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Abstract—The conventional real-valued neuro-fuzzy 

method (RNF) is based on classic fuzzy systems with 

antecedent membership functions and consequent 

singletons. Rules in RNF are made by all the 

combinations of membership functions; thus, the number 

of rules as well as total parameters increase rapidly with 

the number of inputs. Although network parameters are 

relatively less in the recently developed complex-valued 

neuro-fuzzy (CVNF) and quaternion neuro-fuzzy (QNF), 

parameters increase with number of inputs. This study 

investigates simplified fuzzy rules that constrain rapid 

increment of rules with inputs; and proposed simplified 

RNF (SRNF), simplified CVNF (SCVNF) and simplified 

QNF (SQNF) employing the proposed simplified fuzzy 

rules in conventional methods. The proposed simplified 

neuro-fuzzy learning methods differ from the 

conventional methods in their fuzzy rule structures. The 

methods tune fuzzy rules based on the gradient descent 

method. The number of rules in these methods are equal 

to the number of divisions of input space; and hence they 

require significantly less number of parameters to be 

tuned. The proposed methods are tested on function 

approximations and classification problems. They exhibit 

much less execution time than the conventional 

counterparts with equivalent accuracy. Due to less 

number of parameters, the proposed methods can be 

utilized for the problems (e.g., real-time control of large 

systems) where the conventional methods are difficult to 

apply due to time constrain.  

 

Index Terms—Fuzzy inference, neuro-fuzzy, complex-

valued neural network, quaternion neural network, 

function approximation, classification. 

I.  INTRODUCTION 

Neuro-fuzzy methods refer to combinations of artificial 

neural networks and fuzzy models [1-3]. Artificial neural 

networks are the computational models of neuronal cell 

behaviors in the brain, and have high learning ability as 

well as parallel processing ability. These properties allow 

systems to perform well in environments that are difficult 

to formulate. Fuzzy logic is based on inference rules and 

allows the systems to use human-like “fuzziness.” In 

particular, fuzzy inference systems based on if–then rules 

provide high robustness and human-like inference [4, 5]. 

However, it is usually hard for human being to design 

proper fuzzy rules resulting the consumption of a 

considerable time to tune fuzzy rules. Neuro-fuzzy 

methods having learning algorithms of artificial neural 

networks in the fuzzy inference systems can solve these 

problems. Conceiving complementary strengths of neural 

and fuzzy systems, neuro-fuzzes have been applied to 

handle numerous real-life problems including control, 

function approximations, classifications, etc. [1-3, 6-8]. 

A variety of system structures and learning algorithms 

are available for neuro-fuzzy methods [9–26]. Learning of 

the classical neuro-fuzzy systems is based on the gradient 

descent method [9]. It is modified to avoid non-firing or 

weak firing [10, 11] and to improve learning efficiency 

[12]. Genetic algorithms are applied to a neuro-fuzzy with 

radial-basis-function-based membership for the automatic 

generation of fuzzy rules [13]. An adaptive neuro-fuzzy 

system for building and optimizing fuzzy models has been 

proposed [14]. A variety of neuro-fuzzy methods are also 

proposed recently [15–21]. The applications of neuro-

fuzzy methods include feature selection [19, 21], 
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classification [15–20], and image processing [17]. 

Furthermore, neuro-fuzzy methods using complex-valued 

inputs and outputs have been proposed and applied to 

image processing and time-series prediction [22, 23]. In 

addition, recent studies of neuro-fuzzy methods heaving 

complex-valued or quaternion-valued inputs and real-

valued outputs exhibit better learning ability than the 

conventional methods [24-28]. 

The conventional real-valued neuro-fuzzy method 

(RNF) is based on classic fuzzy systems with antecedent 

membership functions and consequent singletons. When 

training data with input-output mapping are given to the 

network, the membership functions and singletons are 

tuned by back propagation algorithm. However, the 

number of fuzzy rules rapidly increases with the 

increment of the number of inputs. In the RNF, the 

number of fuzzy rules is calculated by the number of 

inputs to the power of the number of divisions of input 

space; hence, the learning time increases with inputs.  

RNF extensions in complex and quaternion domains 

reduce the network parameters of a given problem with a 

less number of inputs. Complex-valued neuro-fuzzy 

method (CVNF) has complex-valued fuzzy rules whose 

inputs, membership functions, and singletons are complex 

numbers, and outputs are real numbers. On the other hand, 

quaternion neuro-fuzzy method (QNF) has quaternion-

valued fuzzy rules whose inputs, membership functions, 

and singletons are quaternions, and outputs are real 

numbers. Different individual activation functions are 

investigated to get real-valued outputs from complex-

valued net-input and quaternion-valued net-input in 

CVNF and QNF, respectively. The network parameters of 

CVNF and QNF are tuned by complex-valued and 

quaternion-based back propagation algorithms, 

respectively [24-28].   

The CVNF can treat two real-valued inputs as one 

complex-valued input, and the QNF can treat four real-

valued inputs as one quaternion-valued input. Thus, when 

RNF, CVNF, and QNF are applied to the same problem, 

CVNF and QNF have fewer network parameters than 

RNF. CVNF and QNF have also shown better learning 

abilities for function approximations and classifications 

due to less variables. In the function approximations, 

CVNF has identified some nonlinear functions better than 

RNF [24, 25]. In classifications, QNF has shown better 

classification abilities than RNF [27]. Nevertheless, both 

CVNF and QNF still have the problem of rapidly 

increasing number of parameters when the number of 

inputs increases. 

This study investigates simplified fuzzy rules that 

constrain rapid increment of rules with inputs; and 

proposed simplified RNF (SRNF), simplified CVNF 

(SCVNF) and simplified QNF (SQNF) employing the 

proposed simplified fuzzy method in conventional 

methods. The proposed SRNF, SCVNF, and SQNF are 

new neuro-fuzzy learning methods that differ from the 

conventional methods in their fuzzy rule structures. These 

new methods have simplified the fuzzy rules, and tuned 

the fuzzy rules based on the gradient descent method. In 

these methods, the number of rules are equal to the 

number of divisions of input space and independent of the 

number of inputs. Thus, the proposed methods can 

constrain the rapid increment of parameters, even when 

the number of inputs increases. Simulations that compare 

the new methods with the conventional methods show that 

the new methods have the same learning abilities as the 

conventional methods. 

The remainder of this paper is structured as follows. 

Section II discusses the conventional methods, RNF, 

CVNF, and QNF. Section III demonstrates the proposed 

simplified methods, SRNF, SCVNF, and SQNF. Section 

IV compares the proposed methods with the conventional 

methods on function approximation problems. Section V 

shows the performances of the proposed methods on real-

world benchmark problems for supervised learning with 

continuous and discrete outputs. Finally, Section VI 

concludes the paper with a discussion as well as possible 

future researches based on current study. 

 

II.  CONVENTIONAL NEURO-FUZZY METHODS 

Conventional methods include RNF, CVNF, and QNF. 

To make the paper self-contained as well as for better 

understanding of the proposed methods, following 

subsections describe each of these conventional methods 

in sequence. 

A.  Real-Valued Neuro-Fuzzy Method (RNF) 

RNF tunes antecedent membership functions and 

consequent singletons of the fuzzy rule by the gradient 

descent method. This method is based on the if–then rule 

of fuzzy inference. For example, let the input to be 

𝑥𝑝(𝑝 = 1, 2) and the output to be y, and each input space 

is divided by three membership functions, then the fuzzy 

inference rules are given as follows. 

 

Rule 1: If 𝑥1 is 𝐴11 and 𝑥2 is 𝐴12, then 𝑦 is 𝑤1  

Rule 2: If 𝑥1 is 𝐴21 and 𝑥2 is 𝐴22, then 𝑦 is 𝑤2  

⋮  
Rule 9: If 𝑥1 is 𝐴91 and 𝑥2 is 𝐴92, then 𝑦 is 𝑤9  

 

Here, 𝐴𝑞𝑝(𝑞 = 1, 2, ⋯ , 9;  𝑝 = 1, 2)  are antecedent 

membership functions and 𝑤𝑞(𝑞 = 1, 2, ⋯ , 9)  are 

consequent singletons for each rule.  

Fig. 1 illustrates the conventional RNF of the system 

with two inputs and one output. Each input space is 

divided into three; therefore, three membership functions 

are required for each space to generate the antecedent 

grades. The gravity method is applied to generate the 

output. The total number of membership functions is 

3
2
×2=18 (A11,⋯,A92), and the number of antecedent 

grades is 3
2
=9 (h1,⋯,h9) which is equal to the number of 

rules. The number of parameters to be determined is 

18×2+9=45. In this case, Rule 1 uses the first 

membership functions of both 𝑥1 and 𝑥2. Rule 2 uses the 

first membership function of 𝑥1 and the second one of 𝑥2. 

Rule 9 uses the third membership functions of both 𝑥1 

and 𝑥2 . The rules are made by all combinations of 

membership functions for each input. Thus, the number 
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of fuzzy rules depends on the number of divisions of each 

input space. The total number of rules is the number of 

divisions of each input space to the power of the number 

of inputs (𝑖. 𝑒. , (𝑟𝑢𝑙𝑒𝑠) = (𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠)(𝑖𝑛𝑝𝑢𝑡𝑠)).  

 

 

Fig.1. Conventional RNF with two inputs and one output where each 
input space is divided into three. 

Signal flow in this case is as follows. First, when 

inputs enter the network, each input (i.e., xp) passes 

through the antecedent membership function 

corresponding to the fuzzy rules. The membership 

functions 𝐴𝑞𝑝 are given by a Gaussian function as 

 

𝐴𝑞𝑝 = exp {−
(𝑥𝑝−𝑎𝑞𝑝)

2

𝑏𝑞𝑝
} ,                     (1) 

 

where 𝑎𝑞𝑝 and 𝑏𝑞𝑝 are respectively the center and width 

of the function. Second, in each rule layer node, the 

antecedent grade ℎ𝑞(𝑞 = 1, 2, ⋯ , 9) for the fuzzy rule is 

calculated by the algebraic product of membership 

functions as 

 

ℎ𝑞 = ∏ 𝐴𝑞𝑝
2
𝑝=1  .                           (2) 

 

Then, at the output node, the inference result y is given 

by the gravity method with the antecedent grade ℎ𝑞 and 

consequent singleton 𝑤𝑞: 

 

𝑦 =
∑ ℎ𝑞𝑤𝑞

9
𝑞=1

∑ ℎ𝑞
9
𝑞=1

 .                              (3) 

 

The above signal flow is the same as that of the classic 

fuzzy inference method with the if-then rule. RNF tunes 

each of the network parameters by back propagation 

algorithm. If the desired output to be 𝑡𝑛 (𝑛 = 1, 2, ⋯ , 𝑁) 

and the current output to be 𝑦𝑛, then the error function to 

be minimized during training is given by 

 

𝐸 =
1

2
∑ (𝑡𝑛 − 𝑦𝑛)2𝑁

𝑛=1 .                       (4) 

 

During training, the network parameters 𝑤𝑞 , 𝑎𝑞𝑝 , 𝑏𝑞𝑝 

are updated by 

 

∆𝑤𝑞 = −𝛼
𝜕𝐸

𝜕𝑤𝑞
 ,                              (5) 

 

∆𝑎𝑞𝑝 = −𝛽
𝜕𝐸

𝜕𝑎𝑞𝑝
 ,                             (6) 

 

∆𝑏𝑞𝑝 = −𝛾
𝜕𝐸

𝜕𝑏𝑞𝑝
 ,                             (7) 

 

where 𝛼, 𝛽, and 𝛾  are the respective learning rates. The 

learning process can be performed by giving an initial 

value to each of the network parameters and iterating Eqs. 

(5)–(7). In the RNF, each antecedent membership 

function of input spaces corresponds independently to 

each fuzzy rules. Thus, the network has high degree of 

freedom, and can fit well the training data [9]. 

B.  Complex-Valued Neuro-Fuzzy Method (CVNF) 

CVNF is an extension of RNF to complex numbers [24, 

25]. The inputs, antecedent membership functions, and 

consequent singletons are in complex domain whereas 

output is real. Like RNF, the network is composed of 

input, rule, and output layers. In the network, a complex 

value based on a specific rule called the “complex fuzzy 

rule” is passed through the activation function to output 

the real value. For example, let the complex-valued input 

to be 𝒙𝑝 = 𝑥𝑝
𝑅 + 𝐢𝑥𝑝

𝐼  (𝑝 = 1, 2) and the complex-valued 

net-input of the output node to be 𝒛 = 𝑧𝑅 + 𝐢𝑧𝐼, then the 

fuzzy inference rules are given as follows. Superscripts R 

and I denote the real and imaginary parts of complex 

numbers. Further, i refers to the imaginary part of a 

complex number. 

 

Rule 1: If 𝒙1 is 𝑨11 and 𝒙2 is 𝑨12, then 𝒛 is 𝒘1  

Rule 2: If 𝒙1 is 𝑨21 and 𝒙2 is 𝑨22, then 𝒛 is 𝒘2  

⋮  
Rule 9: If 𝒙1 is 𝑨91 and 𝒙2 is 𝑨92, then 𝒛 is 𝒘9  

 

Here, 𝑨𝑞𝑝 = 𝐴𝑞𝑝
𝑅 + 𝐢𝐴𝑞𝑝

𝐼  is the complex-valued 

antecedent membership function and 𝒘𝑞 = 𝑤𝑞
𝑅 + 𝐢𝑤𝑞

𝐼  is 

the complex-valued consequent singleton. 

First, inputs pass through the antecedent membership 

functions corresponding to the fuzzy rules 

 

𝐴𝑞𝑝
𝐶 = exp {−

(𝑥𝑝
𝐶−𝑎𝑞𝑝

𝐶 )
2

𝑏𝑞𝑝
𝐶 } ,                     (8) 

 

where 𝐶 = 𝑅 or 𝐼 . The Gaussian functions are 

independently assigned to the real and imaginary parts of 

the antecedent membership functions. CVNF can thus 

generate the real and imaginary parts of complex-valued 

membership functions. Here, 𝑎𝑞𝑝
𝐶  and 𝑏𝑞𝑝

𝐶  are the centers 

and widths, respectively. At each node of the rule layer, 

the real and imaginary parts of the complex-valued 

antecedent grades 𝒉𝑞  are calculated as 

 

ℎ𝑞
𝐶 = ∏ 𝐴𝑞𝑝

𝐶2
𝑝=1  .                              (9) 

 

Then, at the output node, the complex-valued net-input 

𝒛 is given by the same term as the gravity method Eq. (3), 
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but the parameters are complex values. 

 

𝒛 =
∑ (ℎ𝑞

𝑅+𝐢ℎ𝑞
𝐼 )9

𝑞=1 (𝑤𝑞
𝑅+𝐢𝑤𝑞

𝐼 )

∑ (ℎ𝑞
𝑅+𝐢ℎ𝑞

𝐼 )9
𝑞=1

 .                   (10) 

 

Finally, the activation function 𝑓𝐶→𝑅(𝒙)  converts the 

complex-valued net-input 𝒛 to the real-valued inference 

result y as 

 

𝑦 = 𝑓𝐶→𝑅(𝒛) ,                            (11) 

 

𝑓𝐶→𝑅(𝒛) = (𝑓𝑅(𝑧𝑅) − 𝑓𝑅(𝑧𝐼))
2
 ,               (12) 

 

where 𝑓𝑅(𝑥) = 1 (1 + 𝑒−3𝑥)⁄ . Eq. (12) is considered in 

recent studies of complex-valued neural networks [30, 

31]. 

The error function has the same formula as of RNF in 

Eq. (4). During training, the parameters 𝒘𝑞 , 𝒂𝑞𝑝, 𝒃𝑞𝑝 are 

updated by 

 

∆𝒘𝑞 = −𝛼
𝜕𝐸

𝜕𝑤𝑞
𝑅 − 𝐢𝛼

𝜕𝐸

𝜕𝑤𝑞
𝐼  ,                   (13) 

 

∆𝒂𝑞𝑝 = −𝛽
𝜕𝐸

𝜕𝑎𝑞𝑝
𝑅 − 𝐢𝛽

𝜕𝐸

𝜕𝑎𝑞𝑝
𝐼  ,                 (14) 

 

∆𝒃𝑞𝑝 = −𝛾
𝜕𝐸

𝜕𝑏𝑞𝑝
𝑅 − 𝐢𝛾

𝜕𝐸

𝜕𝑏𝑞𝑝
𝐼  .                  (15) 

 

The learning process can be performed by giving an 

initial value to each parameter and iterating Eqs. (13)–

(15). 

In CVNF, two real-valued inputs can be used as one 

complex-valued input. Thus, CVNF has fewer parameters 

than RNF when both are applied to the same problem. 

The number of parameters in the complex-valued 

methods can be obtained by 

 

(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) = 

(𝑖𝑛𝑝𝑢𝑡𝑠) × (𝑟𝑢𝑙𝑒𝑠) × 2#1 + (𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛𝑠)#2 

#1: (𝑐𝑒𝑛𝑡𝑒𝑟𝑠 𝑎𝑛𝑑 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) 

#2: (𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛𝑠) = (𝑟𝑢𝑙𝑒𝑠)                   (16) 

 

Here, in case of complex-valued methods, the number 

of parameters is twice the number of parameters as 

mentioned in Eq. (16), while the number of inputs 

becomes half.  

For example, the problem of Fig. 1 heaving two real-

valued inputs and one output, the number of input nodes 

in RNF is two, and in CVNF that is one. Then, the 

number of rule nodes in CVNF is 31 = 3  as of three 

functions for each input space, while the number of rule 

nodes in RNF is 32 = 9 . In this case, the number of 

network parameters in CVNF is (1 × 31 × 2 + 31) × 2 =
18 while the number is 45 (= 2 × 32 × 2 + 32) in RNF. 

In comparisons of both methods by function 

identifications, the CVNF showed same or better learning 

ability than that of RNF. Detailed description of CVNF is 

available in our previous studies [24, 25].  

 

C.  Quaternion Neuro-Fuzzy Method (QNF) 

QNF is another and recent extension of RNF to the 

quaternion domain [26–28]. The network has the three-

layer structure as that of RNF. Inputs, membership 

functions, and singletons are quaternion, and the output is 

real. In the network, signals are processed by quaternion 

fuzzy rules. If the quaternion-valued inputs are 𝒙𝑝 =

𝑥𝑝
𝑅 + 𝐢𝑥𝑝

𝐼 + 𝐣𝑥𝑝
𝐽 + 𝐤𝑥𝑝

𝐾  (𝑝 = 1, 2)  and the quaternion-

valued net-input of the output node is 𝒛 = 𝑧𝑅 + 𝐢𝑧𝐼 +
𝐣𝑧𝐽 + 𝐤𝑧𝐾 , and there are three divisions of each input 

space, then the fuzzy inference rules are given as follows. 

 

Rule 1: If 𝒙1 is 𝑨11 and 𝒙2 is 𝑨12, then 𝒛 is 𝒘1  

Rule 2: If 𝒙1 is 𝑨21 and 𝒙2 is 𝑨22, then 𝒛 is 𝒘2  

⋮  
Rule 9: If 𝒙1 is 𝑨91 and 𝒙2 is 𝑨92, then 𝒛 is 𝒘9  

 

Here, 𝑨𝑞𝑝 = 𝐴𝑞𝑝
𝑅 + 𝐢𝐴𝑞𝑝

𝐼 + 𝐣𝐴𝑞𝑝
𝐽 + 𝐤𝐴𝑞𝑝

𝐾  is the 

quaternion-valued antecedent membership function and 

𝒘𝑞 = 𝑤𝑞
𝑅 + 𝐢𝑤𝑞

𝐼 + 𝐣𝑤𝑞
𝐽 + 𝐤𝑤𝑞

𝐾  is the quaternion-valued 

consequent singleton. Superscript R denotes the real part, 

and superscripts I, J, and K denote the imaginary parts. 

Further, i, j, and k in front of each element of a 

quaternion number represent unit imaginary numbers 

with properties 𝐢2 = 𝐣2 = 𝐤2 = 𝐢𝐣𝐤 = −1. 

First, inputs pass through the antecedent membership 

functions corresponding to the fuzzy rules 

 

𝐴𝑞𝑝
𝑄 = exp {−

(𝑥𝑝
𝑄

−𝑎𝑞𝑝
𝑄

)
2

𝑏𝑞𝑝
𝑄 } ,                (17) 

 

where 𝑄 = 𝑅, 𝐼, 𝐽, 𝐾  (as above). This shows that the 

membership function is independently set for the real and 

imaginary parts of the quaternion-valued input. Second, 

in each rule-layer node, the real and imaginary parts of 

the quaternion-valued antecedent grades 𝒉𝑞  are 

calculated as 

 

ℎ𝑞
𝑄 = ∏ 𝐴𝑞𝑝

𝑄2
𝑝=1  .                        (18) 

 

Then, the net-input 𝒛 of the output node is given by a 

gravity-like method: 

 

𝒛 =
∑ (ℎ𝑞

𝑅+𝐢ℎ𝑞
𝐼 +𝐣ℎ𝑞

𝐽
+𝐤ℎ𝑞

𝐾)9
𝑞=1 (𝑤𝑞

𝑅+𝐢𝑤𝑞
𝐼 +𝐣𝑤𝑞

𝐽
+𝐤𝑤𝑞

𝐾)

∑ (ℎ𝑞
𝑅+𝐢ℎ𝑞

𝐼 +𝐣ℎ𝑞
𝐽

+𝐤ℎ𝑞
𝐾)9

𝑞=1

  

=
(∑ 𝒉𝑞𝒘𝑞

9
𝑞=1 )(∑ �̅�𝑞

9
𝑞=1 )

(∑ ℎ𝑞
𝑅9

𝑞=1 )
2

+(∑ ℎ𝑞
𝐼9

𝑞=1 )
2

+(∑ ℎ𝑞
𝐽9

𝑞=1 )
2

+(∑ ℎ𝑞
𝐾9

𝑞=1 )
2 .   (19) 

 

Here, �̅�𝑞 = ℎ𝑞
𝑅 − 𝐢ℎ𝑞

𝐼 − 𝐣ℎ𝑞
𝐽 − 𝐤ℎ𝑞

𝐾  is the conjugate 

quaternion number of 𝒉𝑞 . 

Finally, it passes through the activation function, and 

the real-valued output is generated as 

 

𝑦 = 𝑓𝑄→𝑅(𝒛) ,                          (20) 

 

𝑓𝑄→𝑅(𝒛) = (𝑓𝑅(𝑧𝑅) − 𝑓𝑅(𝑧𝐼) − 𝑓𝑅(𝑧𝐽) − 𝑓𝑅(𝑧𝐾))
2
,  (21)
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where  𝑓𝑅(𝑥) = 1 (1 + 𝑒−3𝑥)⁄ . Equation (21) is derived 

similarly to Eq. (12); the real and imaginary parts of net-

input 𝒛  are separately given to  𝑓𝑅(𝑥) , and then, the 

difference between the output of real part and the sum of 

the outputs generated by imaginary parts is calculated and 

squared. 

The error function has the same formula as of RNF in 

Eq. (4). During training, the parameters 𝒘𝑞 , 𝒂𝑞𝑝, 𝒃𝑞𝑝 are 

updated by 

 

∆𝒘𝑞 = −𝛼
𝜕𝐸

𝜕𝑤𝑞
𝑅 − 𝐢𝛼

𝜕𝐸

𝜕𝑤𝑞
𝐼 − 𝐣𝛼

𝜕𝐸

𝜕𝑤𝑞
𝐽 − 𝐤𝛼

𝜕𝐸

𝜕𝑤𝑞
𝐾 ,       (22) 

 

∆𝒂𝑞𝑝 = −𝛽
𝜕𝐸

𝜕𝑎𝑞𝑝
𝑅 − 𝐢𝛽

𝜕𝐸

𝜕𝑎𝑞𝑝
𝐼 − 𝐣𝛽

𝜕𝐸

𝜕𝑎𝑞𝑝
𝐽 − 𝐤𝛽

𝜕𝐸

𝜕𝑎𝑞𝑝
𝐾  ,  (23) 

 

∆𝒃𝑞𝑝 = −𝛾
𝜕𝐸

𝜕𝑏𝑞𝑝
𝑅 − 𝐢𝛾

𝜕𝐸

𝜕𝑏𝑞𝑝
𝐼 − 𝐣𝛾

𝜕𝐸

𝜕𝑏𝑞𝑝
𝐽 − 𝐤𝛾

𝜕𝐸

𝜕𝑏𝑞𝑝
𝐾  ,    (24) 

 

where 𝛼, 𝛽, and 𝛾  are the respective learning rates. The 

learning process can be performed by giving an initial 

value to each parameter and iterating Eqs. (22)–(24). 

QNF can use four real-valued inputs as one quaternion-

valued input, thus reduces the number of parameters 

compared to CVNF. For example, when a problem has 

four real-valued inputs and one output, the number of 

input nodes in CVNF is two, and that in QNF is one. If 

the number of divisions of each input space is three, then 

the number of rule nodes in CVNF is 32 = 9, and that in 

QNF is 31 = 3. The number of parameters is quadruple 

the number of Eq. (16) while the number of inputs 

becomes one quarter. In this case, the number of network 

parameters in CVNF is (2 × 32 × 2 + 32) × 2 = 90, and 

that in QNF is  (1 × 31 × 2 + 31) × 4 = 36. Again, for 

example, if a problem has eight real-valued inputs and 

one output, and the number of divisions of input space is 

two, the numbers of input nodes, rule nodes, and total 

network parameters are 8, 256, and 4352 for RNF; 4, 16, 

and 288 for CVNF; and 2, 4, and 80 for QNF; 

respectively. 

On function identification and classification problems, 

QNF showed good convergence and better learning 

abilities than RNF. Detailed description of QNF is 

available in our previous studies [26–28]. 

 

III.  SIMPLIFIED NEURO-FUZZY METHODS 

This section explains proposed simplified neuro-fuzzy 

methods. At first, simplified method is explained with 

RNF and then explains for CVNF and QNF. Finally, 

proposed simplified methods are demonstrated for a 

sample problem.   

A.  Simplified Real-Valued Neuro-Fuzzy (SRNF) 

SRNF is a simplified version of RNF. It differs from 

RNF in its fuzzy rules and output determination method 

in output node, but the network structure and signal flow 

are the same as those of RNF. In the following, two 

points are explained: 1) simplified fuzzy rules and 2) 

network calculations.  

1)  Simplified fuzzy rules 

In the conventional RNF, signals are processed based 

on classic fuzzy rules; the rules are constructed in all 

combinational patterns of membership functions for each 

input. Thus, an increment of number of inputs causes a 

rapid increment of the number of parameters, even with a 

small number of divisions of each input space. To 

overcome this problem, in SRNF the network processes 

signals according to rules based on the salient 

combinations of membership functions. The other 

combinations are considered to be redundant, and are not 

used. 

 

 

Fig.2. Proposed SRNF with two inputs and one output where each input 

space is divided into three. 

Fig. 2 illustrates the proposed SRNF of the system with 

two inputs and one output against RNF mechanism 

shown in Fig. 1. In the SRNF, each input space is divided 

into three. One membership function is used for each 

space to generate the antecedent grades. The weighted 

sum is used to generate the output. If the inputs are 

𝑥𝑝 (𝑝 = 1, 2) , the output is y, and there are three 

divisions of each input space, then the rules are given as 

follows. 

 

Rule 1: If 𝑥1 is 𝐴11 and 𝑥2 is 𝐴12, then 𝑦 is 𝑤1  

Rule 2: If 𝑥1 is 𝐴21 and 𝑥2 is 𝐴22, then 𝑦 is 𝑤2  

Rule 3: If 𝑥1 is 𝐴31 and 𝑥2 is 𝐴32, then 𝑦 is 𝑤3  

 

Here, Rule 1 uses first membership functions of 𝑥1 and 

𝑥2, Rule 2 uses second membership functions of 𝑥1 and 

𝑥2, and Rule 3 uses third membership functions of 𝑥1 and 

𝑥2. The total number of membership functions is 3 × 2 =
6 (𝐴11, ⋯ , 𝐴32), and the number of antecedent grades is 

3 (ℎ1, ⋯ , ℎ3) which is equal to the number of rules. The 

number of parameters to be determined is 6 × 2 + 3 =
15. 

Table 1. Number of Parameters for RNF and SRNF on Several 

Parameter Conditions 

Input Divisiona Rule Parameter 

  
RNF SRNF RNF SRNF 

2 3 9 3 45 15 

2 5 25 5 125 25 

5 5 3125 5 34375 55 
aNumber of divisions of each input space 

 

In this simplified rules, the number of rules is equal to 
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the number of divisions of each input space ((𝑟𝑢𝑙𝑒𝑠) =
(𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠) ). Thus, even if the number of inputs 

increases, the number of parameters does not increase 

rapidly. The simplified method can thus be applied to 

problems with a large number of inputs. Table 1 

compares the number of parameters for conventional 

RNF and the proposed SRNF under several combinations 

of inputs and divisions. SRNF has fewer parameters than 

RNF under all conditions. 

2)  Network calculation 

In the conventional RNF, the output is calculated by 

the gravity method at the output node. In contrast, in 

SRNF the following equation is used instead of the 

gravity method in Eq. (3): 

 

𝑦 = ∑ ℎ𝑞𝑤𝑞
3
𝑞=1  .                          (25) 

 

Equation (25) requires that the denominator in Eq. (3) 

is equal to 1. This simplification comes from the fact that 

the denominator ∑ ℎ𝑞
3
𝑞=1  has been assumed to be 1 [4]. 

By adopting this simplification in SRNF, the number of 

network calculations and the parameter tuning equations 

can be reduced.  

B.  Simplified Complex-Valued Neuro-Fuzzy (SCVNF) 

SCVNF is a simplified version of CVNF in the same 

manner to SRNF. Two main significance of SCVNF are 

the simplified complex fuzzy rules and the network 

calculations which are described below.  

1)  Simplified complex fuzzy rules 

The simplification process of the fuzzy rules in SRNF 

is inherited to SCVNF. Combination of the membership 

functions is the same as with SRNF, so detailed rule 

descriptions are omitted. By this simplification, the 

number of rules is kept equal to the number of divisions 

of each input space, and SCVNF can constrain the 

increment of the number of parameters. 

2)  Network calculation 

The net-input of the output node in CVNF is simplified 

in the similar way as the simplification of the gravity 

method in SRNF. In SRNF, the denominator value of the 

gravity method is estimated as 1. In contrast, the 

denominator value ∑ (ℎ𝑞
𝑅 + 𝐢ℎ𝑞

𝐼 )𝑚
𝑞=1  of Eq. (10) in CVNF 

is a complex number, so that the simplified formula is 

defined as 

 

𝒛 =
∑ (ℎ𝑞

𝑅+𝐢ℎ𝑞
𝐼 )𝑚

𝑞=1 (𝑤𝑞
𝑅+𝐢𝑤𝑞

𝐼 )

1+𝐢
 .                  (26) 

 

Here, similarly to Eq. (25), the denominator value of 

Eq. (10) is changed to 1 + 𝐢  by assuming ∑ ℎ𝑞
𝑅𝑚

𝑞=1 = 1 

and ∑ ℎ𝑞
𝐼𝑚

𝑞=1 = 1. By this formula deformation, SCVNF 

can reduce the number of network calculations and 

simplify the tuning equations. 

C.  Simplified Quaternion Neuro-Fuzzy (SQNF) 

SQNF is a simplified version of QNF. The same 

simplifications as SRNF is applied to QNF for SQNF. 

The following describes the simplified quaternion fuzzy 

rules and network calculation. 

1)  Simplified quaternion fuzzy rules 

The simplification process of fuzzy rules used in SRNF 

is applied to SQNF. The same combination method of the 

membership functions is used for SQNF, and thus the 

rule description is omitted here. The number of rules after 

simplification is the same as the number of divisions of 

each input space. Thus, the rapid increment of parameters 

seen in QNF does not occur in SQNF. 

2)  Network calculation 

As of SCVNF in the previous section, the gravity 

method is simplified also in QNF. In QNF, the 

denominator value ∑ (ℎ𝑞
𝑅 + 𝐢ℎ𝑞

𝐼 + 𝐣ℎ𝑞
𝐽 + 𝐤ℎ𝑞

𝐾)𝑚
𝑞=1  of Eq. 

(19) is a quaternion number, with the simplified formula 

 

𝒛 =
∑ (ℎ𝑞

𝑅+𝐢ℎ𝑞
𝐼 +𝐣ℎ𝑞

𝐽
+𝐤ℎ𝑞

𝐾)𝑚
𝑞=1 (𝑤𝑞

𝑅+𝐢𝑤𝑞
𝐼 +𝐣𝑤𝑞

𝐽
+𝐤𝑤𝑞

𝐾)

1+𝐢+𝐣+𝐤
 .     (27) 

 

Here, similarly to Eq. (25), the denominator value of 

Eq. (18) is changed to 1 + 𝐢 + 𝐣 + 𝐤  by 

assuming  ∑ ℎ𝑞
𝑅𝑚

𝑞=1 = 1 , ∑ ℎ𝑞
𝐼𝑚

𝑞=1 = 1 , ∑ ℎ𝑞
𝐽𝑚

𝑞=1 = 1 , and 

∑ ℎ𝑞
𝐾𝑚

𝑞=1 = 1 . This formula deformation contributes in 

reducing the number of network calculations and 

simplifying the tuning equations. 

D.  Demonstration of proposed simplified methods on a 

sample problem   

Fig. 3 illustrates SRNF, SCVNF, and SQNF for a 

problem heaving four real-valued inputs (𝑐1, ⋯ , 𝑐4)  and 

one output for better understanding of the proposed 

methods. The number of input nodes is four in SRNF, 

two in SCVNF, and one in SQNF. The number of 

divisions of each input space is three, then the number of 

rule nodes is three in SRNF, SCVNF, and SQNF.  

In SRNF (Fig. 3(a)), the number of input nodes is four 

and each input space is divided into three. One 

membership function is used for each space to generate 

the antecedent grades. The weighted sum is applied to 

generate the output. The total number of membership 

functions is 3 × 4 = 12 (𝐴11, ⋯ , 𝐴34), and the number of 

antecedent grades is 3 (ℎ1, ⋯ , ℎ3) which is equal to the 

number of rules. The number of parameters to be 

determined is 12 × 2 + 3 = 27.  

In SCVNF (Fig. 3(b)), the number of input nodes is 

two and each input space is divided into three. One 

complex-valued membership function is used for each 

space to generate the complex-valued antecedent grades. 

The simplified gravity-like method as of Eq. (27) is used 

to generate the complex-valued net-input of output node. 

The activation function shown in Eq. (12) is used to 

convert the complex-valued net-input to real-valued 

output. The total number of complex-valued membership 

functions is 3 × 2 = 6 (𝑨11, ⋯ , 𝑨32), and the number of 

complex-valued antecedent grades is 3 (𝒉1, ⋯ , 𝒉3) which 

is equal to the number of rules. The number of parameters 
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to be determined is (6 × 2 + 3) × 2 = 30.  

In the SQNF (Fig. 3(c)), the number of input node is 

only one and the input space is divided into three. One 

quaternion-valued membership function is used for each 

space to generate the quaternion-valued antecedent 

grades. The simplified gravity-like method as of Eq. (28) 

is used to generate the net-input of output node. The 

activation function shown in Eq. (21) converts the 

quaternion-valued net-input to real-valued output. The 

total number of quaternion-valued membership functions 

is  3 × 1 = 3  (𝑨11, ⋯ , 𝑨31) , and the number of 

quaternion-valued antecedent grades is 3  (𝒉1, ⋯ , 𝒉3) 

which is equal to the number of rules. The number of 

parameters to be determined is (3 × 2 + 3) × 4 = 36. 

 

 
(a) SRNF                                                      (b) SCVNF                                                      (c) SQNF 

Fig.3. Illustration of proposed SRNF, SCVNF and SQNF for a system with four real-valued inputs and one output. The number of divisions of each 
input space is three, then the number of rule nodes is three in each of them. The number of network parameters is 12×2+3=27 in SRNF, 

(6×2+3)×2=30 in SCVNF, and (3×2+3)×4=36 in SQNF. 

 

IV.  EXPERIMENTS ON FUNCTION APPROXIMATIONS 

This section compares performance of each of 

proposed simplified methods SRNF, SCVNF, SQNF with 

its counter conventional method for function 

approximations. The following functions with two, four, 

and eight real variables are considered. 

 

fn1: 

𝑦 = (2𝑠𝑖𝑛(𝜋𝑥1) + 𝑐𝑜𝑠(𝜋𝑥2)) 6⁄ + 0.5 ,         (28) 

 

fn2: 

𝑦 =
(2𝑥1+4𝑥2

2+0.1)
2

74.42
+

{(3𝑒3𝑥3+2𝑒−4𝑥4)
−0.5

−0.077}

4.68
 ,     (29) 

 

fn3: 

𝑦 =
1

2
{

(2𝑥1+4𝑥2
2+0.1)

2

74.42
+

{(3𝑒3𝑥3+2𝑒−4𝑥4)
−0.5

−0.077}

4.68
  

+
(2𝑥5+4𝑥6

2+0.1)
2

37.21
∙

4 sin(𝜋𝑥7)+2 cos(𝜋𝑥8)+6

12
} .         (30) 

 

Here, Eq. (28) was used for SRNF and RNF, Eq. (29) 

for SCVNF and CVNF, and Eq. (30) for SQNF and QNF. 

As described in Section II, two real inputs were used as 

one complex-valued input in complex-valued methods, 

and four real inputs were used as one quaternion-valued 

input in quaternion-valued methods. Therefore, in the 

complex-valued SCVNF and CVNF methods, there are 

two complex-valued inputs (𝑥1 + 𝐢𝑥2, 𝑥3 + 𝐢𝑥4 ), and in 

the quaternion-valued SQNF and QNF methods, there are 

two quaternion-valued inputs ( 𝑥1 + 𝐢𝑥2 + 𝐣𝑥3 +

𝐤𝑥4, 𝑥5 + 𝐢𝑥6 + 𝐣𝑥7 + 𝐤𝑥8). Table 2 shows the number of 

network parameters for each method. The number of 

divisions of each input space in the proposed methods is 

greater than that in the conventional methods. The 

numbers of divisions of each input for membership 

functions were determined by trial and error as shown in 

Table 2. The number of parameters is 2 × 52 × 2 + 52 =
125 in RNF, and 2 × 9 × 2 + 9 = 45 in SRNF. 

Table 2. Number of Network Parameters for each of the Methods on 

Function Identifications 

Dataset Method Input 
Divisio

n 
Parameter * 

fn1 
RNF 2 5 2 × 52 × 2 + 52 = 125 

SRNF 2 9 2 × 9 × 2 + 9 = 45 

fn2 

CVNF 2 5 (2 × 52 × 2 + 52) × 2 = 250 

SCVN
F 

2 11 (2 × 11 × 2 + 11) × 2 = 110 

fn3 
QNF 2 5 (2 × 52 × 2 + 52) × 4 = 500 

SQNF 2 7 (2 × 7 × 2 + 7) × 4 = 140 

*Parameter means total number of network parameters. 

 

In this simulation, datasets with inputs and outputs 

made by each function were divided into training set 

(75%) and test set (25%). Two training datasets were 

made for each function as fn1.1, fn1.2, fn2.1, fn2.2, fn3.1, 

and fn3.2 with different samples. Computational time to 

train the network with training set was also computed as 

execution time. The experiments have been conducted on 

a single machine (HP Z440, Processor: Intel(R) Xeon(R) 

CPU E5-1603 v3 @ 2.80GHz, RAM: 32.0GB, SSD: 

256GB); therefore, execution time comparison reflects 

computational efficiency of the methods. To measure the 
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performance of method, the mean squared error (MSE) 

for test set was calculated as test error by 

 

MSE =
1

2𝑃
∑ (𝑑𝑝 − 𝑦𝑝)

2
,𝑃

𝑝=1                   (31) 

 

where p is the pattern number, P is the total number of 

test patterns, 𝑑𝑝 is the desired output, and  𝑦𝑝 is the actual 

output. 

Tables 3, 4, and 5 show the simulation results for 

comparison. The conventional and proposed methods 

were trained up to 10,000 epochs. The results showed that 

the proposed methods have the same convergence 

capabilities as the conventional methods. The proposed 

methods had fewer network parameters than the 

conventional methods (shown in Table 2), and the 

learning times were reduced (shown in Tables 3−5).  

 

V.  EXPERIMENTS ON REAL-WORLD BENCHMARK 

PROBLEMS 

This section investigates the performance of the 

proposed simplified methods SRNF, SCVNF, SQNF on 

real-world benchmark problems. The description of the 

datasets and experimental setup is given first. The 

outcomes of proposed methods are then compared with 

conventional methods and another related prominent 

methods.   

A.  Description of the Datasets 

Datasets from the UCI Machine Learning Repository 

[32] were used for the experiments. The repository is a 

collection of machine learning problems. Ten datasets for 

supervised learning were used. The short descriptions of 

these datasets are given below. 

1)  Plant 

The task is to predict a net hourly electrical energy 

output of a combined cycle power plant. Features consist 

of temperature, ambient pressure, relative humidity, and 

exhaust vacuum. There are 4 inputs and 1 continuous 

valued output, and 9,568 samples. 

2)  Airfoil 

This is a NASA dataset. The task is to calculate an 

airfoil self-noise level under different conditions for 

chord length, frequency, and other factors. There are 5 

inputs, 1 continuous valued output, and 1,503 samples. 

3)  Yacht 

The task is to predict a residuary resistance of sailing 

yachts at the initial design stage. Essential inputs include 

the basic hull dimensions and the boat velocity. There are 

6 inputs, 1 continuous valued output, and 308 samples. 

4)  Concrete 

The task is to calculate the compressive strength of 

concrete. This is a highly nonlinear function of age and 

ingredients, such as cement and water content. There are 

8 inputs, 1 continuous valued output, and 1,030 samples. 

5)  Turbine 

The task is to compute a gas turbine’s compressor 

decay coefficient by numerical simulation of a naval 

vessel. The propulsion system behavior is described using 

components such as ship speed and turbine shaft torque. 

There are 16 inputs, 1 continuous valued output, and 

11,934 samples.  

6)  Iris 

The task is to classify a type of plant. One class is 

linearly separable from the other two; the latter are 

nonlinearly separable from each other. It has 4 attributes, 

3 classes, and 150 samples. 

7)  Seed 

The task is to classify three different varieties of wheat. 

Features consist of seven geometric parameters of wheat 

kernels. It has 7 attributes, 3 classes, and 210 samples. 

8)  Diabetes 

The task is to classify a patient as diabetes or not. 

Features include body mass index, diastolic blood 

pressure, triceps skin fold thickness, and so on. It has 8 

attributes, 2 classes, and 768 samples. 

9)  Cancer 

This is a breast cancer dataset. The task is to classify a 

cell as benign or malignant. Features include clump 

thickness, cell size, bare nuclei, and so on. It has 10 

attributes, 2 classes, and 683 samples. 

10)  Heart 

This is a heart disease dataset. The task is to classify 

heart disease as absence or presence. Features include age, 

resting blood pressure, fasting blood sugar, and so on. It 

has 13 attributes, 2 classes, and 270 samples. 

Table 3. Average Test Error on fn1 

Dataset Test error ± S.D. (×10-3) Execution time (s) 

 
RNF SRNF RNF SRNF 

fn1.1 0.13 ± 0.02 0.36 ± 0.10 0.42 0.15 

fn1.2 0.12 ± 0.02 0.34 ± 0.09 0.42 0.16 

Averages and S.D.s were taken over 20 independent runs. 

S.D.: Standard deviation 

Table 4. Average Test Error on fn2 

Dataset Test error ± S.D. (×10-3) Execution time (s) 

 
CVNF SCVNF CVNF SCVNF 

fn2.1 2.81 ± 0.21 2.72 ± 0.25 1.67 0.68 

fn2.2 2.44 ± 0.19 2.44 ± 0.28 1.67 0.68 

Averages and S.D.s were taken over 20 independent runs. 

Table 5. Average Test Error on fn3 

Dataset Test error ± S.D. (×10-3) Execution time (s) 

 
QNF SQNF QNF SQNF 

fn3.1 1.69 ± 0.15 1.45 ± 0.17 4.44 0.95 

fn3.2 1.69 ± 0.21 1.56 ± 0.17 4.44 0.94 

Averages and S.D.s were taken over 20 independent runs. 
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B.  Experimental Setup 

In this experiment, each dataset was partitioned into 

training and test sets as in Table 6. Each of the datasets 

described above contain real-valued data. Attributes and 

class labels were respectively normalized in the ranges [–

1, 1] and [0, 1] for all datasets. For initialization, the 

number of network parameters for each of the methods 

was set as shown in Tables 7 and 8. Note that RNF could 

not be applied to the Turbine datasets, because of the 

huge number of parameters. Further, for the complex and 

quaternion-valued methods, the number of total 

parameters includes the real and imaginary parts of the 

parameters. As in the previous section, two real inputs 

were used as one complex-valued input in the complex-

valued methods, and four real inputs were used as one 

quaternion-valued input in the quaternion methods. When 

the number of attributes of a dataset was not a multiple of 

two or four, empty parts of a complex or a quaternion-

valued input variable were set to zero. For example, for 

Airfoil dataset with five attributes (𝑐1, 𝑐2, ⋯ , 𝑐5) , the 

SCVNF and CVNF networks have three complex inputs 

(𝑥1 = 𝑐1 + 𝐢𝑐2, 𝑥2 = 𝑐3 + 𝐢𝑐4, 𝑥3 = 𝑐5 + 𝐢0) , and the 

SQNF and QNF networks have two quaternion-valued 

inputs (𝑥1 = 𝑐1 + 𝐢𝑐2 + 𝐣𝑐3 + 𝐤𝑐4, 𝑥2 = 𝑐5 + 𝐢0 + 𝐣0 +
𝐤0).  

Table 6. Partitioning of UCI Benchmark Datasets 

Dataset Partitioning 

Name Attribute Class Total Training Testing 

Plant 4 Continuous 9568 7170 2398 

Airfoil 5 Continuous 1503 1127 376 

Yacht 6 Continuous 308 231 77 

Concrete 8 Continuous 1030 772 258 

Turbine 16 Continuous 11934 8950 2984 

Iris 4 3 150 112 38 

Seed 7 3 210 158 52 

Diabetes 7 (8) a 2 768 576 192 

Cancer 9 (10) a 2 683 512 171 

Heart 13 2 270 202 68 
a 7 of 8 attributes are used for Diabetes dataset, and 9 of 10 attributes 

are used for Cancer dataset. 

 

Table 7. Number of Network Parameters for the Conventional Methods on Real-World Benchmark Problems 

Dataset RNF CVNF QNF 

 
Input Division Parameter Input Division Parameter Input Division Parameter 

Plant 4 3 729 2 3 90 1 3 36 

Airfoil 5 3 2673 3 4 896 2 3 180 

Yacht 6 2 832 3 2 112 2 2 80 

Concrete 8 2 4352 4 3 1458 2 3 180 

Turbine 16 2 2162688 8 2 8704 4 3 2916 

Iris 4 2 144 2 3 90 1 5 60 

Seed 7 2 2176 4 2 352 2 3 252 

Diabetes 7 3 32805 4 4 4608 2 9 1620 

Cancer 9 2 9728 5 2 704 3 2 224 

Heart 13 2 221184 7 2 3840 4 3 2916 

Table 8. Number of Network Parameters for the Proposed Methods on Real-World Benchmark Problems 

Dataset SRNF SCVNF SQNF 

 
Input Division Parameter Input Division Parameter Input Division Parameter 

Plant 4 11 99 2 3 30 1 2 24 

Airfoil 5 41 451 3 11 154 2 11 220 

Yacht 6 5 65 3 3 42 2 2 40 

Concrete 8 11 187 4 11 198 2 4 80 

Turbine 16 41 1353 8 41 1394 4 41 1476 

Iris 4 2 18 2 2 20 1 2 24 

Seed 7 11 187 4 11 242 2 4 112 

Diabetes 7 11 165 4 11 198 2 2 40 

Cancer 9 41 779 5 21 462 3 5 140 

Heart 13 11 297 7 4 120 4 4 144 

 

Each of the learning algorithms described in Section II 

(i.e., conventional methods) and Section III (i.e., 

proposed methods) was tested on the benchmark 

problems. During the training process, learning rates 

(𝛼, 𝛽, 𝛾) of the algorithms for each of the datasets were 

kept constant. Singletons were initialized with Gaussian 

random numbers. (𝜇, 𝜎)  for SRNF and RNF was 

(0.5, 0.15) , for SCVNF, CVNF, SQNF and QNF was 

(0, 0.4). 

The proposed and conventional methods were trained 

using training sets for each of the problems up to 100000 

epochs. When a network was trained with input and 

output patterns, the error on the training set decreased 

gradually with the epochs. During training, error for the 

training set was periodically computed by Eq. (4). The 

experiments have been conducted on the same machine 
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described for function optimization.  

Fig. 4 shows training processes for each of the methods 

on the Airfoil dataset. The proposed methods could 

converge as the conventional methods did. In the 

proposed methods, SCVNF and SQNF converged faster 

than SRNF. In this case, SQNF showed the minimum 

error among the proposed methods. 

 

   
(a) RNF and SRNF                                 (b) CVNF and SCVNF                                 (c) QNF and SQNF. 

Fig.4. Training process comparison on Airfoil dataset. 

C.  Experimental Results and Comparison 

This section compares the learning abilities of the 

conventional and proposed methods. To measure the 

performances, Eq. (31) was used to measure test error 

(MSE for test sets) for datasets with continuous output 

values. Accuracy rates were used for datasets for 

classification tasks. The accuracy is the ratio of the total 

number of classifications that are correct. The required 

training time for each method was also compared as 

execution time. Tables 9 and 10 summarizes the results 

for datasets with continuous output values, and 

classification tasks, respectively. These results were taken 

over 20 independent runs for each dataset. 

In terms of the test error for continuous valued problem 

in Table 9, the proposed SRNF showed slightly better 

results than the conventional RNF did. In the best case, 

the test errors on Yacht dataset were 0.00397 for RNF, 

and 0.00141 for SRNF. Comparing the complex methods, 

the proposed SCVNF was slightly better than the 

conventional CVNF for most datasets. The proposed 

SQNF showed results similar to the conventional QNF. 

Table 9. Average Test Error and Execution Time Comparison for Datasets with Continuous Output Values 

Dataset Test error ± S.D. (×10-3) Execution time (s) 

 
RNF SRNF CVNF SCVNF QNF SQNF RNF SRNF CVNF SCVNF QNF SQNF 

Plant 1.55 ± 0.01 1.63 ± 0.02 1.56 ± 0.02 1.65 ± 0.04 1.56 ± 0.02 1.64 ± 0.02 11.32 1.58 2.72 0.95 2.04 0.94 

Airfoil 4.42 ± 0.08 3.99 ± 0.36 3.92 ± 0.31 4.14 ± 0.43 3.87 ± 0.47 3.49 ± 0.59 16.64 2.83 8.34 1.41 2.28 1.94 

Yacht 3.97 ± 0.49 1.41 ± 0.69 1.90 ± 0.76 1.16 ± 0.29 0.79 ± 0.46 0.97 ± 0.23 1.92 0.17 0.50 0.19 0.55 0.20 

Concrete 4.11 ± 0.23 4.07 ± 0.30 3.68 ± 0.68 3.47 ± 0.22 3.04 ± 0.28 3.59 ± 0.21 30.16 1.35 14.51 1.92 2.80 0.92 

Turbine * 0.62 ± 0.08 2.01 ± 1.07 1.38 ± 0.16 0.79 ± 0.31 1.02 ± 0.43 * 33.24 267.52 40.98 113.86 43.67 

Averages and S.D.s were taken over 20 independent runs. 

* The number of parameters was too large to perform calculation. 

Table 10. Average Accuracy Rate and Execution Time Comparison for Classification Tasks 

Dataset Accuracy rate (%) Execution time (s) 

 
RNF SRNF CVNF SCVNF QNF SQNF RNF SRNF CVNF SCVNF QNF SQNF 

Iris 100.00 100.00 100.00 100.00 100.00 100.00 0.15 0.05 0.22 0.06 0.28 0.08 

Seed 92.40 90.96 91.83 89.90 91.44 90.77 9.24 1.20 3.85 1.20 2.69 0.80 

Diabetes 75.89 72.81 74.19 74.48 75.76 74.58 200.20 0.54 42.14 0.88 5.73 0.25 

Cancer 94.97 95.23 95.56 96.05 95.88 95.88 28.05 2.23 2.99 1.84 1.35 0.60 

Heart 67.65 80.22 71.69 77.94 73.60 78.60 101.36 0.69 6.27 0.41 7.65 0.49 

Averages and S.D.s were taken over 20 independent runs. 
 

In terms of the accuracy rate of classification problem 

in Table 10, the proposed methods had almost the same 

performances as the conventional methods on Iris, Seed, 

Diabetes, and Cancer datasets. On Heart dataset, the 

proposed methods showed higher accuracies than the 

conventional methods. 

In terms of the execution time in Tables 9 and 10, each 

of the proposed methods took less time than each of the 

conventional methods on all datasets. For example, on 

Plant dataset, the execution times were 11.32 sec for 

RNF, 1.58 sec for SRNF, 2.72 sec for CVNF, 0.95 sec for 

SCVNF, 2.04 sec for QNF, and 0.94 sec for SQNF. 
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Execution time relates to the computational complexity 

and the number of parameters in each method. As a 

simple example, a complex-valued multiplication needs 

around twice the computational time of a real-valued 

multiplication, whereas quaternion-valued multiplication 

needs around eight times. Proposed simplified methods 

had fewer computational complexities, and thus had less 

execution times in the experiments due to less parameters. 

Table 11. Accuracy Rate Comparison of Proposed methods 

with NFRBC 

Dataset NFRBC Proposed Method 

Iris 80.87 100.00 

Diabetes 75.03 74.58 

Cancer 94.33 96.05 

Heart 73.67 80.22 

 

Finally, outcome of the proposed methods are 

compared with a recent neuro-fuzzy method [14] which 

applied a neuro-fuzzy rule-based classifier (NFRBC) to 

real-world classification problems with the UCI datasets. 

They used some of the datasets used in this study; Iris, 

Diabetes, Cancer, and Heart datasets. Thus, the proposed 

methods were compared with the NFRBC on these four 

datasets in Table 11. For the NFRBC, the best accuracy 

of Iris, Diabetes, Cancer, and Heart datasets were 80.87, 

75.03, 94.33, and 73.67, respectively. On the other hand, 

for the proposed methods, the individual best accuracies 

for Iris, Diabetes, Cancer, and Heart datasets were 

100.00, 74.58, 96.05, and 80.22, respectively. While this 

comparison was not necessarily strict, the proposed 

methods had higher accuracies than the NFRBC on three 

datasets except Diabetes dataset. 

 

VI.  CONCLUSIONS 

A simplified neuro-fuzzy method has been investigated 

in this study and incorporated in conventional methods. 

The conventional neuro-fuzzy methods, RNF, CVNF and 

QNF, suffer from the problem of increased number of 

parameters to be estimated by gradient descent method 

when the number of inputs is increased. Rules are made 

by all the combinations of membership functions in RNF; 

thus, the number of rules as well as total parameters 

increase rapidly with the number of inputs. In case of 

CVNF and QNF, although the total number of parameters 

is less than RNF due to their ability of solving a problem 

with less number of inputs, parameters increase with 

number of inputs. In the simplified method, the number 

of fuzzy rules is equal to the number of divisions of input 

space. And therefore, the number of rules as well as 

parameters are limited significantly in the proposed 

SRNF, SCVNF and SQNF in which the simplified 

method is incorporated in the conventional methods.  

The proposed SRNF, SCVNF and SQNF are found to 

solve given problems with much less parameters as well 

as computing time with respect to their conventional 

counter methods. Total parameters of SRNF, SCVNF and 

SQNF were significantly less in number with respect to 

conventional RNF, CVNF and QNF, respectively for both 

function approximations (Table 2) and real-world 

benchmark problems (Tables 7-8). With much less 

execution times, proposed methods were competitive to 

conventional methods on test error and accuracy of the 

problems (Tables 3-5, Tables 9-10).  

In the proposed SRNF, SCVNF and SQNF, the 

parameters such as the number of divisions can be chosen 

arbitrarily within a certain range. These properties 

provide a freedom in designing the system. In our 

numerical experiments, the network parameters for the 

RNF were difficult to determine, required trial-and-error, 

while those for SCVNF and SQNF were easy to fix. 

Further improvement is also possible in SCVNF and 

SQNF. The activation functions used to convert complex 

and quaternion values to real-valued output, Eq. (12) and 

Eq. (21), respectively, may be altered for better 

performance.  

The proposed SRNF, SCVNF and SQNF have fewer 

parameters, and then systems with a larger number of 

inputs can be handled by the methods. Neuro-fuzzy can 

approximate certain types of nonlinear functions well in 

nature. Therefore, neuro-fuzzy models have been applied 

in designing control systems, such as the temperature 

control system for greenhouse [33], an antilock braking 

system of motor vehicle [34], a water-level control of U-

tube steam generators in nuclear power plants [35], and 

so on [3, 7, 8]. This study have exhibited that proposed 

methods have better properties than the conventional 

counter methods in function approximations and real-

world benchmark problems. Especially, they converge 

well in problems with a large number of inputs and the 

conventional methods are hard to apply. Therefore, the 

proposed methods can be utilized for the large problems 

(e.g., real-time control of large systems) where the 

conventional methods are difficult to apply due to time 

constrain. 
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