
I.J. Intelligent Systems and Applications, 2018, 5, 1-13
Published Online May 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2018.05.01

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 5, 1-13

Simplified Real-, Complex-, and Quaternion-

Valued Neuro-Fuzzy Learning Algorithms

Ryusuke Hata
Dept. of Human and Artificial Intelligence Systems, Graduate School of Engineering, University of Fukui, Japan

E-mail: hata.r.1324@gmail.com

M. A. H. Akhand
Dept. of Computer Science and Engineering, Khulna University of Engineering and Technology, Bangladesh

E-mail: akhand@cse.kuet.ac.bd

Md. Monirul Islam
Dept. of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Bangladesh

E-mail: mdmonirulislam@cse.buet.ac.bd

Kazuyuki Murase
Dept. of Human and Artificial Intelligence Systems, Graduate School of Engineering, University of Fukui, Japan

E-mail: murase@u-fukui.ac.jp

Received: 09 November 2017; Accepted: 29 January 2018; Published: 08 May 2018

Abstract—The conventional real-valued neuro-fuzzy

method (RNF) is based on classic fuzzy systems with

antecedent membership functions and consequent

singletons. Rules in RNF are made by all the

combinations of membership functions; thus, the number

of rules as well as total parameters increase rapidly with

the number of inputs. Although network parameters are

relatively less in the recently developed complex-valued

neuro-fuzzy (CVNF) and quaternion neuro-fuzzy (QNF),

parameters increase with number of inputs. This study

investigates simplified fuzzy rules that constrain rapid

increment of rules with inputs; and proposed simplified

RNF (SRNF), simplified CVNF (SCVNF) and simplified

QNF (SQNF) employing the proposed simplified fuzzy

rules in conventional methods. The proposed simplified

neuro-fuzzy learning methods differ from the

conventional methods in their fuzzy rule structures. The

methods tune fuzzy rules based on the gradient descent

method. The number of rules in these methods are equal

to the number of divisions of input space; and hence they

require significantly less number of parameters to be

tuned. The proposed methods are tested on function

approximations and classification problems. They exhibit

much less execution time than the conventional

counterparts with equivalent accuracy. Due to less

number of parameters, the proposed methods can be

utilized for the problems (e.g., real-time control of large

systems) where the conventional methods are difficult to

apply due to time constrain.

Index Terms—Fuzzy inference, neuro-fuzzy, complex-

valued neural network, quaternion neural network,

function approximation, classification.

I. INTRODUCTION

Neuro-fuzzy methods refer to combinations of artificial

neural networks and fuzzy models [1-3]. Artificial neural

networks are the computational models of neuronal cell

behaviors in the brain, and have high learning ability as

well as parallel processing ability. These properties allow

systems to perform well in environments that are difficult

to formulate. Fuzzy logic is based on inference rules and

allows the systems to use human-like “fuzziness.” In

particular, fuzzy inference systems based on if–then rules

provide high robustness and human-like inference [4, 5].

However, it is usually hard for human being to design

proper fuzzy rules resulting the consumption of a

considerable time to tune fuzzy rules. Neuro-fuzzy

methods having learning algorithms of artificial neural

networks in the fuzzy inference systems can solve these

problems. Conceiving complementary strengths of neural

and fuzzy systems, neuro-fuzzes have been applied to

handle numerous real-life problems including control,

function approximations, classifications, etc. [1-3, 6-8].

A variety of system structures and learning algorithms

are available for neuro-fuzzy methods [9–26]. Learning of

the classical neuro-fuzzy systems is based on the gradient

descent method [9]. It is modified to avoid non-firing or

weak firing [10, 11] and to improve learning efficiency

[12]. Genetic algorithms are applied to a neuro-fuzzy with

radial-basis-function-based membership for the automatic

generation of fuzzy rules [13]. An adaptive neuro-fuzzy

system for building and optimizing fuzzy models has been

proposed [14]. A variety of neuro-fuzzy methods are also

proposed recently [15–21]. The applications of neuro-

fuzzy methods include feature selection [19, 21],

2 Simplified Real-, Complex-, and Quaternion-Valued Neuro-Fuzzy Learning Algorithms

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 5, 1-13

classification [15–20], and image processing [17].

Furthermore, neuro-fuzzy methods using complex-valued

inputs and outputs have been proposed and applied to

image processing and time-series prediction [22, 23]. In

addition, recent studies of neuro-fuzzy methods heaving

complex-valued or quaternion-valued inputs and real-

valued outputs exhibit better learning ability than the

conventional methods [24-28].

The conventional real-valued neuro-fuzzy method

(RNF) is based on classic fuzzy systems with antecedent

membership functions and consequent singletons. When

training data with input-output mapping are given to the

network, the membership functions and singletons are

tuned by back propagation algorithm. However, the

number of fuzzy rules rapidly increases with the

increment of the number of inputs. In the RNF, the

number of fuzzy rules is calculated by the number of

inputs to the power of the number of divisions of input

space; hence, the learning time increases with inputs.

RNF extensions in complex and quaternion domains

reduce the network parameters of a given problem with a

less number of inputs. Complex-valued neuro-fuzzy

method (CVNF) has complex-valued fuzzy rules whose

inputs, membership functions, and singletons are complex

numbers, and outputs are real numbers. On the other hand,

quaternion neuro-fuzzy method (QNF) has quaternion-

valued fuzzy rules whose inputs, membership functions,

and singletons are quaternions, and outputs are real

numbers. Different individual activation functions are

investigated to get real-valued outputs from complex-

valued net-input and quaternion-valued net-input in

CVNF and QNF, respectively. The network parameters of

CVNF and QNF are tuned by complex-valued and

quaternion-based back propagation algorithms,

respectively [24-28].

The CVNF can treat two real-valued inputs as one

complex-valued input, and the QNF can treat four real-

valued inputs as one quaternion-valued input. Thus, when

RNF, CVNF, and QNF are applied to the same problem,

CVNF and QNF have fewer network parameters than

RNF. CVNF and QNF have also shown better learning

abilities for function approximations and classifications

due to less variables. In the function approximations,

CVNF has identified some nonlinear functions better than

RNF [24, 25]. In classifications, QNF has shown better

classification abilities than RNF [27]. Nevertheless, both

CVNF and QNF still have the problem of rapidly

increasing number of parameters when the number of

inputs increases.

This study investigates simplified fuzzy rules that

constrain rapid increment of rules with inputs; and

proposed simplified RNF (SRNF), simplified CVNF

(SCVNF) and simplified QNF (SQNF) employing the

proposed simplified fuzzy method in conventional

methods. The proposed SRNF, SCVNF, and SQNF are

new neuro-fuzzy learning methods that differ from the

conventional methods in their fuzzy rule structures. These

new methods have simplified the fuzzy rules, and tuned

the fuzzy rules based on the gradient descent method. In

these methods, the number of rules are equal to the

number of divisions of input space and independent of the

number of inputs. Thus, the proposed methods can

constrain the rapid increment of parameters, even when

the number of inputs increases. Simulations that compare

the new methods with the conventional methods show that

the new methods have the same learning abilities as the

conventional methods.

The remainder of this paper is structured as follows.

Section II discusses the conventional methods, RNF,

CVNF, and QNF. Section III demonstrates the proposed

simplified methods, SRNF, SCVNF, and SQNF. Section

IV compares the proposed methods with the conventional

methods on function approximation problems. Section V

shows the performances of the proposed methods on real-

world benchmark problems for supervised learning with

continuous and discrete outputs. Finally, Section VI

concludes the paper with a discussion as well as possible

future researches based on current study.

II. CONVENTIONAL NEURO-FUZZY METHODS

Conventional methods include RNF, CVNF, and QNF.

To make the paper self-contained as well as for better

understanding of the proposed methods, following

subsections describe each of these conventional methods

in sequence.

A. Real-Valued Neuro-Fuzzy Method (RNF)

RNF tunes antecedent membership functions and

consequent singletons of the fuzzy rule by the gradient

descent method. This method is based on the if–then rule

of fuzzy inference. For example, let the input to be

𝑥𝑝(𝑝 = 1, 2) and the output to be y, and each input space

is divided by three membership functions, then the fuzzy

inference rules are given as follows.

Rule 1: If 𝑥1 is 𝐴11 and 𝑥2 is 𝐴12, then 𝑦 is 𝑤1

Rule 2: If 𝑥1 is 𝐴21 and 𝑥2 is 𝐴22, then 𝑦 is 𝑤2

⋮
Rule 9: If 𝑥1 is 𝐴91 and 𝑥2 is 𝐴92, then 𝑦 is 𝑤9

Here, 𝐴𝑞𝑝(𝑞 = 1, 2, ⋯ , 9; 𝑝 = 1, 2) are antecedent

membership functions and 𝑤𝑞(𝑞 = 1, 2, ⋯ , 9) are

consequent singletons for each rule.

Fig. 1 illustrates the conventional RNF of the system

with two inputs and one output. Each input space is

divided into three; therefore, three membership functions

are required for each space to generate the antecedent

grades. The gravity method is applied to generate the

output. The total number of membership functions is

3
2
×2=18 (A11,⋯,A92), and the number of antecedent

grades is 3
2
=9 (h1,⋯,h9) which is equal to the number of

rules. The number of parameters to be determined is

18×2+9=45. In this case, Rule 1 uses the first

membership functions of both 𝑥1 and 𝑥2. Rule 2 uses the

first membership function of 𝑥1 and the second one of 𝑥2.

Rule 9 uses the third membership functions of both 𝑥1

and 𝑥2 . The rules are made by all combinations of

membership functions for each input. Thus, the number

 Simplified Real-, Complex-, and Quaternion-Valued Neuro-Fuzzy Learning Algorithms 3

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 5, 1-13

of fuzzy rules depends on the number of divisions of each

input space. The total number of rules is the number of

divisions of each input space to the power of the number

of inputs (𝑖. 𝑒. , (𝑟𝑢𝑙𝑒𝑠) = (𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠)(𝑖𝑛𝑝𝑢𝑡𝑠)).

Fig.1. Conventional RNF with two inputs and one output where each
input space is divided into three.

Signal flow in this case is as follows. First, when

inputs enter the network, each input (i.e., xp) passes

through the antecedent membership function

corresponding to the fuzzy rules. The membership

functions 𝐴𝑞𝑝 are given by a Gaussian function as

𝐴𝑞𝑝 = exp {−
(𝑥𝑝−𝑎𝑞𝑝)

2

𝑏𝑞𝑝
} , (1)

where 𝑎𝑞𝑝 and 𝑏𝑞𝑝 are respectively the center and width

of the function. Second, in each rule layer node, the

antecedent grade ℎ𝑞(𝑞 = 1, 2, ⋯ , 9) for the fuzzy rule is

calculated by the algebraic product of membership

functions as

ℎ𝑞 = ∏ 𝐴𝑞𝑝
2
𝑝=1 . (2)

Then, at the output node, the inference result y is given

by the gravity method with the antecedent grade ℎ𝑞 and

consequent singleton 𝑤𝑞:

𝑦 =
∑ ℎ𝑞𝑤𝑞

9
𝑞=1

∑ ℎ𝑞
9
𝑞=1

 . (3)

The above signal flow is the same as that of the classic

fuzzy inference method with the if-then rule. RNF tunes

each of the network parameters by back propagation

algorithm. If the desired output to be 𝑡𝑛 (𝑛 = 1, 2, ⋯ , 𝑁)

and the current output to be 𝑦𝑛, then the error function to

be minimized during training is given by

𝐸 =
1

2
∑ (𝑡𝑛 − 𝑦𝑛)2𝑁

𝑛=1 . (4)

During training, the network parameters 𝑤𝑞 , 𝑎𝑞𝑝 , 𝑏𝑞𝑝

are updated by

∆𝑤𝑞 = −𝛼
𝜕𝐸

𝜕𝑤𝑞
 , (5)

∆𝑎𝑞𝑝 = −𝛽
𝜕𝐸

𝜕𝑎𝑞𝑝
 , (6)

∆𝑏𝑞𝑝 = −𝛾
𝜕𝐸

𝜕𝑏𝑞𝑝
 , (7)

where 𝛼, 𝛽, and 𝛾 are the respective learning rates. The

learning process can be performed by giving an initial

value to each of the network parameters and iterating Eqs.

(5)–(7). In the RNF, each antecedent membership

function of input spaces corresponds independently to

each fuzzy rules. Thus, the network has high degree of

freedom, and can fit well the training data [9].

B. Complex-Valued Neuro-Fuzzy Method (CVNF)

CVNF is an extension of RNF to complex numbers [24,

25]. The inputs, antecedent membership functions, and

consequent singletons are in complex domain whereas

output is real. Like RNF, the network is composed of

input, rule, and output layers. In the network, a complex

value based on a specific rule called the “complex fuzzy

rule” is passed through the activation function to output

the real value. For example, let the complex-valued input

to be 𝒙𝑝 = 𝑥𝑝
𝑅 + 𝐢𝑥𝑝

𝐼 (𝑝 = 1, 2) and the complex-valued

net-input of the output node to be 𝒛 = 𝑧𝑅 + 𝐢𝑧𝐼, then the

fuzzy inference rules are given as follows. Superscripts R

and I denote the real and imaginary parts of complex

numbers. Further, i refers to the imaginary part of a

complex number.

Rule 1: If 𝒙1 is 𝑨11 and 𝒙2 is 𝑨12, then 𝒛 is 𝒘1

Rule 2: If 𝒙1 is 𝑨21 and 𝒙2 is 𝑨22, then 𝒛 is 𝒘2

⋮
Rule 9: If 𝒙1 is 𝑨91 and 𝒙2 is 𝑨92, then 𝒛 is 𝒘9

Here, 𝑨𝑞𝑝 = 𝐴𝑞𝑝
𝑅 + 𝐢𝐴𝑞𝑝

𝐼 is the complex-valued

antecedent membership function and 𝒘𝑞 = 𝑤𝑞
𝑅 + 𝐢𝑤𝑞

𝐼 is

the complex-valued consequent singleton.

First, inputs pass through the antecedent membership

functions corresponding to the fuzzy rules

𝐴𝑞𝑝
𝐶 = exp {−

(𝑥𝑝
𝐶−𝑎𝑞𝑝

𝐶)
2

𝑏𝑞𝑝
𝐶 } , (8)

where 𝐶 = 𝑅 or 𝐼 . The Gaussian functions are

independently assigned to the real and imaginary parts of

the antecedent membership functions. CVNF can thus

generate the real and imaginary parts of complex-valued

membership functions. Here, 𝑎𝑞𝑝
𝐶 and 𝑏𝑞𝑝

𝐶 are the centers

and widths, respectively. At each node of the rule layer,

the real and imaginary parts of the complex-valued

antecedent grades 𝒉𝑞 are calculated as

ℎ𝑞
𝐶 = ∏ 𝐴𝑞𝑝

𝐶2
𝑝=1 . (9)

Then, at the output node, the complex-valued net-input

𝒛 is given by the same term as the gravity method Eq. (3),

4 Simplified Real-, Complex-, and Quaternion-Valued Neuro-Fuzzy Learning Algorithms

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 5, 1-13

but the parameters are complex values.

𝒛 =
∑ (ℎ𝑞

𝑅+𝐢ℎ𝑞
𝐼)9

𝑞=1 (𝑤𝑞
𝑅+𝐢𝑤𝑞

𝐼)

∑ (ℎ𝑞
𝑅+𝐢ℎ𝑞

𝐼)9
𝑞=1

 . (10)

Finally, the activation function 𝑓𝐶→𝑅(𝒙) converts the

complex-valued net-input 𝒛 to the real-valued inference

result y as

𝑦 = 𝑓𝐶→𝑅(𝒛) , (11)

𝑓𝐶→𝑅(𝒛) = (𝑓𝑅(𝑧𝑅) − 𝑓𝑅(𝑧𝐼))
2
 , (12)

where 𝑓𝑅(𝑥) = 1 (1 + 𝑒−3𝑥)⁄ . Eq. (12) is considered in

recent studies of complex-valued neural networks [30,

31].

The error function has the same formula as of RNF in

Eq. (4). During training, the parameters 𝒘𝑞 , 𝒂𝑞𝑝, 𝒃𝑞𝑝 are

updated by

∆𝒘𝑞 = −𝛼
𝜕𝐸

𝜕𝑤𝑞
𝑅 − 𝐢𝛼

𝜕𝐸

𝜕𝑤𝑞
𝐼 , (13)

∆𝒂𝑞𝑝 = −𝛽
𝜕𝐸

𝜕𝑎𝑞𝑝
𝑅 − 𝐢𝛽

𝜕𝐸

𝜕𝑎𝑞𝑝
𝐼 , (14)

∆𝒃𝑞𝑝 = −𝛾
𝜕𝐸

𝜕𝑏𝑞𝑝
𝑅 − 𝐢𝛾

𝜕𝐸

𝜕𝑏𝑞𝑝
𝐼 . (15)

The learning process can be performed by giving an

initial value to each parameter and iterating Eqs. (13)–

(15).

In CVNF, two real-valued inputs can be used as one

complex-valued input. Thus, CVNF has fewer parameters

than RNF when both are applied to the same problem.

The number of parameters in the complex-valued

methods can be obtained by

(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) =

(𝑖𝑛𝑝𝑢𝑡𝑠) × (𝑟𝑢𝑙𝑒𝑠) × 2#1 + (𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛𝑠)#2

#1: (𝑐𝑒𝑛𝑡𝑒𝑟𝑠 𝑎𝑛𝑑 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)

#2: (𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛𝑠) = (𝑟𝑢𝑙𝑒𝑠) (16)

Here, in case of complex-valued methods, the number

of parameters is twice the number of parameters as

mentioned in Eq. (16), while the number of inputs

becomes half.

For example, the problem of Fig. 1 heaving two real-

valued inputs and one output, the number of input nodes

in RNF is two, and in CVNF that is one. Then, the

number of rule nodes in CVNF is 31 = 3 as of three

functions for each input space, while the number of rule

nodes in RNF is 32 = 9 . In this case, the number of

network parameters in CVNF is (1 × 31 × 2 + 31) × 2 =
18 while the number is 45 (= 2 × 32 × 2 + 32) in RNF.

In comparisons of both methods by function

identifications, the CVNF showed same or better learning

ability than that of RNF. Detailed description of CVNF is

available in our previous studies [24, 25].

C. Quaternion Neuro-Fuzzy Method (QNF)

QNF is another and recent extension of RNF to the

quaternion domain [26–28]. The network has the three-

layer structure as that of RNF. Inputs, membership

functions, and singletons are quaternion, and the output is

real. In the network, signals are processed by quaternion

fuzzy rules. If the quaternion-valued inputs are 𝒙𝑝 =

𝑥𝑝
𝑅 + 𝐢𝑥𝑝

𝐼 + 𝐣𝑥𝑝
𝐽 + 𝐤𝑥𝑝

𝐾 (𝑝 = 1, 2) and the quaternion-

valued net-input of the output node is 𝒛 = 𝑧𝑅 + 𝐢𝑧𝐼 +
𝐣𝑧𝐽 + 𝐤𝑧𝐾 , and there are three divisions of each input

space, then the fuzzy inference rules are given as follows.

Rule 1: If 𝒙1 is 𝑨11 and 𝒙2 is 𝑨12, then 𝒛 is 𝒘1

Rule 2: If 𝒙1 is 𝑨21 and 𝒙2 is 𝑨22, then 𝒛 is 𝒘2

⋮
Rule 9: If 𝒙1 is 𝑨91 and 𝒙2 is 𝑨92, then 𝒛 is 𝒘9

Here, 𝑨𝑞𝑝 = 𝐴𝑞𝑝
𝑅 + 𝐢𝐴𝑞𝑝

𝐼 + 𝐣𝐴𝑞𝑝
𝐽 + 𝐤𝐴𝑞𝑝

𝐾 is the

quaternion-valued antecedent membership function and

𝒘𝑞 = 𝑤𝑞
𝑅 + 𝐢𝑤𝑞

𝐼 + 𝐣𝑤𝑞
𝐽 + 𝐤𝑤𝑞

𝐾 is the quaternion-valued

consequent singleton. Superscript R denotes the real part,

and superscripts I, J, and K denote the imaginary parts.

Further, i, j, and k in front of each element of a

quaternion number represent unit imaginary numbers

with properties 𝐢2 = 𝐣2 = 𝐤2 = 𝐢𝐣𝐤 = −1.

First, inputs pass through the antecedent membership

functions corresponding to the fuzzy rules

𝐴𝑞𝑝
𝑄 = exp {−

(𝑥𝑝
𝑄

−𝑎𝑞𝑝
𝑄

)
2

𝑏𝑞𝑝
𝑄 } , (17)

where 𝑄 = 𝑅, 𝐼, 𝐽, 𝐾 (as above). This shows that the

membership function is independently set for the real and

imaginary parts of the quaternion-valued input. Second,

in each rule-layer node, the real and imaginary parts of

the quaternion-valued antecedent grades 𝒉𝑞 are

calculated as

ℎ𝑞
𝑄 = ∏ 𝐴𝑞𝑝

𝑄2
𝑝=1 . (18)

Then, the net-input 𝒛 of the output node is given by a

gravity-like method:

𝒛 =
∑ (ℎ𝑞

𝑅+𝐢ℎ𝑞
𝐼 +𝐣ℎ𝑞

𝐽
+𝐤ℎ𝑞

𝐾)9
𝑞=1 (𝑤𝑞

𝑅+𝐢𝑤𝑞
𝐼 +𝐣𝑤𝑞

𝐽
+𝐤𝑤𝑞

𝐾)

∑ (ℎ𝑞
𝑅+𝐢ℎ𝑞

𝐼 +𝐣ℎ𝑞
𝐽

+𝐤ℎ𝑞
𝐾)9

𝑞=1

=
(∑ 𝒉𝑞𝒘𝑞

9
𝑞=1)(∑ �̅�𝑞

9
𝑞=1)

(∑ ℎ𝑞
𝑅9

𝑞=1)
2

+(∑ ℎ𝑞
𝐼9

𝑞=1)
2

+(∑ ℎ𝑞
𝐽9

𝑞=1)
2

+(∑ ℎ𝑞
𝐾9

𝑞=1)
2 . (19)

Here, �̅�𝑞 = ℎ𝑞
𝑅 − 𝐢ℎ𝑞

𝐼 − 𝐣ℎ𝑞
𝐽 − 𝐤ℎ𝑞

𝐾 is the conjugate

quaternion number of 𝒉𝑞 .

Finally, it passes through the activation function, and

the real-valued output is generated as

𝑦 = 𝑓𝑄→𝑅(𝒛) , (20)

𝑓𝑄→𝑅(𝒛) = (𝑓𝑅(𝑧𝑅) − 𝑓𝑅(𝑧𝐼) − 𝑓𝑅(𝑧𝐽) − 𝑓𝑅(𝑧𝐾))
2
, (21)

 Simplified Real-, Complex-, and Quaternion-Valued Neuro-Fuzzy Learning Algorithms 5

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 5, 1-13

where 𝑓𝑅(𝑥) = 1 (1 + 𝑒−3𝑥)⁄ . Equation (21) is derived

similarly to Eq. (12); the real and imaginary parts of net-

input 𝒛 are separately given to 𝑓𝑅(𝑥) , and then, the

difference between the output of real part and the sum of

the outputs generated by imaginary parts is calculated and

squared.

The error function has the same formula as of RNF in

Eq. (4). During training, the parameters 𝒘𝑞 , 𝒂𝑞𝑝, 𝒃𝑞𝑝 are

updated by

∆𝒘𝑞 = −𝛼
𝜕𝐸

𝜕𝑤𝑞
𝑅 − 𝐢𝛼

𝜕𝐸

𝜕𝑤𝑞
𝐼 − 𝐣𝛼

𝜕𝐸

𝜕𝑤𝑞
𝐽 − 𝐤𝛼

𝜕𝐸

𝜕𝑤𝑞
𝐾 , (22)

∆𝒂𝑞𝑝 = −𝛽
𝜕𝐸

𝜕𝑎𝑞𝑝
𝑅 − 𝐢𝛽

𝜕𝐸

𝜕𝑎𝑞𝑝
𝐼 − 𝐣𝛽

𝜕𝐸

𝜕𝑎𝑞𝑝
𝐽 − 𝐤𝛽

𝜕𝐸

𝜕𝑎𝑞𝑝
𝐾 , (23)

∆𝒃𝑞𝑝 = −𝛾
𝜕𝐸

𝜕𝑏𝑞𝑝
𝑅 − 𝐢𝛾

𝜕𝐸

𝜕𝑏𝑞𝑝
𝐼 − 𝐣𝛾

𝜕𝐸

𝜕𝑏𝑞𝑝
𝐽 − 𝐤𝛾

𝜕𝐸

𝜕𝑏𝑞𝑝
𝐾 , (24)

where 𝛼, 𝛽, and 𝛾 are the respective learning rates. The

learning process can be performed by giving an initial

value to each parameter and iterating Eqs. (22)–(24).

QNF can use four real-valued inputs as one quaternion-

valued input, thus reduces the number of parameters

compared to CVNF. For example, when a problem has

four real-valued inputs and one output, the number of

input nodes in CVNF is two, and that in QNF is one. If

the number of divisions of each input space is three, then

the number of rule nodes in CVNF is 32 = 9, and that in

QNF is 31 = 3. The number of parameters is quadruple

the number of Eq. (16) while the number of inputs

becomes one quarter. In this case, the number of network

parameters in CVNF is (2 × 32 × 2 + 32) × 2 = 90, and

that in QNF is (1 × 31 × 2 + 31) × 4 = 36. Again, for

example, if a problem has eight real-valued inputs and

one output, and the number of divisions of input space is

two, the numbers of input nodes, rule nodes, and total

network parameters are 8, 256, and 4352 for RNF; 4, 16,

and 288 for CVNF; and 2, 4, and 80 for QNF;

respectively.

On function identification and classification problems,

QNF showed good convergence and better learning

abilities than RNF. Detailed description of QNF is

available in our previous studies [26–28].

III. SIMPLIFIED NEURO-FUZZY METHODS

This section explains proposed simplified neuro-fuzzy

methods. At first, simplified method is explained with

RNF and then explains for CVNF and QNF. Finally,

proposed simplified methods are demonstrated for a

sample problem.

A. Simplified Real-Valued Neuro-Fuzzy (SRNF)

SRNF is a simplified version of RNF. It differs from

RNF in its fuzzy rules and output determination method

in output node, but the network structure and signal flow

are the same as those of RNF. In the following, two

points are explained: 1) simplified fuzzy rules and 2)

network calculations.

1) Simplified fuzzy rules

In the conventional RNF, signals are processed based

on classic fuzzy rules; the rules are constructed in all

combinational patterns of membership functions for each

input. Thus, an increment of number of inputs causes a

rapid increment of the number of parameters, even with a

small number of divisions of each input space. To

overcome this problem, in SRNF the network processes

signals according to rules based on the salient

combinations of membership functions. The other

combinations are considered to be redundant, and are not

used.

Fig.2. Proposed SRNF with two inputs and one output where each input

space is divided into three.

Fig. 2 illustrates the proposed SRNF of the system with

two inputs and one output against RNF mechanism

shown in Fig. 1. In the SRNF, each input space is divided

into three. One membership function is used for each

space to generate the antecedent grades. The weighted

sum is used to generate the output. If the inputs are

𝑥𝑝 (𝑝 = 1, 2) , the output is y, and there are three

divisions of each input space, then the rules are given as

follows.

Rule 1: If 𝑥1 is 𝐴11 and 𝑥2 is 𝐴12, then 𝑦 is 𝑤1

Rule 2: If 𝑥1 is 𝐴21 and 𝑥2 is 𝐴22, then 𝑦 is 𝑤2

Rule 3: If 𝑥1 is 𝐴31 and 𝑥2 is 𝐴32, then 𝑦 is 𝑤3

Here, Rule 1 uses first membership functions of 𝑥1 and

𝑥2, Rule 2 uses second membership functions of 𝑥1 and

𝑥2, and Rule 3 uses third membership functions of 𝑥1 and

𝑥2. The total number of membership functions is 3 × 2 =
6 (𝐴11, ⋯ , 𝐴32), and the number of antecedent grades is

3 (ℎ1, ⋯ , ℎ3) which is equal to the number of rules. The

number of parameters to be determined is 6 × 2 + 3 =
15.

Table 1. Number of Parameters for RNF and SRNF on Several

Parameter Conditions

Input Divisiona Rule Parameter

RNF SRNF RNF SRNF

2 3 9 3 45 15

2 5 25 5 125 25

5 5 3125 5 34375 55
aNumber of divisions of each input space

In this simplified rules, the number of rules is equal to

6 Simplified Real-, Complex-, and Quaternion-Valued Neuro-Fuzzy Learning Algorithms

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 5, 1-13

the number of divisions of each input space ((𝑟𝑢𝑙𝑒𝑠) =
(𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠)). Thus, even if the number of inputs

increases, the number of parameters does not increase

rapidly. The simplified method can thus be applied to

problems with a large number of inputs. Table 1

compares the number of parameters for conventional

RNF and the proposed SRNF under several combinations

of inputs and divisions. SRNF has fewer parameters than

RNF under all conditions.

2) Network calculation

In the conventional RNF, the output is calculated by

the gravity method at the output node. In contrast, in

SRNF the following equation is used instead of the

gravity method in Eq. (3):

𝑦 = ∑ ℎ𝑞𝑤𝑞
3
𝑞=1 . (25)

Equation (25) requires that the denominator in Eq. (3)

is equal to 1. This simplification comes from the fact that

the denominator ∑ ℎ𝑞
3
𝑞=1 has been assumed to be 1 [4].

By adopting this simplification in SRNF, the number of

network calculations and the parameter tuning equations

can be reduced.

B. Simplified Complex-Valued Neuro-Fuzzy (SCVNF)

SCVNF is a simplified version of CVNF in the same

manner to SRNF. Two main significance of SCVNF are

the simplified complex fuzzy rules and the network

calculations which are described below.

1) Simplified complex fuzzy rules

The simplification process of the fuzzy rules in SRNF

is inherited to SCVNF. Combination of the membership

functions is the same as with SRNF, so detailed rule

descriptions are omitted. By this simplification, the

number of rules is kept equal to the number of divisions

of each input space, and SCVNF can constrain the

increment of the number of parameters.

2) Network calculation

The net-input of the output node in CVNF is simplified

in the similar way as the simplification of the gravity

method in SRNF. In SRNF, the denominator value of the

gravity method is estimated as 1. In contrast, the

denominator value ∑ (ℎ𝑞
𝑅 + 𝐢ℎ𝑞

𝐼)𝑚
𝑞=1 of Eq. (10) in CVNF

is a complex number, so that the simplified formula is

defined as

𝒛 =
∑ (ℎ𝑞

𝑅+𝐢ℎ𝑞
𝐼)𝑚

𝑞=1 (𝑤𝑞
𝑅+𝐢𝑤𝑞

𝐼)

1+𝐢
 . (26)

Here, similarly to Eq. (25), the denominator value of

Eq. (10) is changed to 1 + 𝐢 by assuming ∑ ℎ𝑞
𝑅𝑚

𝑞=1 = 1

and ∑ ℎ𝑞
𝐼𝑚

𝑞=1 = 1. By this formula deformation, SCVNF

can reduce the number of network calculations and

simplify the tuning equations.

C. Simplified Quaternion Neuro-Fuzzy (SQNF)

SQNF is a simplified version of QNF. The same

simplifications as SRNF is applied to QNF for SQNF.

The following describes the simplified quaternion fuzzy

rules and network calculation.

1) Simplified quaternion fuzzy rules

The simplification process of fuzzy rules used in SRNF

is applied to SQNF. The same combination method of the

membership functions is used for SQNF, and thus the

rule description is omitted here. The number of rules after

simplification is the same as the number of divisions of

each input space. Thus, the rapid increment of parameters

seen in QNF does not occur in SQNF.

2) Network calculation

As of SCVNF in the previous section, the gravity

method is simplified also in QNF. In QNF, the

denominator value ∑ (ℎ𝑞
𝑅 + 𝐢ℎ𝑞

𝐼 + 𝐣ℎ𝑞
𝐽 + 𝐤ℎ𝑞

𝐾)𝑚
𝑞=1 of Eq.

(19) is a quaternion number, with the simplified formula

𝒛 =
∑ (ℎ𝑞

𝑅+𝐢ℎ𝑞
𝐼 +𝐣ℎ𝑞

𝐽
+𝐤ℎ𝑞

𝐾)𝑚
𝑞=1 (𝑤𝑞

𝑅+𝐢𝑤𝑞
𝐼 +𝐣𝑤𝑞

𝐽
+𝐤𝑤𝑞

𝐾)

1+𝐢+𝐣+𝐤
 . (27)

Here, similarly to Eq. (25), the denominator value of

Eq. (18) is changed to 1 + 𝐢 + 𝐣 + 𝐤 by

assuming ∑ ℎ𝑞
𝑅𝑚

𝑞=1 = 1 , ∑ ℎ𝑞
𝐼𝑚

𝑞=1 = 1 , ∑ ℎ𝑞
𝐽𝑚

𝑞=1 = 1 , and

∑ ℎ𝑞
𝐾𝑚

𝑞=1 = 1 . This formula deformation contributes in

reducing the number of network calculations and

simplifying the tuning equations.

D. Demonstration of proposed simplified methods on a

sample problem

Fig. 3 illustrates SRNF, SCVNF, and SQNF for a

problem heaving four real-valued inputs (𝑐1, ⋯ , 𝑐4) and

one output for better understanding of the proposed

methods. The number of input nodes is four in SRNF,

two in SCVNF, and one in SQNF. The number of

divisions of each input space is three, then the number of

rule nodes is three in SRNF, SCVNF, and SQNF.

In SRNF (Fig. 3(a)), the number of input nodes is four

and each input space is divided into three. One

membership function is used for each space to generate

the antecedent grades. The weighted sum is applied to

generate the output. The total number of membership

functions is 3 × 4 = 12 (𝐴11, ⋯ , 𝐴34), and the number of

antecedent grades is 3 (ℎ1, ⋯ , ℎ3) which is equal to the

number of rules. The number of parameters to be

determined is 12 × 2 + 3 = 27.

In SCVNF (Fig. 3(b)), the number of input nodes is

two and each input space is divided into three. One

complex-valued membership function is used for each

space to generate the complex-valued antecedent grades.

The simplified gravity-like method as of Eq. (27) is used

to generate the complex-valued net-input of output node.

The activation function shown in Eq. (12) is used to

convert the complex-valued net-input to real-valued

output. The total number of complex-valued membership

functions is 3 × 2 = 6 (𝑨11, ⋯ , 𝑨32), and the number of

complex-valued antecedent grades is 3 (𝒉1, ⋯ , 𝒉3) which

is equal to the number of rules. The number of parameters

 Simplified Real-, Complex-, and Quaternion-Valued Neuro-Fuzzy Learning Algorithms 7

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 5, 1-13

to be determined is (6 × 2 + 3) × 2 = 30.

In the SQNF (Fig. 3(c)), the number of input node is

only one and the input space is divided into three. One

quaternion-valued membership function is used for each

space to generate the quaternion-valued antecedent

grades. The simplified gravity-like method as of Eq. (28)

is used to generate the net-input of output node. The

activation function shown in Eq. (21) converts the

quaternion-valued net-input to real-valued output. The

total number of quaternion-valued membership functions

is 3 × 1 = 3 (𝑨11, ⋯ , 𝑨31) , and the number of

quaternion-valued antecedent grades is 3 (𝒉1, ⋯ , 𝒉3)

which is equal to the number of rules. The number of

parameters to be determined is (3 × 2 + 3) × 4 = 36.

(a) SRNF (b) SCVNF (c) SQNF

Fig.3. Illustration of proposed SRNF, SCVNF and SQNF for a system with four real-valued inputs and one output. The number of divisions of each
input space is three, then the number of rule nodes is three in each of them. The number of network parameters is 12×2+3=27 in SRNF,

(6×2+3)×2=30 in SCVNF, and (3×2+3)×4=36 in SQNF.

IV. EXPERIMENTS ON FUNCTION APPROXIMATIONS

This section compares performance of each of

proposed simplified methods SRNF, SCVNF, SQNF with

its counter conventional method for function

approximations. The following functions with two, four,

and eight real variables are considered.

fn1:

𝑦 = (2𝑠𝑖𝑛(𝜋𝑥1) + 𝑐𝑜𝑠(𝜋𝑥2)) 6⁄ + 0.5 , (28)

fn2:

𝑦 =
(2𝑥1+4𝑥2

2+0.1)
2

74.42
+

{(3𝑒3𝑥3+2𝑒−4𝑥4)
−0.5

−0.077}

4.68
 , (29)

fn3:

𝑦 =
1

2
{

(2𝑥1+4𝑥2
2+0.1)

2

74.42
+

{(3𝑒3𝑥3+2𝑒−4𝑥4)
−0.5

−0.077}

4.68

+
(2𝑥5+4𝑥6

2+0.1)
2

37.21
∙

4 sin(𝜋𝑥7)+2 cos(𝜋𝑥8)+6

12
} . (30)

Here, Eq. (28) was used for SRNF and RNF, Eq. (29)

for SCVNF and CVNF, and Eq. (30) for SQNF and QNF.

As described in Section II, two real inputs were used as

one complex-valued input in complex-valued methods,

and four real inputs were used as one quaternion-valued

input in quaternion-valued methods. Therefore, in the

complex-valued SCVNF and CVNF methods, there are

two complex-valued inputs (𝑥1 + 𝐢𝑥2, 𝑥3 + 𝐢𝑥4), and in

the quaternion-valued SQNF and QNF methods, there are

two quaternion-valued inputs (𝑥1 + 𝐢𝑥2 + 𝐣𝑥3 +

𝐤𝑥4, 𝑥5 + 𝐢𝑥6 + 𝐣𝑥7 + 𝐤𝑥8). Table 2 shows the number of

network parameters for each method. The number of

divisions of each input space in the proposed methods is

greater than that in the conventional methods. The

numbers of divisions of each input for membership

functions were determined by trial and error as shown in

Table 2. The number of parameters is 2 × 52 × 2 + 52 =
125 in RNF, and 2 × 9 × 2 + 9 = 45 in SRNF.

Table 2. Number of Network Parameters for each of the Methods on

Function Identifications

Dataset Method Input
Divisio

n
Parameter *

fn1
RNF 2 5 2 × 52 × 2 + 52 = 125

SRNF 2 9 2 × 9 × 2 + 9 = 45

fn2

CVNF 2 5 (2 × 52 × 2 + 52) × 2 = 250

SCVN
F

2 11 (2 × 11 × 2 + 11) × 2 = 110

fn3
QNF 2 5 (2 × 52 × 2 + 52) × 4 = 500

SQNF 2 7 (2 × 7 × 2 + 7) × 4 = 140

*Parameter means total number of network parameters.

In this simulation, datasets with inputs and outputs

made by each function were divided into training set

(75%) and test set (25%). Two training datasets were

made for each function as fn1.1, fn1.2, fn2.1, fn2.2, fn3.1,

and fn3.2 with different samples. Computational time to

train the network with training set was also computed as

execution time. The experiments have been conducted on

a single machine (HP Z440, Processor: Intel(R) Xeon(R)

CPU E5-1603 v3 @ 2.80GHz, RAM: 32.0GB, SSD:

256GB); therefore, execution time comparison reflects

computational efficiency of the methods. To measure the

8 Simplified Real-, Complex-, and Quaternion-Valued Neuro-Fuzzy Learning Algorithms

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 5, 1-13

performance of method, the mean squared error (MSE)

for test set was calculated as test error by

MSE =
1

2𝑃
∑ (𝑑𝑝 − 𝑦𝑝)

2
,𝑃

𝑝=1 (31)

where p is the pattern number, P is the total number of

test patterns, 𝑑𝑝 is the desired output, and 𝑦𝑝 is the actual

output.

Tables 3, 4, and 5 show the simulation results for

comparison. The conventional and proposed methods

were trained up to 10,000 epochs. The results showed that

the proposed methods have the same convergence

capabilities as the conventional methods. The proposed

methods had fewer network parameters than the

conventional methods (shown in Table 2), and the

learning times were reduced (shown in Tables 3−5).

V. EXPERIMENTS ON REAL-WORLD BENCHMARK

PROBLEMS

This section investigates the performance of the

proposed simplified methods SRNF, SCVNF, SQNF on

real-world benchmark problems. The description of the

datasets and experimental setup is given first. The

outcomes of proposed methods are then compared with

conventional methods and another related prominent

methods.

A. Description of the Datasets

Datasets from the UCI Machine Learning Repository

[32] were used for the experiments. The repository is a

collection of machine learning problems. Ten datasets for

supervised learning were used. The short descriptions of

these datasets are given below.

1) Plant

The task is to predict a net hourly electrical energy

output of a combined cycle power plant. Features consist

of temperature, ambient pressure, relative humidity, and

exhaust vacuum. There are 4 inputs and 1 continuous

valued output, and 9,568 samples.

2) Airfoil

This is a NASA dataset. The task is to calculate an

airfoil self-noise level under different conditions for

chord length, frequency, and other factors. There are 5

inputs, 1 continuous valued output, and 1,503 samples.

3) Yacht

The task is to predict a residuary resistance of sailing

yachts at the initial design stage. Essential inputs include

the basic hull dimensions and the boat velocity. There are

6 inputs, 1 continuous valued output, and 308 samples.

4) Concrete

The task is to calculate the compressive strength of

concrete. This is a highly nonlinear function of age and

ingredients, such as cement and water content. There are

8 inputs, 1 continuous valued output, and 1,030 samples.

5) Turbine

The task is to compute a gas turbine’s compressor

decay coefficient by numerical simulation of a naval

vessel. The propulsion system behavior is described using

components such as ship speed and turbine shaft torque.

There are 16 inputs, 1 continuous valued output, and

11,934 samples.

6) Iris

The task is to classify a type of plant. One class is

linearly separable from the other two; the latter are

nonlinearly separable from each other. It has 4 attributes,

3 classes, and 150 samples.

7) Seed

The task is to classify three different varieties of wheat.

Features consist of seven geometric parameters of wheat

kernels. It has 7 attributes, 3 classes, and 210 samples.

8) Diabetes

The task is to classify a patient as diabetes or not.

Features include body mass index, diastolic blood

pressure, triceps skin fold thickness, and so on. It has 8

attributes, 2 classes, and 768 samples.

9) Cancer

This is a breast cancer dataset. The task is to classify a

cell as benign or malignant. Features include clump

thickness, cell size, bare nuclei, and so on. It has 10

attributes, 2 classes, and 683 samples.

10) Heart

This is a heart disease dataset. The task is to classify

heart disease as absence or presence. Features include age,

resting blood pressure, fasting blood sugar, and so on. It

has 13 attributes, 2 classes, and 270 samples.

Table 3. Average Test Error on fn1

Dataset Test error ± S.D. (×10-3) Execution time (s)

RNF SRNF RNF SRNF

fn1.1 0.13 ± 0.02 0.36 ± 0.10 0.42 0.15

fn1.2 0.12 ± 0.02 0.34 ± 0.09 0.42 0.16

Averages and S.D.s were taken over 20 independent runs.

S.D.: Standard deviation

Table 4. Average Test Error on fn2

Dataset Test error ± S.D. (×10-3) Execution time (s)

CVNF SCVNF CVNF SCVNF

fn2.1 2.81 ± 0.21 2.72 ± 0.25 1.67 0.68

fn2.2 2.44 ± 0.19 2.44 ± 0.28 1.67 0.68

Averages and S.D.s were taken over 20 independent runs.

Table 5. Average Test Error on fn3

Dataset Test error ± S.D. (×10-3) Execution time (s)

QNF SQNF QNF SQNF

fn3.1 1.69 ± 0.15 1.45 ± 0.17 4.44 0.95

fn3.2 1.69 ± 0.21 1.56 ± 0.17 4.44 0.94

Averages and S.D.s were taken over 20 independent runs.

 Simplified Real-, Complex-, and Quaternion-Valued Neuro-Fuzzy Learning Algorithms 9

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 5, 1-13

B. Experimental Setup

In this experiment, each dataset was partitioned into

training and test sets as in Table 6. Each of the datasets

described above contain real-valued data. Attributes and

class labels were respectively normalized in the ranges [–

1, 1] and [0, 1] for all datasets. For initialization, the

number of network parameters for each of the methods

was set as shown in Tables 7 and 8. Note that RNF could

not be applied to the Turbine datasets, because of the

huge number of parameters. Further, for the complex and

quaternion-valued methods, the number of total

parameters includes the real and imaginary parts of the

parameters. As in the previous section, two real inputs

were used as one complex-valued input in the complex-

valued methods, and four real inputs were used as one

quaternion-valued input in the quaternion methods. When

the number of attributes of a dataset was not a multiple of

two or four, empty parts of a complex or a quaternion-

valued input variable were set to zero. For example, for

Airfoil dataset with five attributes (𝑐1, 𝑐2, ⋯ , 𝑐5) , the

SCVNF and CVNF networks have three complex inputs

(𝑥1 = 𝑐1 + 𝐢𝑐2, 𝑥2 = 𝑐3 + 𝐢𝑐4, 𝑥3 = 𝑐5 + 𝐢0) , and the

SQNF and QNF networks have two quaternion-valued

inputs (𝑥1 = 𝑐1 + 𝐢𝑐2 + 𝐣𝑐3 + 𝐤𝑐4, 𝑥2 = 𝑐5 + 𝐢0 + 𝐣0 +
𝐤0).

Table 6. Partitioning of UCI Benchmark Datasets

Dataset Partitioning

Name Attribute Class Total Training Testing

Plant 4 Continuous 9568 7170 2398

Airfoil 5 Continuous 1503 1127 376

Yacht 6 Continuous 308 231 77

Concrete 8 Continuous 1030 772 258

Turbine 16 Continuous 11934 8950 2984

Iris 4 3 150 112 38

Seed 7 3 210 158 52

Diabetes 7 (8) a 2 768 576 192

Cancer 9 (10) a 2 683 512 171

Heart 13 2 270 202 68
a 7 of 8 attributes are used for Diabetes dataset, and 9 of 10 attributes

are used for Cancer dataset.

Table 7. Number of Network Parameters for the Conventional Methods on Real-World Benchmark Problems

Dataset RNF CVNF QNF

Input Division Parameter Input Division Parameter Input Division Parameter

Plant 4 3 729 2 3 90 1 3 36

Airfoil 5 3 2673 3 4 896 2 3 180

Yacht 6 2 832 3 2 112 2 2 80

Concrete 8 2 4352 4 3 1458 2 3 180

Turbine 16 2 2162688 8 2 8704 4 3 2916

Iris 4 2 144 2 3 90 1 5 60

Seed 7 2 2176 4 2 352 2 3 252

Diabetes 7 3 32805 4 4 4608 2 9 1620

Cancer 9 2 9728 5 2 704 3 2 224

Heart 13 2 221184 7 2 3840 4 3 2916

Table 8. Number of Network Parameters for the Proposed Methods on Real-World Benchmark Problems

Dataset SRNF SCVNF SQNF

Input Division Parameter Input Division Parameter Input Division Parameter

Plant 4 11 99 2 3 30 1 2 24

Airfoil 5 41 451 3 11 154 2 11 220

Yacht 6 5 65 3 3 42 2 2 40

Concrete 8 11 187 4 11 198 2 4 80

Turbine 16 41 1353 8 41 1394 4 41 1476

Iris 4 2 18 2 2 20 1 2 24

Seed 7 11 187 4 11 242 2 4 112

Diabetes 7 11 165 4 11 198 2 2 40

Cancer 9 41 779 5 21 462 3 5 140

Heart 13 11 297 7 4 120 4 4 144

Each of the learning algorithms described in Section II

(i.e., conventional methods) and Section III (i.e.,

proposed methods) was tested on the benchmark

problems. During the training process, learning rates

(𝛼, 𝛽, 𝛾) of the algorithms for each of the datasets were

kept constant. Singletons were initialized with Gaussian

random numbers. (𝜇, 𝜎) for SRNF and RNF was

(0.5, 0.15) , for SCVNF, CVNF, SQNF and QNF was

(0, 0.4).

The proposed and conventional methods were trained

using training sets for each of the problems up to 100000

epochs. When a network was trained with input and

output patterns, the error on the training set decreased

gradually with the epochs. During training, error for the

training set was periodically computed by Eq. (4). The

experiments have been conducted on the same machine

10 Simplified Real-, Complex-, and Quaternion-Valued Neuro-Fuzzy Learning Algorithms

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 5, 1-13

described for function optimization.

Fig. 4 shows training processes for each of the methods

on the Airfoil dataset. The proposed methods could

converge as the conventional methods did. In the

proposed methods, SCVNF and SQNF converged faster

than SRNF. In this case, SQNF showed the minimum

error among the proposed methods.

(a) RNF and SRNF (b) CVNF and SCVNF (c) QNF and SQNF.

Fig.4. Training process comparison on Airfoil dataset.

C. Experimental Results and Comparison

This section compares the learning abilities of the

conventional and proposed methods. To measure the

performances, Eq. (31) was used to measure test error

(MSE for test sets) for datasets with continuous output

values. Accuracy rates were used for datasets for

classification tasks. The accuracy is the ratio of the total

number of classifications that are correct. The required

training time for each method was also compared as

execution time. Tables 9 and 10 summarizes the results

for datasets with continuous output values, and

classification tasks, respectively. These results were taken

over 20 independent runs for each dataset.

In terms of the test error for continuous valued problem

in Table 9, the proposed SRNF showed slightly better

results than the conventional RNF did. In the best case,

the test errors on Yacht dataset were 0.00397 for RNF,

and 0.00141 for SRNF. Comparing the complex methods,

the proposed SCVNF was slightly better than the

conventional CVNF for most datasets. The proposed

SQNF showed results similar to the conventional QNF.

Table 9. Average Test Error and Execution Time Comparison for Datasets with Continuous Output Values

Dataset Test error ± S.D. (×10-3) Execution time (s)

RNF SRNF CVNF SCVNF QNF SQNF RNF SRNF CVNF SCVNF QNF SQNF

Plant 1.55 ± 0.01 1.63 ± 0.02 1.56 ± 0.02 1.65 ± 0.04 1.56 ± 0.02 1.64 ± 0.02 11.32 1.58 2.72 0.95 2.04 0.94

Airfoil 4.42 ± 0.08 3.99 ± 0.36 3.92 ± 0.31 4.14 ± 0.43 3.87 ± 0.47 3.49 ± 0.59 16.64 2.83 8.34 1.41 2.28 1.94

Yacht 3.97 ± 0.49 1.41 ± 0.69 1.90 ± 0.76 1.16 ± 0.29 0.79 ± 0.46 0.97 ± 0.23 1.92 0.17 0.50 0.19 0.55 0.20

Concrete 4.11 ± 0.23 4.07 ± 0.30 3.68 ± 0.68 3.47 ± 0.22 3.04 ± 0.28 3.59 ± 0.21 30.16 1.35 14.51 1.92 2.80 0.92

Turbine * 0.62 ± 0.08 2.01 ± 1.07 1.38 ± 0.16 0.79 ± 0.31 1.02 ± 0.43 * 33.24 267.52 40.98 113.86 43.67

Averages and S.D.s were taken over 20 independent runs.

* The number of parameters was too large to perform calculation.

Table 10. Average Accuracy Rate and Execution Time Comparison for Classification Tasks

Dataset Accuracy rate (%) Execution time (s)

RNF SRNF CVNF SCVNF QNF SQNF RNF SRNF CVNF SCVNF QNF SQNF

Iris 100.00 100.00 100.00 100.00 100.00 100.00 0.15 0.05 0.22 0.06 0.28 0.08

Seed 92.40 90.96 91.83 89.90 91.44 90.77 9.24 1.20 3.85 1.20 2.69 0.80

Diabetes 75.89 72.81 74.19 74.48 75.76 74.58 200.20 0.54 42.14 0.88 5.73 0.25

Cancer 94.97 95.23 95.56 96.05 95.88 95.88 28.05 2.23 2.99 1.84 1.35 0.60

Heart 67.65 80.22 71.69 77.94 73.60 78.60 101.36 0.69 6.27 0.41 7.65 0.49

Averages and S.D.s were taken over 20 independent runs.

In terms of the accuracy rate of classification problem

in Table 10, the proposed methods had almost the same

performances as the conventional methods on Iris, Seed,

Diabetes, and Cancer datasets. On Heart dataset, the

proposed methods showed higher accuracies than the

conventional methods.

In terms of the execution time in Tables 9 and 10, each

of the proposed methods took less time than each of the

conventional methods on all datasets. For example, on

Plant dataset, the execution times were 11.32 sec for

RNF, 1.58 sec for SRNF, 2.72 sec for CVNF, 0.95 sec for

SCVNF, 2.04 sec for QNF, and 0.94 sec for SQNF.

 Simplified Real-, Complex-, and Quaternion-Valued Neuro-Fuzzy Learning Algorithms 11

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 5, 1-13

Execution time relates to the computational complexity

and the number of parameters in each method. As a

simple example, a complex-valued multiplication needs

around twice the computational time of a real-valued

multiplication, whereas quaternion-valued multiplication

needs around eight times. Proposed simplified methods

had fewer computational complexities, and thus had less

execution times in the experiments due to less parameters.

Table 11. Accuracy Rate Comparison of Proposed methods

with NFRBC

Dataset NFRBC Proposed Method

Iris 80.87 100.00

Diabetes 75.03 74.58

Cancer 94.33 96.05

Heart 73.67 80.22

Finally, outcome of the proposed methods are

compared with a recent neuro-fuzzy method [14] which

applied a neuro-fuzzy rule-based classifier (NFRBC) to

real-world classification problems with the UCI datasets.

They used some of the datasets used in this study; Iris,

Diabetes, Cancer, and Heart datasets. Thus, the proposed

methods were compared with the NFRBC on these four

datasets in Table 11. For the NFRBC, the best accuracy

of Iris, Diabetes, Cancer, and Heart datasets were 80.87,

75.03, 94.33, and 73.67, respectively. On the other hand,

for the proposed methods, the individual best accuracies

for Iris, Diabetes, Cancer, and Heart datasets were

100.00, 74.58, 96.05, and 80.22, respectively. While this

comparison was not necessarily strict, the proposed

methods had higher accuracies than the NFRBC on three

datasets except Diabetes dataset.

VI. CONCLUSIONS

A simplified neuro-fuzzy method has been investigated

in this study and incorporated in conventional methods.

The conventional neuro-fuzzy methods, RNF, CVNF and

QNF, suffer from the problem of increased number of

parameters to be estimated by gradient descent method

when the number of inputs is increased. Rules are made

by all the combinations of membership functions in RNF;

thus, the number of rules as well as total parameters

increase rapidly with the number of inputs. In case of

CVNF and QNF, although the total number of parameters

is less than RNF due to their ability of solving a problem

with less number of inputs, parameters increase with

number of inputs. In the simplified method, the number

of fuzzy rules is equal to the number of divisions of input

space. And therefore, the number of rules as well as

parameters are limited significantly in the proposed

SRNF, SCVNF and SQNF in which the simplified

method is incorporated in the conventional methods.

The proposed SRNF, SCVNF and SQNF are found to

solve given problems with much less parameters as well

as computing time with respect to their conventional

counter methods. Total parameters of SRNF, SCVNF and

SQNF were significantly less in number with respect to

conventional RNF, CVNF and QNF, respectively for both

function approximations (Table 2) and real-world

benchmark problems (Tables 7-8). With much less

execution times, proposed methods were competitive to

conventional methods on test error and accuracy of the

problems (Tables 3-5, Tables 9-10).

In the proposed SRNF, SCVNF and SQNF, the

parameters such as the number of divisions can be chosen

arbitrarily within a certain range. These properties

provide a freedom in designing the system. In our

numerical experiments, the network parameters for the

RNF were difficult to determine, required trial-and-error,

while those for SCVNF and SQNF were easy to fix.

Further improvement is also possible in SCVNF and

SQNF. The activation functions used to convert complex

and quaternion values to real-valued output, Eq. (12) and

Eq. (21), respectively, may be altered for better

performance.

The proposed SRNF, SCVNF and SQNF have fewer

parameters, and then systems with a larger number of

inputs can be handled by the methods. Neuro-fuzzy can

approximate certain types of nonlinear functions well in

nature. Therefore, neuro-fuzzy models have been applied

in designing control systems, such as the temperature

control system for greenhouse [33], an antilock braking

system of motor vehicle [34], a water-level control of U-

tube steam generators in nuclear power plants [35], and

so on [3, 7, 8]. This study have exhibited that proposed

methods have better properties than the conventional

counter methods in function approximations and real-

world benchmark problems. Especially, they converge

well in problems with a large number of inputs and the

conventional methods are hard to apply. Therefore, the

proposed methods can be utilized for the large problems

(e.g., real-time control of large systems) where the

conventional methods are difficult to apply due to time

constrain.

ACKNOWLEDGMENT

This work was supported by the Grants-in-Aid from

JSPS; Nos.15K00333 for KM and 16J11219 for RH. The

funding source had no role in study design; in the

collection, analysis and interpretation of data; in the

writing of the report; and in the decision to submit the

article for publication.

REFERENCES

[1] J. S. Jang and C. T. Sun, “Neuro-fuzzy modeling and

control,” Proceedings of IEEE, vol. 83, no. 3, Mar. 1995.

[2] G. Feng, “A survey on analysis and design of model-

based fuzzy control systems,” IEEE Transactions on

Fuzzy systems, vol. 14, no. 5, pp. 676–697, Oct. 2006.

[3] S. Kar, S. Das, and P. K. Ghosh, “Applications of neuro

fuzzy systems: A brief review and future outline,” Applied

Soft Computing, vol. 15, pp. 243–259, Feb. 2014.

[4] M. Ababou, M. Bellafkih and R. E. Kouch, “Energy

Efficient Routing Protocol for Delay Tolerant Network

Based on Fuzzy Logic and Ant Colony,” I. J. Intelligent

Systems and Applications, vol. 10, no. 1, pp. 69-77, 2018.

[5] A. Amini and N. Nikraz, “Proposing Two Defuzzification

Methods based on Output Fuzzy Set Weights,” I. J.

12 Simplified Real-, Complex-, and Quaternion-Valued Neuro-Fuzzy Learning Algorithms

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 5, 1-13

Intelligent Systems and Applications, vol. 8, no. 2, pp. 1-

12, 2016.

[6] N. Arora and J. R. Saini, “Estimation and Approximation

Using Neuro-Fuzzy Systems,” I. J. Intelligent Systems

and Applications, vol. 8, no. 6, pp. 9-18, 2016.

[7] Z. Hu, Y. V. Bodyanskiy, N. Y. Kulishova and O. K.

Tyshchenko, “A Multidimensional Extended Neo-Fuzzy

Neuron for Facial Expression Recognition,” I. J.

Intelligent Systems and Applications, vol. 9, no. 9, pp. 29-

36, 2017.

[8] N. H. Saeed and M. F. Abbod, “Modelling Oil Pipelines

Grid: Neuro-fuzzy Supervision System,” I. J. Intelligent

Systems and Applications, vol. 9, no.10, pp. 1-11, 2017.

[9] Y. Shi, M. Mizumoto, N. Yubazaki, and M. Otani, “A

method of fuzzy rules generation based on neuro-fuzzy

learning algorithm,” Fuzzy Theory Systems, vol. 8, no. 4,

pp. 103–113, Aug. 1996.

[10] Y. Shi, M. Mizumoto, N. Yubazaki, and M. Otani, “A

learning algorithm for tuning fuzzy rules based on the

gradient descent method,” Proceedings of the Fifth IEEE

International Conference on Fuzzy Systems, 1996, pp. 55–

61.

[11] Y. Shi and M. Mizumoto, “A new approach of neuro-

fuzzy learning algorithm for tuning fuzzy rules,” Fuzzy

sets and systems, vol. 112, no. 1, pp. 99–116, May 2000.

[12] W. Wu, L. Li, J. Yang, and Y. Liu, “A modified gradient-

based neuro-fuzzy learning algorithm and its

convergence,” Information Sciences, vol. 18, no. 9, pp.

1630–1642, May 2010.

[13] K. Shimojima, T. Fukuda, and Y. Hasegawa, “RBF-fuzzy

system with GA based unsupervised/supervised learning

method,” Proceedings of 1995 IEEE International

Conference on Fuzzy Systems, 1995, vol. 1, pp. 253–258.

[14] J. Kim and N. Kasabov, “HyFIS: adaptive neuro-fuzzy

inference systems and their application to nonlinear

dynamical systems,” Neural Networks, vol. 12, no. 9, pp.

1301–1319, Nov. 1999.

[15] A. Bhardwaj and K. K. Siddhu, “An Approach to Medical

Image Classification Using Neuro Fuzzy Logic and

ANFIS Classifier,” International Journal of Computer

Trends and Technology, vol. 4, no. 3, pp. 236–240, 2013.

[16] S. Ghosh, S. Biswas, D. Sarkar, and P. P. Sarkar, “A

novel neuro-fuzzy classification technique for data

mining,” Egyptian Informatics Journal, vol. 15, no. 3, pp.

129–147, Sept. 2014.

[17] P. Naresh and R. Shettar, “Image processing and

classification techniques for early detection of lung cancer

for preventive health care: A survey,” International

Journal on Recent Trends in Engineering & Technology,

vol. 11, no. 1, pp. 595–601, July 2014.

[18] S. Ghosh, S. Biswas, D. C. Sarkar, and P. P. Sarkar,

“Breast cancer detection using a neuro-fuzzy based

classification method,” Indian Journal of Science and

Technology, vol. 9, no. 14, Apr. 2016.

[19] S. K. Biswas, M. Bordoloi, H. R. Singh, and B.

Purkayastha, “A neuro-fuzzy rule-based classifier using

important features and top linguistic features,”

International Journal of Intelligent Information

Technologies (IJIIT), vol. 12, no. 3, pp. 38–50, Sept. 2016.

[20] J. E. Nalavade and T. S. Murugan, “HRNeuro-fuzzy:

Adapting neuro-fuzzy classifier for recurring concept

drift of evolving data streams u sing rough set theory and

holoentropy,” Journal of King Saud University-Computer

and Information Sciences, Nov. 2016.

[21] H. R. Singh, S. K. Biswas, and B. Purkayastha, “A neuro-

fuzzy classification technique using dynamic clustering

and GSS rule generation,” Journal of Computational and

Applied Mathematics, vol. 309, pp. 683–694, Jan. 2017.

[22] K. Subramanian, R. Savitha, and S. Suresh, “A complex-

valued neuro-fuzzy inference system and its learning

mechanism,” Neurocomputing, vol. 123, no. 10, pp. 110–

120, Jan. 2014.

[23] C. Li, T. Wu, and F. T. Chan, “Self-learning complex

neuro-fuzzy system with complex fuzzy sets and its

application to adaptive image noise canceling,”

Neurocomputing, vol. 94, no. 1, pp. 121–139, Oct. 2012.

[24] R. Hata, M. M. Islam, and K. Murase, “Generation of

fuzzy rules based on complex-valued neuro-fuzzy

learning algorithm,” 3rd International Workshop on

Advanced Computational Intelligence and Intelligent

Informatics (IWACIII 2013), 2013, GS1-3_D13070130.

[25] R. Hata and K. Murase, “Generation of fuzzy rules by a

complex-valued neuro-fuzzy learning algorithm,” Fuzzy

Theory and Intelligent Informatics, vo. 27, no. 1, pp. 533–

548, Mar. 2015.

[26] R. Hata, M. M. Islam, and K. Murase, “Quaternion neuro-

fuzzy learning algorithm for fuzzy rule generation,”

Proceedings of the Second International Conference on

Robot, Vision and Signal Processing (RVSP 2013), 2013,

pp. 61–65, Dec. 2013.

[27] R. Hata and K. Murase, “Quaternion neuro-fuzzy for real-

valued classification problems,” Proceedings of the Joint

7th International Conference on Soft Computing and

Intelligent Systems and 15th International Symposium on

Advanced Intelligent Systems (SCIS&ISIS 2014), 2014, pp.

655–660.

[28] R. Hata, M. M. Islam, and K. Murase, “Quaternion neuro-

fuzzy learning algorithm for generation of fuzzy rules,”

Neurocomputing, vol. 216, pp. 638–648, Dec. 2016.

[29] R. Hecht-Nielsen, “Theory of the backpropagation neural

network,” Proceedings of International Joint Conference

on Neural Networks, 1989, pp. 593–605.

[30] M. F. Amin and K. Murase, “Single-layered complex-

valued neural network for real-valued classification

problems,” Neurocomputing, vol. 72, no. 4, pp. 945–955,

Jan. 2009.

[31] M. F. Amin, M. M. Islam, and K. Murase, “Ensemble of

single-layered complex-valued neural networks for

classification tasks,” Neurocomputing, vol. 72, no. 10, pp.

2227–2234, June 2009.

[32] K. Bache and M. Lichman, UCI Machine Learning

Repository, Univ. California, Irvine, CA, USA, 2013.

[33] D. M. Atia and H. T. El-madany, “Analysis and design of

greenhouse temperature control using adaptive neuro-

fuzzy inference system,” Journal of Electrical Systems

and Information Technology, Oct. 2016.

[34] C. M. Lin and C. F. Hsu, “Self-learning fuzzy sliding-

mode control for antilock braking systems,” IEEE

Transactions on Control Systems Technology, vol. 11, no.

2, pp. 273–278, Mar. 2003.

[35] S. R. Munasinghe, M. S. Kim, and J. J. Lee, “Adaptive

neurofuzzy controller to regulate UTSG water level in

nuclear power plants,” IEEE Transactions on Nuclear

Science, vol. 52, no. 1, pp. 421–429, Feb. 2005.

 Simplified Real-, Complex-, and Quaternion-Valued Neuro-Fuzzy Learning Algorithms 13

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 5, 1-13

Authors’ Profiles

Ryusuke Hata received his M.E. and Ph.D.

in Human and Artificial Intelligent Systems

in 2014, and the Ph.D. in System Design

Engineering in 2017 from University of

Fukui, Japan. His research interests include

neural networks, fuzzy logic, and

autonomous systems.

M. A. H. Akhand received his B.Sc. degree

in Electrical and Electronic Engineering

from Khulna University of Engineering and

Technology (KUET), Bangladesh in 1999,

the M.E. degree in Human and Artificial

Intelligent Systems in 2006, and the Ph.D.

in System Design Engineering in 2009 from

University of Fukui, Japan.

He joined as a lecturer at the Department of Computer

Science and Engineering at KUET in 2001, and is now a

Professor and Head. He is also head of Computational

Intelligence Research Group of this department. He is a member

of Institution of Engineers, Bangladesh (IEB). His research

interest includes artificial neural networks, evolutionary

computation, bioinformatics, swarm intelligence and other bio-

inspired computing techniques. He has more than 50 refereed

publications.

Md. Monirul Islam received his B.E.

degree from the Khulna University of

Engineering and Technology (KUET),

Khulna, Bangladesh, in 1989, his M.E.

degree from the Bangladesh University of

Engineering and Technology (BUET),

Dhaka, Bangladesh, in 1996, and his Ph.D.

degree from the University of Fukui, Fukui,

Japan, in 2002.

From 1989 to 2002, he was a lecturer and an assistant

Professor with the KUET. Since 2003, he has been with the

BUET, where he is currently a professor with the Department of

Computer Science and Engineering. He was a visiting associate

professor with the University of Fukui. His current research

interests include evolutionary robotics, evolutionary

computation, neural networks, machine learning, pattern

recognition, and data mining. He has over 100 refereed

publications in international journals and conferences.

Kazuyuki Murase received his M.E. degree

in electrical engineering from Nagoya

University, Nagoya, Japan, in 1978, and his

Ph.D. degree in biomedical engineering from

Iowa State University, Ames, IA, USA, in

1983.

He was a Research Associate with the

Department of Information Science,

Toyohashi University of Technology,

Toyohashi, Japan, in 1984, and an Associate Professor with the

Department of Information Science, Fukui University, Fukui,

Japan, in 1988, and became a Professor in 1993. He served as

Chairman of the Department of Human and Artificial

Intelligence Systems, University of Fukui in 1999. His current

research interests include neuroscience of sensory systems, self-

organizing neural networks, and bio-robotics.

How to cite this paper: Ryusuke Hata, M. A. H. Akhand, Md.

Monirul Islam, Kazuyuki Murase, "Simplified Real-, Complex-,

and Quaternion-Valued Neuro-Fuzzy Learning Algorithms",

International Journal of Intelligent Systems and

Applications(IJISA), Vol.10, No.5, pp.1-13, 2018. DOI:

10.5815/ijisa.2018.05.01

http://www.iebbd.org/

