho, and L.F. Capretz, “An empirical validation

of object-oriented design metrics for fault prediction,”

Journal of Computer Science, vol. 4, No. 7, pp. 571-577,

2008.

[24] K.P. Srinivasan, and T. Devi, “Software Metrics

Validation Methodologies in Software Engineering,”

International Journal of Software Engineering &

Applications, vol. 5, No. 6, pp. 87-102, 2014.

[25] M.V. Zelkowitz, “Techniques for Empirical validation,”

In Empirical Software Engineering Issues, Critical

Assessment and Future Directions, Springer Berlin

Heidelberg, pp. 4-9, 2007.

[26] S. Misra, “An approach for the empirical Validation of

Software Complexity Measures,” Acta Polytechnica

Hungarica, vol. 8, No. 2, pp. 141-160, 2011.

[27] S. Sedigh-Ali, A. Ghafoor, and R. Paul, “Metrics-guided

quality management for component-based software

 Quality Evaluation of Component-Based Software: An Empirical Approach 91

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 12, 80-91

systems,” 25th Annual International Computer Software

and Applications Conference (COMPSAC), IEEE, pp.

303-308, 2001.

[28] O.P. Rotaru, and M. Dobre, “Reusability metrics for

software components,” 3rd ACS/IEEE International

Conference on Computer Systems and Applications, IEEE,

24, 2005.

[29] S. Balsamo, A.D. Marco, P. Inverardi, and M. Simeoni,

“Model-based performance prediction in software

development: A survey”, IEEE Transactions on Software

Engineering, vol. 30, No. 5, pp. 295-310, 2004.

[30] S. Becker, L. Grunske, R. Mirandola, and S. Overhage,

“Performance prediction of component-based systems”, In

Architecting Systems with Trustworthy Components,

Springer Berlin Heidelberg, pp. 169-192, 2006.

[31] K. Goševa-Popstojanova, and K.S. Trivedi, “Architecture-

based approach to reliability assessment of software

systems,” Performance Evaluation, Elsevier, vol. 45, No.

2, pp. 179-204, 2001.

[32] R.S. Pressman, “Software Engineering: A Practitioner's

Approach (Sixth, International ed.)”, McGraw-Hill

Education Pressman, 388, 2005.

[33] B. Kitchenham, S.L. Pfleeger, and N. Fenton, “Towards a

Framework for Software Measurement Validation,” IEEE

Transactions on Software Engineering, vol. 21, No. 12, pp.

929-943, 1995.

[34] G.M. Muketha, A.A.A. Ghani, M.H. Selamt, and R. Atan,

“A Survey of Business Complexity Metrics,” Information

Technology Journal, vol. 9, No. 7, pp. 1336-1344, 2010.

[35] K.P. Srinivasan, and T. Devi,“Design and Development of

a Procedure to Test the Effectiveness of Object-Oriented

Design,” International Journal of Engineering Research

and Industrial Applications, vol. 2, No. 6, pp. 15-25, 2009.

[36] L. Briand, K. El. Emam, and S. Morasca, “Theoretical and

empirical validation of software product measures,”

Technical Report. ISERN-95-03, International Software

Engineering Research Network. Available at

http://truerefactor.googlecode.com/svnhistory/r8/trunk/do

cs/research/darkprog/10.1.1.37.8525.pdf, 1995.

[37] A.J. Albrecht, and J.E., Gaffney. “Software Function,

Source Line of Code and Development Effort Prediction:

A Software Science Validation,” IEEE Transaction on

Software Engineering, pp. 639-648, November 1983.

[38] C. Jones., “Programming Productivity,” McGraw-Hill,

1986.

[39] S.R. Chidamber, and C.F. Kemerer, “A Metrics Suite for

Object Oriented Design,” IEEE Transaction on Software

Engineering. vol. 20, No. 6, pp. 476-493, 1994.

[40] “Function Point Counting Practices Manual. Release 4.0,”

International Function Point Users Group, 1994.

[41] C.R. Symons, “Function Point Analysis: Difficulties and

Improvement,” IEEE Transactions on Software

Engineering. vol. 14, No. 1, pp. 2-11, 1988.

[42] T. Vale, I. Crnkovic, E.S. de Almeida, P. A. D. M. S. Neto,

Y.C. Cavalcanti, and S.R. de Lemos Meira, “Twenty-eight

years of component-based software engineering,” Journal

of Systems and Software, vol. 111, pp. 128-148, 2016.

Authors’ Profiles

Mr. Prasenjit Banerjee is presently a Ph.D.

student of National Institute of Technology,

Durgapur, under the supervision of Dr.

Anirban Sarkar. His domain of research

interest is Component Based Software

Engineering and Formal Language and

Automata Theory. He has about 9yrs

teaching, research and industry experience. His total numbers of

publications in various international platforms are about 20.

Dr. Anirban Sarkar is presently a faculty

member in the Department of Computer

Applications, National Institute of

Technology, Durgapur, India. He received

his PhD degree from National Institute of

Technology, Durgapur, India in 2010. His

areas of research interests are Database

Systems, Software Engineering and Cloud

Computing. His total numbers of publications in various

international platforms are about 110. He has active research

collaborative with several Institutions in India and USA. He has

also served in the committees of several international

conferences in the area of software engineering and computer

application.

How to cite this paper: Prasenjit Banerjee, Anirban Sarkar,

"Quality Evaluation of Component-Based Software: An

Empirical Approach", International Journal of Intelligent

Systems and Applications(IJISA), Vol.10, No.12, pp.80-91,

2018. DOI: 10.5815/ijisa.2018.12.08

