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Abstract—The structural-parametrical method for design 

of adaptive observers (AO) for nonlinear dynamic sys-

tems under uncertainty is proposed. The design of AO is 

consisting of two stages. The structural stage allowed 

identifying a class of nonlinearity and its structural pa-

rameters. The solution of this task is based on an estima-

tion of the system structural identifiability (SI). The 

method and criteria of the system structural identifiability 

are proposed. Effect of an input on the SI is showed. We 

believe that the excitation constancy condition is satisfied 

for system variables. Requirements to the input at stages 

of structural and parametrical design of AO differ. The 

parametrical design stage AO uses the results obtained at 

the first stage of the adaptive observer construction. Two 

cases of the structural information application are consid-

ered. The main attention is focused on the case of the 

insufficient structural information. Adaptive algorithms 

for tuning of parameters AO are proposed. The uncertain-

ty estimation procedure is proposed. Stability of the adap-

tive system is proved. Simulation results confirmed the 

performance of the proposed approach. 

 

Index Terms—Adaptive observer, Structural identifiabil-

ity, Nonlinear system, Lyapunov vector function, Frame-

work, Saturation. 

 

I.  INTRODUCTION 

Design of adaptive observers is one of the rapidly de-

veloping areas of control theory. The basis of theory AO 

for the linear class of dynamic systems has been obtained 

an end of past century [1-5]. The first direction [1-5] is 

based on reduction of the system to a special identifica-

tion representation with use of auxiliary variables in 

space "input-output" (non-canonical identification form). 

Results obtained in [1-5] are the basis for the develop-

ment and generalization on the theory to new system 

classes. Studies in this area continue. In particular, design 

methods of AO are generalized on time-varying system 

class. Many works give to generalization of obtained re-

sults on nonlinear systems. First results on design of AO 

for nonlinear systems were obtained in [6]. The observer 

canonical form for nonlinear time-varying systems is 

proposed. The structure of the system nonlinear part is 

necessary known and depends on a set of unknown pa-

rameters. The adaptive observer application for the solu-

tion of different tasks is shown. Further development of 

the canonical form on the nonlinear case is given in [7, 8]. 

Application results obtained in [7] are given in [9]. Three 

adaptive nonlinear output-feedback schemes are present-

ed in [9]. The first scheme employs the tuning functions 

design. The other two employ a novel estimation-based 

design consisting of a strengthened controller-observer 

pair and observer-based and swapping-based identifiers. 

Nonlinearities are smooth and known. The method of 

Lyapunov functions is applied to design of adaptive algo-

rithms. Indirect adaptive control [10] is used to regulating 

system design of saturation rate. The stability of the adap-

tive system is proved. The adaptive gradient algorithm is 

applied to the tuning of an unknown parameter vector. 

Application of the adaptive observer is given in [11] for 

the control a linear system with a nonlinear parameteriza-

tion of the saturation. 

The design method AO for a nonlinear system based 

on applications B -splines is proposed in [12]. It is sup-

posed that the nonlinear part depends on unknown con-

stant parameters. It is showed that the proposed approach 

allows reducing the number of auxiliary filters. Robust 

design AO under the influence of disturbances and mod-

elling errors is considered in [13]. The variation domain 

for system parameters is known. The structure and pa-

rameters of the nonlinear part are also known. Nonlineari-

ty linearization of the system is fulfilled and the projec-

tive algorithm is proposed for tuning of unknown pa-

rameters. 

The second direction of AO design is based on the 

Kalman filter theory and Luyenberger structure. This 

direction is widely applied at design AO for nonlinear 

dynamic systems [14-17]. Paper [14] represents design 

method AO in the Luyenberger canonical form for fault 

estimate in nonlinear systems. The nonlinearity is known 

and satisfies the Lipschitz condition. The fault is de-

scribed by an unknown nonlinear function which is ap-

proximated on the class of known functions. Application 

of the extended Kalman filter with adaptive gain was 

considered in [15-17]. The system nonlinear part is 

smooth and satisfies the Lipschitz condition. The nonlin-

earity structure is known. Convergence estimations of 

adaptive algorithms are obtained. Application of neural 

networks (NN) for the design of AO for the nonlinear 

object under restrictions is considered in [18]. NN realiz-

es the linear approximation of the system nonlinear part. 
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Effect of uncertainty in measurements is researched. AO 

in the Kalman filter form is proposed in [20]. Adaptive 

algorithms for filter parameters tuning are obtained as the 

solution of linear matrix inequalities problem. The form 

of nonlinearities in the system is known and they satisfy 

the Lipschitz condition. 

So, adaptive observers are widely applied to the solu-

tion of different problems. The nonlinearity in most cases 

is smooth and satisfies the Lipschitz condition. The non-

linearity structure is, as a rule, supposed known. If the 

nonlinearity form is unknown, then it is approximated on 

the specified class of functions. But the systems class is 

for which the a priori information is incomplete or is un-

known. Application of approaches considered above de-

mands fulfilment of labor-consuming studies. The design 

AO is associated with the structural identifiability (SI) of 

nonlinear systems. This problem was formulated in [21] 

and obtained the generalization in [22]. SI allows making 

decisions on a possibility of nonlinearity identification on 

the basis of the available information. Studies will show 

that requirements to parametrical and structural identifi-

cation significantly differ. This problem was not studied. 

Identification approach is one of the main in these condi-

tions. But successful application of the approach depends 

on structural identification results. 

This paper contains the solution of specified problems. 

We propose the structural-parametrical method for design 

of the adaptive observer for nonlinear dynamic systems 

under uncertainty. AO has the canonical form proposed in 

[4, 6]. 

The paper has the following structure. In the section II 

we give to problem statement. Section III contains the 

structural approach statement to AO design. The main 

attention is give to system structural identifiability esti-

mation on the basis of virtual framework analysis. The 

method and criteria for estimation of the structural identi-

fiability are proposed. We consider the case of one-

valued nonlinearities. The method for estimation of a 

class and parameters of the nonlinearity is proposed. It is 

based on the analysis of virtual frameworks 
eyS  and sec-

tor sets [23]. Structural stage results are applied at the 

design of adaptive algorithms for AO (section IV). In-

formation obtained at structural synthesis stage can be 

used in two cases. It defines the adaptive observer struc-

ture. The case 1 correspond the complete information 

about the nonlinearity. The Lyapunov functions method 

is applied to tuning algorithms synthesis of AO parame-

ters. The case 2 correspond incomplete or approximate 

information about the nonlinearity. Uncertainty appear-

ance in AO is the consequence of structural information 

incompleteness. The uncertainty estimation procedure 

based on the analysis of the current information is pro-

posed. The stability observation system analysis is stated 

in the section V. Simulation results are presented in sec-

tion VI. The conclusion contains inferences and discus-

sion of the obtained results. The system adaptive observa-

tion stability proof is given in the appendix. 

 

 

II.  PROBLEM STATEMENT 

Consider system 

 

,

,

r

T

X AX A B r

y C X

  


                        (1) 

 

where mX R  is state vector; r R  is input; y R  is 

output; ( )y R   is nonlinear function; m mA R   is Fro-

benius matrix 

 

1

1

0 mI
A

A

 
  
  

, 

 

1

mA R  is the vector of unknown parameters belonging 

to a limited area 
AG ; mA R  , 0, ,0,

T

A a 
    , 

m

rB R ,  0, ,0,
T

r rB b  are unknown parameter vec-

tor; ( 1) ( 1)

1

m m

mI R   

   is identity matrix; mС R , 

 1 0 0
T

C  . A  is Hurwitz matrix. 

 

Assumption 1. The input ( )r t  is constantly excited and 

limited. 

Assumption 2. Function ( )y  is smooth, single-valued, 

and 

 




2 2

1 2

1 2

( ) , 0,

(0) 0, 0,

        

  

    

   

F
.             (2) 

 

The data set for the system (1) has the form 

 

  0I ( ), ( ) ,o ku t y t t J t t   .                  (3) 

 

Apply to , ,y r   the auxiliary system 

 

v vP P Hv   , , ,v y r  ,                     (4) 

 

where ( 1) ( 1)m mR     is stable diagonal matrix; 
1mH R  , 1ih   ( 1, 1)i m  . Pair  , H  is controlla-

ble. 

Apply the mapping X TX  to the system (1) and ob-

tain 

 

,

,

r

T

X AX A B r

y C X

  


                        (5) 

 

where m mT R  , 1 1, r rA T A B T B 

   , 1A T AT , 
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T

y
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 
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Apply model for the identification system (5) 

 

ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ,

ˆˆ ,

T

M y r

T

X A X CC X A y A B t r

y C X

    



      (6) 

 

where m m

MA R   is the stable matrix of the form 

 

0

T

M

k H
A

 
  

  

, 

 

0k  ; ˆ m

yA R , ˆ mA R  , ˆ m

rB R  are vectors of tuned 

parameters; ˆ mX R  is state vector; ŷ R  is model out-

put. 

Use the system (4) and transform equations (5) and (6) 

to the form 

 
T T T

y y r ry A P A P B P    ,                      (7) 

 

  ˆ ˆ ˆˆ ˆ T T T

y y r ry k y y A P A P B P       ,              (8) 

 

where 
T

T

y yP y P    , 
T

TP P     , 
T

T

r rP r P    . 

Problem: for the system (7) satisfying to assumptions 

of A1 and A2 define by such laws of tuning ˆ ( )A t , ˆ ( )A t  

and ˆ ( )rB t  model (8) that 

 

ˆlim | ( ) ( ) | y
t

y t y t 


  , 0y  . 

 

The design of AO is based on the implementation of 

two stages. 

 

1. Structural stage (SS). 

2. Parametrical stage. 

 

SS gives to nonlinearity localization ( )y . The result 

localization is the class F  definition and structural pa-

rameter nonlinearity estimation. The parametrical stage 

based on SS gives to tuning algorithms for AO. 

Next, we describe these stages. 

 

III.  STRUCTURAL STAGE 

To basis of SS is structural identification ( )y  F . 

We apply the approach and methods proposed in [21, 22]. 

The structural identification first step ensures the con-

struction of framework eyS . It is based on obtaining of 

the set ,IN g . 

A.  Formation of Set 
,IN g

 

The method for construction of set 
,IN g

 is based on re-

sults of work [24]. Determine i -th by derivative ( )y t  

and designate obtained variable as 
ix . The account 

ix  

expands the informational set Io
:  I I ,ent o ix . Consider 

the data subset I Ig ent  corresponding to the particular 

solution of the system (1) (steady state). We will form set 

Ig
 excepting a data Itr

. Itr
 is information on transition 

process in the system. We have I I \ Ig ent tr . 

Apply the mathematical model 

 

 ˆ ( ) 1 ( ) ( )
Tl T

ix t D u t y t                        (9) 

 

and obtain of a linear component 
ix . The variable 

ix  is 

defined on the interval \g trJ J J . 3D R  is the param-

eter vector the model (9). 

Define by the vector D  as 

 

ˆ
arg min ( ) l

i i
opte x xD

Q e D
 

 . 

 

where 2( ) 0.5Q e e . 

Apply the model (9) Igt  . Find the forecast for var-

iable 
ix  and generate the error ˆ( ) ( ) ( )l

i ie t x t x t  . ( )e t  

depends on the nonlinearity ( )y  in the system (1). We 

obtain set  ,I ( ), ( )N g gy t e t t J  which we use on the 

second step of SS. Apply the designation ( )y t , supposing 

that ,( ) IN gy t  . 

 

Remark 1. Structure choice of the model (9) is one of 

structural identification stages. Modelling results show 

that the model (9) is applicable in object identification 

systems with static nonlinearities. 

Remark 2. The choice of variable 
ix  is defined by sys-

tem properties. 

The next step of the structural identification is based on 

framework analysis eyS  and 
ekS  reflecting a state of the 

system nonlinear part. 

B.  Construction of Framework eyS  

Virtual frameworks (VF) eyS  and 
ekS  are proposed in 

[25] for the analysis and design of identification systems. 

Development and generalization of VF on static system 

class is given in [26]. We present the approach to design 

VF proposed in [22]. 

Let S  is phase portrait of the system (1) described by 

function 1 ( )x f y S  (
1x  is first derivative y ). We ana-

lyze the system (1) in the space  ,ye y eP . Call yeP  the 

structural space. The framework eyS  described by the 
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function :{ } { }ey y e   
gt J   is phase portrait of the 

system nonlinear part. 
eyS  can be closed. It is characteris-

tic property of a dynamic system. We will apply to deci-

sion-making also 
ekS -framework which is described by 

function    : ( ) ( )ek sk t e t  , where ( )sk t R  is the 

coefficient of structural properties [24, 25] 

 

( )
( )

( )
s

e t
k t

y t
 . 

 

The form and features of the framework 
eyS  influence 

on identifiability nonlinear dynamic system. The analysis 

of features 
eyS  led to the introduction of the concept 

structural identifiability. Therefore, consider properties of 

the set 
,IN g

 on which the framework 
eyS  is specified. 

C.  Structural Identifiability of System (1) 

Consider properties of the set ,IN g  ensuring the solu-

tion of the structural identification problem. First, the 

initial set Io
 has to ensure the solution of the paramet-

rical identification problem. It means that the input ( )r t  

is to nondegenerate and constantly excited on the interval 

J . Secondly, the input ensures the design of the informa-

tive structure  ,Iey N gS  (or 
ekS ) guaranteeing to make 

decision on nonlinear properties of the system (1). 

Call the input ( )r t  representative if the analysis 
eyS  al-

lows make the decision about properties of the system. 

Let the framework 
eyS  be closed. It to mean that area 

eyS  is not zero. Designate height of the framework 
eyS  as 

 eyh S .  eyh S  is the distance between two points of 

opposite sides of the framework 
eyS . 

 

Statement 1 [24]. Let: 1) the linear part of the system (1) 

is stable, and nonlinearity ( )   satisfies the condition (2); 

2) the input ( )r t  is limited piecewise continuous and 

constantly excited; 3) such 0S   exists that 

 ey Sh S . Then the framework eyS  is identified ( h -

identified) on the set ,IN g . 

We suppose what eyS  have the specified property. Fea-

tures of h -identifiability [22]. 

 

1. h -identifiability is a concept not of parametrical, 

and structural identification. 

2. Parametrical identifiability requirement is basis h -

identifiability. 

3. h -identifiability imposes more stringent require-

ments to the system input. 

 

Feature 3 means that the "bad" input can satisfy excita-

tion constancy condition. But such input can give to so-

called "insignificant" 
eyS -framework (

eyNS -framework) 

[22]. 
eyNS -framework can be h -identified. The insignifi-

cance property under uncertainty gives to the identifica-

tion of nonlinearity, atypical for the system. 

 

Remark 3. Next, we will show that the "good" input can 

generate the 
eyS -framework which does not give to relia-

ble structural parameters of nonlinearity. It means that the 

input has to give to the framework 
eyS  with certain prop-

erties. 

eyNS -framework. Consider a class of nonlinear func-

tions to which homothety operation [27] is applicable. 

Let 
ey ey

l r

ey  S SS F F , where ,
ey ey

l r

S SF F  are left and right 

fragments 
eyS . Determine for ,

ey ey

l r

S SF F  secants 

 
l l

S a y  , r r

S a y  ,                        (10) 

 

where la , ra  are numbers calculated by means of the 

least-squares method (LSM). 

 

Theorem 1 [21]. Let: i) the framework 
eyS  is h -

identified; ii) the framework 
eyS  has the form 

ey ey

l r

ey F F S SS , where ,
ey ey

l r

S SF F  are left and right frag-

ments; iii) secants for ,
ey ey

l r

S SF F  have the form (10). Then 

eyS  is 
eyNS -framework if 

 
l r

ha a   , 

 

where 0h   is some number. 

 

Remark 4. 
eyNS -frameworks are characteristic for sys-

tems with many-valued nonlinearities. They are inade-

quate application result of input actions. 

Definition 1. If the framework 
eyS  is h -identified and 

the condition 
r r

ha a    is satisfied, that eyS  is struc-

turally identified or 
h

h -identified. 

Let the framework S  have m  features. We understand 

features of a function f  as the loss of the continuity on 

the interval I j

y  flex points occurrence or extreme. These 

features are a sign the function nonlinearity. 

Apply the model (9) and construct the framework eyS  

in the space yeP . 

 

Definition 2. The model (9) is SM -identifying if the 

framework eyS  is 
h

h -identified. 

Theorem 2 [22]. Let: (i) the input ( )r t  is constantly ex-

cited and ensures the 
h

h -identifiability of the system (1); 

(ii) the phase portrait S  of the system (1) contains m  
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features; (iii) 
eyS -framework is 

h
h -identified and con-

tains the fragments corresponding to features phase por-

traits S . Then the model (9) is SM -identifying. 

The theorem 2 shows if the model (9) is not SM -

identifying, then it is necessary to change the structure of 

the model (9) or informational set for its design. 

Another approach is proposed in [22] to estimation 

h
h -identifiability of the system (1) It gives to solve the 

following problem: 

choose on the processing basis of set 
,IN g

 the integral 

indicator allowing make the decision about insignificance 

S -framework. 

Apply this approach to decision-making on the nonlin-

earity class. 

Consider system (1), and obtain the framework 
eyS . 

Fulfil the fragmentation 
eyS . Fragmentation conditions 

depend on the form 
eyS . Consider the simplest case when 

the framework has the form: 
ey ey

l r

ey  S SS F F  where 

,
ey ey

l r

S SF F  is left and right parts the framework 
eyS . Func-

tions ( ), ( )l re y e y  describe fragments ,
ey ey

l r

S SF F  where 

   { }, { }l re e e e  . Construct frequency distribution 

functions (histograms) ,l rH H  for ,
ey ey

l r

S SF F . Obtain cu-

mulative frequency functions ,l rIH IH  on basis ,l rH H .   

Let  I , 1,i e i p  H  is definition range of functions 

,l rH H . Describe value range of functions ,l rIH IH  by 

vectors 

 

  1 2, , ,
T

l l l l

pL    IH IH IH IH , 

 

  1 2, , ,
T

r r r r

pR    IH IH IH IH . 

 

where p  is the quantity of pockets set on IH , e  is 

pocket size. 

Apply the model to the distribution description of the 

right fragment eyS  

 

 ˆ l

HR a L IH ,                        (11) 

 

and determine by parameter Ha , applied LSM. R̂  is 

model output. The model is adequate if the parameter 

(1)Ha O  where (1)O  is neighbourhood 1. If the condi-

tion (1)Ha O  is true, then the system (3) is 
h

h -

identified and ey eyS NS . Otherwise the framework eyS  

is insignificant. 

 

Statement 2 [22]. Let for system (1): 1) the framework 

eyS  is obtained; 2) eyS  has the form 
ey ey

l r

ey  S SS F F , 

where ,
ey ey

l r

S SF F  are fragments of framework eyS  deter-

mined on the set  ( )y t ; 3) frequency distribution func-

tions ,l rH H  and cumulative frequency functions 

,l rIH IH  are obtained for ,
ey ey

l r

S SF F ; 4) the dependence 

between  rR IH  and  lL IH  has the form (11). Then 

the system (1) is 
h

h -identified if (1)Ha O . 

Introduce 
hD -dimension of the system (1) by analogy 

with fractals [22]. 

 

Definition 3. The system (1) have dimension 
h HD a  if 

it is 
h

h -identified. 

Definition 3 will show that dimension is close to 1 for 

the structurally identified system. 

Estimate the nonlinearity class of the system (1) on the 

basis of the analysis 
eyS . 

D.  Estimation Nonlinearity Class 

Consider classes of one-valued 
ovF  and multiple-

valued 
mvF  nonlinearities. These classes contain set of 

nonlinear functions. We will apply the approach to identi-

fication of the nonlinearity class [15, 16] based on the 

analysis of sector sets. 

Fulfil fragmentation of the framework 
eyS , using a 

subset 
,I IN g  . I  reflects change of the function 

( )y   in 
yeP . The obtaining algorithm I  is described 

in [22]. We will consider case of single-valued nonlinear-

ities.  

Consider the fragment i

ey FR S  defined on Ii

  for 

1i  , I Ii

  . Construct for
i

FR  the sector set [15]. 

Apply the least-squares method and determine for i

FR  

the secant 

 

 ( ) ( )i i iy t a y t b    .                   (12) 

 

Determine by mean value 
iy  for ( )y t  on I Ii

y  . Let 

iy  is the centre 
i

FR  on I Ii

y  . Draw the perpendicular 

from the point 
iy  to intersection with 

i  on the plane 

 ,y e . Set constant 0ic   and construct straight line in 

the point   ,i iy e y   

 

, , ( )i i ia y t b    , , , ( )i i ia y t b    , 

 

where , ( )i i ia a c    . 

Let    , ,Sec ,
i

i

a i i   FR  is the sector set for 
i

FR  

and 

 

     , ,Sec Sec Seci i i

l r     FR FR FR , 

 

where    , ,Sec , Seci i

l r   FR FR  are subsets  Sec i

FR  
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located at the left and to the right of the point  . 

Construct secants 

 

, , ,( )i l i l i la y t b   ,
, , ,( )i r i r i ra y t b            (13) 

 

for each of the parts 
, ( )

i

l rFR  of the fragment i

FR  be-

longing  ,Sec i

i FR  and  ,Sec i

r FR . Apply the mod-

ification of the statement from [15]. 

Let such 0i   exist that 

 

,i l i ia a   , 
,i r i ia a   .                (14) 

 

Theorem 3 [28]. Let: (i) frameworks ,

i

rFR  are described 

by functions    , ( ) , ( ) , ( )
:ey l r i l r i l r

y e  ; (ii) secants (12) 

are obtained for , ( )ey l r  in the space ( , )ye y eP ; (iii) the 

fragment i

FR  have the secant (13) where  
, ( )

Ii

i l r
y  , 

 
, ( )

Ii

i l r
e  . Then the function ( ) ovy F  if it is satis-

fied (14), otherwise ( ) mvy F . 

The theorem 3 shows if conditions (14) are satisfied, 

then Hölder-Lipchitz condition is fair for ( )y , and the 

homothety operation is applicable to sectors 

   , ,Sec , Seci i

l r   FR FR . 

We suppose that the assumption 2 will satisfy. There-

fore, ( ) ovy F . 

E.  Nonlinearity Structure Estimation 

The structural identification problem of nonlinear sys-

tems under uncertainty is difficult. General approach is 

not developed for its decision. Each nonlinearities class 

has features. They influence by form system trajectories. 

Detection of these features under uncertainty gives to the 

analysis 
eyS  or 

ekS . As ( ) ovy F  apply the algorithm 

ovAF  and the theorem of 4 [22] to the estimation of struc-

ture and parameters of the nonlinearity. 

So, the structural design stage of AO is finished. Go to 

the parametrical design stage of the adaptive observer. 

 

IV.  PARAMETRICAL STAGE 

This stage is based on localization results of the non-

linearity ( )y  obtained in section III. Consider two cases 

of information on ( )y . 

Case 1. We suppose that we have the complete infor-

mation about the structure ( )y . Subtract (7) of (8) and 

obtain the equation for the error ŷ y    

 
T T T

y y r rk A P A P B P       ,           (15) 

 

where ˆ
y y yA A A   , ˆA A A     , ˆ

r r rA A A   . 

Apply Lyapunov function 2( ) 0.5 ( )V t t  . Determine 

V  

 

 2 T T T

y y r rV k A P A P B P         , 

 

and obtain parameter tuning algorithms of the model (8) 

from the condition 0V   

 

ˆ
y y y yA A P    ,                            (16) 

 

ˆA A P       ,                           (17) 

 

ˆ
r r r rA A P    ,                            (18) 

 

where m m

y R   , m mR

  , m m

r R    are diagonal 

matrixes with positive diagonal elements. 

Designate the obtained adaptive system (15) - (18) as 

AAS . 

Proposed approach differs from the results obtained in 

[7-10] use of the structure ( )y which is determined at 

the structural identification stage under uncertainty. It 

allows to applying known adaptive algorithms. 

 

Case 2. A posteriori information about ( )y  has approx-

imate character. 

Assumption 3. The structure ( )y is specified as the set 

 




1 2

1 2

: ( ) ( , ) ,

, , W ,

n T

ov

T T T

a

W R y F y W W

W W W W

    

   

F
              (19) 

 

where  W :n

a W R W W W     is the area formed pos-

teriori; ,W W  are vector borders for W . Some elements 

,W W  can be unknown. 

(19) shows that the function ( )y  have at this stage 

has the form 

 

 1 2( ) ,Ty F y W W  ,                      (20) 

 

where W n

aW R   is the vector of parameters ( )y . 

We suppose that 
1 2W=W W . The set 1

1W
n

R   1 1WW   

contains elements which are not tuned. Elements 
2

2 2W
n

W R   are estimated on the basis of parameter 

tuning AO. The vector 2

1( , ) nF y W R  is formed at the 

structural synthesis stage AO. Explain representation (20) 

as the proposed parametrical concept for ( )y . 

Therefore, the main difference from the case 1 is need 

of the current estimations obtaining for the vector 2W  and 

for the nonlinearity ( )y . The equation (8) is not appli-

cable and is required to its modification. 
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Present model for the estimation ( )y  as 

 

1 2
ˆ ˆˆ( ) ( , )Ty F y W W  ,                    (21) 

 

where 2

2
ˆ n

W R  is the tuned parameter vector; 1

1
ˆ n

W R  

is the estimation vector for 
1W  which are adjusted on 

iterative constraint. Next, we propose the constraint algo-

rithm for 
1Ŵ . 

Apple (20), (21) and modify the adaptive model (8). 

Obtain the current estimation for the vector P : 

 

ˆ( )P P H y     ,                      (22) 

 

and rewrite the model (8) as 

 

  ˆ ˆ ˆ ˆˆ ˆ T T T

y y r ry k y y A P A P B P       , 

 

where ˆ ˆ
T

TP P     . Transform this equation that to 

perform association with the equation (7). Obtain 

 

 

 

ˆ ˆ ˆˆ ˆˆ ˆ

ˆ ˆ ˆˆ ,

T T T T

y y r r

T T T

y y r r

y k y y A P A P B P A P

k y y A P A P B P

   

  

       

     
    (23) 

 

where  ˆ ˆˆT TA P P A P         . 

We see that the equation (23) contains uncertainty  . 

Use the approach proposed in [29] to the estimation  . 

Apply numerical differentiation and obtain the estimation 

for y . Designate the obtained variable as ( )dy t . Apply 

model to the estimation 
dy  

 

ˆ ˆˆ T T

d y y r ry A P B P  ,                         (24) 

 

and determined by the misalignment ˆ
d dy y   . Re-

write the equation (23) as 

 

  ˆ ˆ ˆˆ ˆ T T T

y y r ry k y y A P A P B P         ,       (25) 

 

where   is the current estimation  . The equation for 

the error   write as 

 
T T T

y y r rk A P A P B P         .        (26) 

 

Design adaptive algorithms for parameter tuning of the 

model (25).  

Algorithms for ˆ
yA , ˆ

rA  have the form (16), (18). Apply 

the Lyapunov function V  and from the condition 0V   

obtain the algorithm for Â  

 

ˆ ˆA A P       ,                       (27) 

 

where m mR

   is the diagonal matrix with positive 

diagonal elements. 

Consider the Lyapunov function 2( ) 0.5 ( )V t t  . As 

   and 

 

1 2
ˆ( , )TP P HF y W W                     (28) 

 

that obtain the algorithm for tuning 
2Ŵ  from the condi-

tion 0V   

 

2 2
ˆˆ TW A HF  ,                          (29) 

 

where P P P     , 
2 2 2

ˆW W W   , 
2 2 0T     is the 

matrix ensuring convergence of the algorithm (29). 

Designate the adaptive system (16), (18), (21) - (29) as 

AS . 

 

Iterative constraint algorithm for the vector 
1Ŵ . 

1. 0i  . 

2. Let *

1, 1
ˆ

iW W , where *

1 WaW  . 

3. Perform parameter tuning of the system AP
AS . 

4. Check the condition ˆlim | ( ) ( ) | y
t

y t y t 


  . If it is 

satisfied, then finish the algorithm work, otherwise go to 

the step 5. 

5. 1i i  . 

6. Suppose 1, 1 1
ˆ ˆ

i iW W W   , where 
1W  chooses 

from the condition 1,
ˆ Wi aW  . 

7. Go to step 3. 

 

The case 2 has a difference from the case 1 and [7-10]. 

We suppose that at the structural identification stage 

identify the form ( )y . But obtained values of parame-

ters ( )y  can differ from original parameters. It demands 

model parameterization for ( )y  and algorithms design 

for AO parameters tuning. Obtained estimations of AO 

parameters are the basis for tuning of the auxiliary vector 

P̂  and compensation of the appearing uncertainty. The 

filter structure for P̂  is formed a posteriori. This is the 

main difference of the proposed approach from [7-10]. 

 

V.  STABILITY ANALYSIS 

Consider the system 
AAS . Show to system trajectory 

limitation. Let ( ) ( ), ( ), ( )
T

T T T

y rK t A t A t B t


       , 
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1( ) 0,5 ( ) ( )T

KV t K t K t
     ,                (30) 

 

( ) ( ) ( )KV t V t V t  ,                       (31) 

 

where 
y r



   ,   is the direct sum of matrixes. 

 

Theorem 4. Let: 1) functions 

 

2( ) 0,5 ( )V t t  , 1( ) 0,5 ( ) ( )T

KV t K t K t
      

 

are positive definite and satisfies conditions 

inf ( )V





 , inf ( )K
K

V K
 

  ; 2) assumptions 1, 

2 for the system (1) are satisfied. Then all trajectories of 

system 
AAS  are limited, lie in the area  

 

    0G , : ( )t K V t V t   , 

 

and the estimation is fair 

 

0

02 ( ) ( ) ( )

t

t

kV d V t V t     . 

 

The proof of Theorem 1 is given in the appendix A. 

Theorem 1 shows that all trajectories of the adaptive 

system 
AAS  are limited. Ensuring the asymptotic stabil-

ity demands the imposing of additional conditions on the 

system. Consider these conditions. 

Let ( ) ( ) ( ) ( )
T

T T T

y rP t P t P t P t


    , 3l m . 

 

Definition 4. The vector 3mP R  is constantly excited 

with level   or has the property PE  if 

 

PE : ( ) ( )T

lP t P t I  

 

is true for 0   and 
0t t   on some interval 0T  . 

If the vector ( )P t  has property PE  then we will write 

( )P t PE . 

The system (1) is stable, and the input ( )r t  is restrict-

ed. Therefore, property PE  present for the matrix 

( ) ( ) ( )T

PB t P t P t  as 

 

, : ( )l P lI B t I    PE  0t t  ,            (32) 

 

where 0   some number. 

Let the estimation for ( )KV t  is fair 

 

   
2 21 1

10.5 ( ) ( ) 0.5 ( )l KK t V t K t         (33) 

 

where 1( )  , ( )l   are minimum and maximum eigen-

values of the matrix  . 

Proof of the exponential stability is based on ensuring 
M -property for functions ( )V t , ( )KV t  [30]. 

 

Definition 5. The non-positive quadratic form ( , )W Y X  

has M -property or ( , )W Y X M , if it is representable 

as 

 
2 2

( , ) y xW Y X c Y c X   , 

 

for any mY R , nX R  in the restricted area 
D , where 

0xc  . 

 

Lemma 1. ( )V t  have M -property 

 

 l

KV kV V
k

 

 
   .                       (34) 

 

The proof of Lemma 1 is given in appendix B. 

 

Lemma 2. ( )KV t  have M -property 

 

 1

3 8

4 3
K KV V V     .                  (35) 

 

The proof of Lemma 2 is given in appendix C. 

Application of Lemmas 1, 2 is the basis for exponential 

stability proof of the adaptive system 
AAS . 

Apply the method of Lyapunov vector functions (LVF). 

Consider LVF  , ( ) ( ) ( )
T

K KV t V t V t  . Let such func-

tions ( ) 0s t   exist that 

 

( ) ( )V t s t          0 0 0&t t V t s t    ,.       (36) 

 

where , K  . 

Then the property analysis of the adaptive system is 

based on the study of the following inequality system 

 

 

 138

3 4

l

KK

k
VV k

VV



 




 
    

    
    

 
 

,              (37) 

 

Apply (36) and obtain for (37) comparisons vector sys-

tem 

 

VS A S ,                                   (38) 

 

where  
T

KS s s , 2 2

VA R   is the M -matrix [32] the 

form
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 

 138

3 4

l

V

k
k

A

 




 
 

 
 

 
 

, 
e

N

s
S

s

 
  
 

. 

 

Stability conditions of M -matrix have the form [32] 

 

1 2( ) 0, ( ) 0V Vm A m A   , 

 

where 
1 2,m m  are diagonal minors of the matrix 

VA . 

These conditions have the form 

 

0,k 
 

 1

24

3

lk








. 

 

So, the following statement is true. 

 

Theorem 5. Let conditions be satisfied: 1) positive defi-

nite of Lyapunov functions 

 
2( ) 0.5 ( )V t t  , 1( ) 0.5 ( ) ( )T

KV t K t K t     

 

allow the infinitesimal highest limit at ( ) 0K t  , 

( ) 0t  ; 2) ( )P t  is piecewise continuous limited and 

,( )P t  PE ; 3) equality  2T T N

N N N Ne P B e      

with 0   fairly in the area ( )O O  where 

3 3

0,{0, 0 }m mO R R J     , O  is some neighbour-

hood of the point O ; 4) V

M , 
KV M ; 5) the esti-

mation (33) is fair for the function ( )KV t ; 6) the system 

of inequalities (37) is fair for , KV V ; 7) the upper solu-

tion for  , ( ) ( ) ( ) T

K KV t V t V t   satisfies to the equation 

(38) if inequality (36) for elements 
,KV  is fair. Then the 

system 
AAS  is exponentially stable with the estimation 

 
 0

, 0( ) ( )VA t t

KV t e S t


 ,                     (39) 

 

if 

 

0k  , 
 

 1

24

3

lk








.                 (40) 

 

The theorem 5 shows if the vector ( )P t  is constantly 

excited, then adaptive systems 
AAS  gives true parameter 

estimations of the system (7). System parameters must 

satisfy the condition (40).  

Consider the system AS . 

 

Theorem 6. Let conditions be satisfied: 1) functions 

2( ) 0,5 ( )V t t  , 
1( ) 0,5 ( ) ( )T

KV t K t K t
      are posi-

tive definite and satisfies conditions inf ( )V





 , 

inf ( )K
K

V K
 

  ; 2) assumptions 1, 2 for the system 

(1) are performed. Then all trajectories of the system 

AS  are limited belong the area 

 

    0G , , : ( )t K P V t V t    , 

 

and the estimation 

 

0

02 ( ) ( ) ( )

t

t

kV d V t V t      

 

is fair. 

The proof of Theorem 6 is given in appendix D. 

Theorem 6 gives the stability estimate only for the tra-

jectory part of the system AS . It shows by processes 

limitation at the top level of the adaptive system. The 

process of parameter tuning on the inner level is more 

difficult and depends on some indicators. The accounting 

of these indicators is impossible on the basis of the ap-

plied criteria. The correlation analysis between these lev-

els is admissible when imposing restrictions on adaptive 

system parameters. The AS -system is the hierarchical 

system and restriction obtaining gives to the LVF method. 

Reduce of exponential stability conditions for the sys-

tem AS . Consider the Lyapunov vector function 

 

2
( ) ( ) ( ) ( ) ( ) ( )

T

K P WV t V t V t V t V t V t
 

 
 

,          (41) 

 

where   is Euclidean norm. 

 
2

( ) 0.5 ( )PV t P t
   , 1( ) 0.5 ( ) ( )T T

KV t K t K t    , 

2

1

2 2 2( ) ( ) ( )T

WV t W t W t    , 2( ) 0.5 ( )V t t  , 

2( ) 0.5 ( )V t t  , 

 

Let the following conditions be satisfied in the neigh-

borhood  O O  of equilibrium state O  

 

 

 
1

2

2

2

* * *

,

,

T T T

K

T T T

K

K P K PP K

K P K P P K

  

  

    

      
         (42) 

 

 

 

 

  

1

2

2

2 2 2

2

2

2 2

2 2

,

,

,

T T T T T T

g

T T

T T T T

g

T

T

W FA H W FF W A HH A

W F A H

W FF W A HH A

P P P

P P P

  



 

   

    

  



 



  

    

  

      

     

      

    (43) 

where *

T
T T TP O P O

     ; 
1K , 

2K , 
1g , 

2g    are 
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positive numbers. 

 

Theorem 7. Let conditions be satisfied: i) components of 

the positive definite vector function ( )V t  (41) have the 

infinitesimal highest limit; ii) the vector ( )P t  is piece-

wise continuous limited and 
,( )P t  PE ; iii) conditions 

(42), (43) are satisfied; iv) elements of the vector V  have 
M -property; v) following conditions are true for the 

system AS  

 

   
21 1 2

ˆ ˆ, ,T

nF y W F y W I , T TA HH A   , 

THH  , 
2 2

A K    , 

    2

2

T TA A P HF W c         , 

 
2T

P P P c P          , 

 

where 0  , 0, 0   , 0c  , 0c  , 
2 0  ; vi) 

V  satisfies to the vector system of inequalities 

 

,VV A V ,                            (44) 

 

where 

 

 

   
2 2 1

, ,

, ,

2

min

min
,

2 1 2

0 0

0 0

0 0 ( ) 0
( )

2
0 2 0

3

1
8 0 8 0

2

K P

K K K

l

V

g l W g

k

A

d

c c

 

 



   

 

  






      

 

 
 


 
 

  
 

 
   

 
 

 
 

; 

 

vii) the upper solution for Lyapunov vector function 

( )V t  satisfies to comparison equation 

 

,VS A S ,                             (45) 

 

if such functions ( ) 0s t   exist that 

 

( ) ( )V t s t        0 0 0&t t V t s t    ,       (46) 

 

where 
2

T

K P WS s s s s s
 

 
 

, 
2, , ,, K P W   . 

Then the system AS  is exponential stable with the esti-

mation 

 

  , 0 0( ) exp ( )VV t A t t S t  , 

 

if 0k  , , ,K K Kk     , 
min ( ) 0   , 

    

    
2

2

2

2 1 2 min , ,

2 , , ,

( )

2

W K K K

g l l K K P

k

d k

 

  

      

     

   

  
, 

 

        

      

2 2

1

2

2 1 2 min , , 2 , , ,

2 , , , , ,

( ) 4 ( )

32
,

3

W K K K g l l K K P

l g K K K P K K K

c k d k

c k

     

      

            

          

        
 

   
 

 

Where 

 

 
1 2 3 1

3 9

4 32
K K K K    

 
   
 

, 
2 1 2

3

4
W g g  

 
  
 

,` 

   ,

1
2 1K l

k
     , 

2

A  , 0  , 

 ,

1
2 1P

k
    , 

2 2
max ( )

y
H F y  , 

 
1 2,

4
2

3
K K K    , 

2 3,

8

3
K K K   . 

 

So, we showed that the system AS  is exponential 

stable. The difference from the AAS -system is in the 

introduction of the contour for the estimation of vector 

P . Such modernization the AAS -system gives to the 

complication of the adaptive system. The matrix ,VA   

shows the mutual effect of processes in the AS -

system. The theorem 7 gives to interdependences between 

parameters of the AS - system. 

Limitation of the variable   in (25) follows from the 

theorem 7. 

The proof of Theorem 7 is similar to Theorem 5 proof. 

 

VI.  SIMULATION RESULTS 

Consider the system (1) of the second order with parame-

ters: 

 

 01
T

rA B   , 2    , (0) 2y  , (0) 1y  , 

 

0 1

3 4
A

 
  

  
, 

23 11

22 11

21 12

( )

w if y w

y w y if y w

w if y w






 
 

, 
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 ( ) 3sin 0.1r t t ,                      (47) 

 

where 
11 1w  , 

12 0.5w   , 
21 1w   , 

22 23 2w w  . 

Parameters of system (4):  

 

,vP R  ,v vP p  (0) (0) (0) 0y rp p p   . 

 

The parameter k  in (8) is 1.5. 

Solve the system (1) and obtain the set Io
. The 

phase portrait of the system (1) is showed in Fig.1. 

 

-1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 2,0 2,5
-1,0

-0,5

0,0

0,5

1,0

e

y'

eyS

S

y

-0,50

-0,25

0,00

0,25

0,50

 

Fig.1. Phase portrait of system (1) 

We see that the framework S  have features in points 

1 0.5y    and
2 1.y   Therefore, 

11
ˆ 1,w   

12
ˆ 0.5w   . 

We cannot make the decision on the form ( )y  on the 

basis of the analysis S . Therefore, apply the design 

structural stage AO. 

F.  Structural Stage of Design AO 

Apply the approach proposed in the section III and 

construct the framework 
eyS . Synthesis 

eyS  is based on 

application of the model (9). 
eyS  is obtained on the 

time gap  10.4;31.4gJ  s which corresponds to the 

system steady motion. The vector D  in (9) is 

 0.06; 0.23; 0.38
T

 . The framework eyS  is presented 

in Fig.1. We see what ( )y  belongs to the class of 

nonlinearities with saturation.  

 

-1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 2,0
-0,250

-0,125

0,000

0,125

0,250

q

eyS

y

e

ey

l

SF
ey

r

SF

v

 

Fig.2. Framework eyS  with the selected fragments 

Estimate the system structural identifiability. It is deter-

mined with the possibility the identification of parameters 

( )y . The analysis of the framework S  shows that the 

system is h -identified. Estimate 
h

h -identifiability of the 

system.  

Select in 
eyS  fragments 

ey ey

l r

S SF ,F  (Fig. 2). They are 

marked with red and green straight lines in Fig. 2. 

 

-0,20 -0,15 -0,10 -0,05 0,00 0,05 0,10
0,0

0,4

0,8

1,2

lIH

rIH

lIH

rIH

ed  

Fig.3. Cumulative frequency functions for fragments 

of framework eyS  

The SI estimation is based on the structural-frequency 

approach described in the section III. Determine by fre-

quency distribution functions ,l rH H  for fragments 

ey ey

l r

S SF ,F . Obtain on the basis ,l rH H  cumulative frequency 

functions ,l rIH IH  (Fig. 3) and corresponding it the vec-

tors  lL IH ,  rR IH . 
ed  is the pocket on e  in Fig. 3.  

Model (11) has the form 

 

 0.00ˆ 7 1.042 lR L  IH .                 (48) 

 

0,00 0,25 0,50 0,75 1,00
0,00

0,25

0,50

0,75

1,00

R̂

rIH

lIH

rIH

R̂

 

Fig.4. Estimation of class function ( )y  

The determination coefficient of the model (48) is 0.992. 

Apply the statement 2 and estimate 
h

h -identifiability of the 

system. Show to estimation results of the SI in Fig. 4. The 

system has dimension 1hD  . Therefore, ( )y  belongs to 

single-valued function class. 

Now determine by nonlinearity structural parameters. 

Apply the approach proposed in [22]. Consider the line sec
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tion of the framework 
eyS  located between points q and 

v (Fig. 2). As parameter estimations in space ( , )y e  are 

not representative apply the following algorithm for 

finding of parameters. 

 

Algorithm for the estimation of saturation parame-

ters on the line section 
eyS . 

1. Estimate h -identifiability of the system. 

2. Construct the framework 
eyS . 

3. Estimate the SI of the system. If the system is 
h

h -

identifiable, then go to the step 4, otherwise the end of 

the algorithm. 

4. Go to 
eyS  and allocate the bottom line section 

gvF . 

5. Calculate the coefficient of structural properties 

on 
gvF . 

6. Consider the section gv gvF F   on which ( )sk t  

and ( )e t  have identical signs.  

7. Approximate the section gv eyF   S  the depend-

ence 

 

0 1
ˆ ( ) ( )e t a a y t    , 

 

where 
0 1,a a   are determined by means of LSM. 

8. Calculate the average e , sk  for ( )e t , ( )sk t  on 

the time gap of definition gvF  . 

9. Determine by the estimation 
1â  of true parameter 

1a   as 

 

1

1̂

s

ea
a

k



  . 

 

Apply this algorithm to the angle inclination estima-

tion 
1b̂  of the upper linear part 

eyS . 

Algorithm application results: 

 

i) lower line section: 1 0.18a   , 2
ˆ 1.9w  ; 

ii) upper line section:
1 0.186b   , 

2
ˆ 2.08w  . 

 

So, we have for parameter 22w  the area 

 22 1.9;2.08G  . As transition points in the saturation 

area are known, saturation levels ( )y : 

 

1) if 1 0.5y    then 1( ) [ 1; 0.95]y    ; 

2) if 1 1y   then 2( ) [1.9;2.08]y  . 

 

Average values in points 1 2,y y  and obtain estima-

tions: 21
ˆ 0.975w   , 22

ˆ 1.99w  . The estimation for 

22w  is 1.99. 

H.  Parametrical Stage of Design AO 

The case 1 considered in section IV gives to model (8) 

and is well studied. Therefore, we will consider the case 2.  

Let function ( )y  have the form (20). Apply for identi-

fication ( )y  the model 

 

2 11 11

2 11

2 12 12

ˆ ˆ ˆ

ˆ ˆ ˆ( )

ˆ ˆ ˆ

w w if y w

y w y if y w

w w if y w






 
 

,                     (49) 

 

where 
2 22

ˆ ˆw w . Estimations for 
11ŵ , 

12ŵ  are obtained at 

the stage of structural synthesis. 

The adaptive algorithm for tuning 
2ŵ  has the form 

 

   

   

2 2 22

2

2 22

ˆ ˆ0.5;1 &
ˆ

ˆ0 0.5;1 &

pya if y w G
w

if y w G


    


 

  


,     (50) 

 

where 
2 0  , ˆ

pa R

  is the adjusted coefficient of the 

model (23). 

Structure choice of the algorithm (50) is directed to com-

pensation not smoothness effect of the function ( )y . 

The input ( )r t PE  has the form 

 

   ( ) 3sin 0.1 sin 0.25r t t t   .                 (51) 

 

-2,0 -1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 2,0 2,5
-1,2

-0,6

0,0

0,6

1,2

S eyS

ey

y

-0,2

-0,1

0,0

0,1

0,2

 

Fig.5. Frameworks S , eyS  for system steady state with the input (50) 

Remark 5. We applied different inputs at structural and 

parametrical stages. The input (51) ensures adaptation pro-

cess with given quality indicators. The input (47) is con-

stantly excited and allows identifying the function ( )y . 

Frameworks S , eyS  (Fig. 5) reflect the effect of the input 

(51) and show the transformation of frameworks presented 

in Fig. 1. The SI process is complicated and demands pre-

liminary processing of the set Io
. The analysis eyS  does not 

allow obtaining acceptable estimations for 
1 2,W W . These 

results explain the current status of the design problem AO 

for nonlinear systems where the principle of linearization 

dominates. 
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Apply the method presented in section IV to the un-

certainty estimation   in (23). The current estimation 

  is determined as 

 

( )
ˆ ( ) ( ) 0.01

( )
( )

( )
0 0.01

( )

d d

t
y t y t if

y t
t

t
if

y t







 


 






.            (52) 

 

Structure choice of the algorithm for calculation 

( )t  considers remarks made for the adaptive algo-

rithm (50).  

Adaptive model (23) has the form 

 

ˆˆ ˆ ˆ ˆ ˆ
y ry p y p p ry k a y a p a p b p

         .        (53) 

 

Apply algorithms (16), (18), (22), (27), (29), (49), 

(50), (52). Matrixes 
i  for adaptive algorithms 

 

 0.015;0.0066y diag  ,  0;0.05r diag  , 

 

 0;0.00375diag  , 
2 0.03  . 

 

-1,0 -0,5 0,0 0,5 1,0 1,5
-0,6

-0,3

0,0

0,3

0,6

0,9

1,2

p̂

p̂

p

t



 

Fig.6. Work adequacy estimation of the model (22) 

0 100 200 300 400
-0,6

-0,3

0,0

0,3

0,6

0,9

1,2

1,5

p̂ p

p

p̂

t  

Fig.7. Variation of variables p̂  and p  

Tuning results the AS -system are shown in Fig. 6 - 

14. Fig. 6 - 8 represents the estimation process of the 

variable p̂  in two planes. Fig. 6 shows the adequacy 

estimation of the model (22) in the space  ˆ,p p  . We 

represent the linear secant   for the dependence iden-

tification between p̂  and p . The determination coeffi-

cient for   is 0.999. This inference is confirmed with 

changes p̂  and p  (Fig. 7). We do not show work results 

of the model (49) as they coincide with presented charts. 

 

-2,50 -1,25 0,00 1,25 2,50
-0,6

-0,3

0,0

0,3

0,6

0,9

1,2

p

p̂

p

p̂

y  

Fig.8. Frameworks reflecting tuning process of the variable p̂  

Frameworks showed in Fig. 8 give the better understand-

ing of obtaining estimation accuracy for the variable p . 

 

0 100 200 300 400
-1,0

-0,5

0,0

0,5

1,0

1,5

2,0



t
  

Fig.9. Error   of AO work 

Change of the error   and the estimation of uncertainty 

  are presented in Fig. 9, 10. Fig. 10 shows that the esti-

mation accuracy   increases in the tuning process of AO. 

 

0 100 200 300 400

-2

-1

0

1

2

3

4



t  

Fig.10. Estimation   the uncertainty   

Parameters tuning of AO is shown in Fig. 11 - 14. Fig. 11 

presents to the tuning of parameters ˆ
ypa , ˆ

pa


, ˆ
rpb , and 
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Fig. 12 shows tuning process ˆ
ya . We see that tuning 

process finishes after 200 s. 

 

0 100 200 300 400
-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

ˆ
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

ˆ
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ˆ
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ˆ
rpa

ˆ
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ˆ
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

t  

Fig.11. Tuning of parameters ˆ
ypa , ˆ

pa


, ˆ
rpb  

0 100 200 300 400
-2,5

-2,0
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ˆ
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t  

Fig.12. Tuning of parameter ˆ
ya  

Tuning of the parameter 
2ŵ  of the model (49) on the 

application basis of the algorithm (50) is shown in Fig. 

13, 14. Fig. 13 reflects of nonlinear processes effect in 

the adaptive system on the tuning 
2ŵ . We see that tun-

ing process has a nonlinear character. This inference 

confirms Fig. 14. 

 

-1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 2,0
1,95

2,00

2,05

2,10
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2ŵ t

 

Fig.13. Effect of the variable y  on tuning of the parameter 2ŵ  

So, modelling results confirm the efficiency of the 

proposed approach to design of adaptive observers. 

Uncertainty influences on properties of AO. Tuning 

process increases: 

 

1) under interference of local parameters when basic pa-

rameters of AO are tunings; 

2) at the estimation of the nonlinearity and an unknown 

auxiliary p . 

 

0 50 100 150 200
1,95

2,00

2,05

2,10

2,15

2,20

2,25

2,30

2,35

2,40

2ŵ
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Fig.14. Tuning of parameter 
2ŵ  

 

VII.  CONCLUSION 

The method of adaptive observer design for nonlinear 

dynamic systems under uncertainty is proposed. It is based 

on the application of structural and parametrical approaches. 

The structural approach gives to identification problem so-

lution for the nonlinear part of the system. It is based on the 

special class analysis of framework 
eyS . The decision about 

nonlinearity identifiability is to make on the basis eyS . We 

apply the sector sets method and structural-frequency ap-

proach to the estimation of the nonlinearity class. Parameter 

identification of the nonlinearity from the specified class is 

performed on the basis of the analysis 
eyS . The obtained 

structure and parameters of the nonlinearity are used at the 

parametrical design stage of AO. 

We consider two cases of information use obtained at the 

structural stage. The first case corresponds the complete 

information about nonlinearity parameters. Algorithms for 

tuning of parameters AO are proposed and system identifi-

cation stability is proved. 

The second case is based on the assumption that the non-

linearity form is known (a result of the structural stage), and 

the set of nonlinearity parameters belongs to the specified 

area. The parametrized model for nonlinearity is proposed. 

The output of this model is the basis for the obtaining of 

current estimations of the auxiliary variable which is used 

in adaptive algorithms. This leads to the emergence of un-

certainty in the adaptive system. The procedure is proposed 

for the estimation uncertainty. The adaptive system has the 

two-level structure. Interdependences between levels influ-

ence on the parameter tuning process the adaptive system. 

The stability of the adaptive system is proved. Modelling 

results of the adaptive observer are given. 

Structural identifiability and the parametrical adaptation 

demand variables have property of the excitation constancy 

(EC). We show that the requirement of EC at considered 

development stages of AO differ. The parametrical stage 

demands the application of variables having the multifre
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quency form. The structural stage demands the analysis 

of variables have the single-frequency spectrum. Multi-

frequency complicates making decision on the nonline-

arity class. Explain this with the fact that the nonlinear 

dynamic system reacts to each harmonic of the input. 

Multi-frequency complicates framework 
eyS  (see Fig. 5) 

and activate the appearance of fragments which insig-

nificant framework give. Solutions of this problem are 

known and we will consider them in the following pub-

lication. 

APPENDIX A. PROOF OF THEOREM 4 

Consider Lyapunov function ( )V t  (31). ( )V t on mo-

tions 
AAS -system has the form 

 
2 2K KV k V V kV      .             (A.1) 

 

Apply the condition 1) theorem 4. As ( ) 0V t   the 

system 
AAS  is stable. Integrate ( )V t  on time and ob-

tain 

 

0

0( ) 2 ( ) ( )

t

t

V t k V d V t    . 

 

As  ,V K   satisfies the condition 1) theorem 4, 

all trajectories of the system 
AAS  lie in the area 

    0G , : ( )t K V t V t   . We have the estimation 

for the 
AAS - system 

 

 
0

02 ( ) ( )

t

t

kV d V t V t     . 

APPENDIX B. PROOF OF LEMMA 1 

Write ( )V t  

 
2 2T TV k K P k K P            .     (B.1) 

 

Apply the inequalities (33) and [31] 

 
2 2

2

2 2

az b
az bz

a


     ,                 (B.2) 

 

where 0, 0, 0a b z   . Present (B.1) as 

 

 

2 2

2 1
.

2 2

T T

lT

P K

V k K P k K P

k
K B K kV V

k k





   




        


      

  (B.3) 

 

 

 

So, we obtain M -property for V  from (B.3). 

APPENDIX C. PROOF OF LEMMA 2 

Write ( )KV t  

 

( ) T

KV t K P   .                        (C.1) 

 

Let     *

0 & , ( ))t t t e K O O       the condition 

be satisfied 

 

 2T TK P K B K       ,              (C.2) 

 

where 3 3

0,{0, 0 }m mO R R J      is the system equilib-

rium position, ( )O O  is some neighbourhood of the point 

O , 3 30 m mR  is the zero vector, 0   is a some number, 

0,[0, ]t J    . 

Apply (C.2) and present (C.1) as 

 

 

 

2

2

3
( )

4

3
.

4

T T

K

T

T

T T

V t K B K K B K

K B K

K B K

K B K K B K

  

 

 

  

         

   

  

     

    (C.3) 

 

Apply to (C.3) inequalities (B.2), (33) and obtain 

 

 

2

1

3
( )

4

3 4

8 3

3 8
.

4 3

T T

K

T

K

V t K B K K B K

K B K

V V

  

 

 

      

    

  

       (C.4) 

 

So, M -property for 
KV  has the form 

 

 1

3 8

4 3
K KV V V     . 

APPENDIX D. PROOF OF THEOREM 6 

The proof of the theorem 6 matches the proof of the theo-

rem 4. It is based on the use of the Lyapunov function (31). 

Trajectories AS -systems according to the theorem 4 are 

limited and lie in the area     0G , : ( )t K V t V t   . As 

P  is limited and depends on P̂ , therefore, also the vector 

P̂  is limited. 
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