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Abstract—This paper proposes a learning approach for 

dynamic parameterization of ant colony optimization 

algorithms. In fact, the specific optimal configuration for 

each optimization problem using these algorithms, 

whether at the level of preferences, the level of 

evaporation of the pheromone, or the number of ants, 

makes the dynamic approach an interested one. The new 

idea suggests the addition of a knowledge center shared 

by the colony members, combining the optimal 

evaluation of the configuration parameters proposed by 

the colony members during the experiments. This 

evaluation is based on qualitative criteria explained in 

detail in the article. Our approach indicates an evolution 

in the quality of the results over the course of the 

experiments and consequently the approval of the concept 

of machine learning. 

 

Index Terms—Swarm Intelligence, Machine Learning, 

Ant Colony System, Pheromone, Combinatorial 

Optimization, Meta-heuristic, Traveling Salesman 

Problems. 

 

I.  INTRODUCTION 

The use of the heuristic approach for solving complex 

combinatorial optimization problems is the only 

promising approach to date, given the inability of exact 

methods to reconcile optimal solutions and optimizing 

computational resource consumption (Computing time 

and memory). The use of multi-agent systems based on 

the heuristic of swarm intelligence to solve combinatorial 

optimization problems [1-6] virtually provides the best 

relationship between the convergence speed and the 

computational resource consumption, hence the interest 

of refining them for more effectiveness. 

The swarm intelligence efficiency algorithms lie in the 

approach of sharing the useful information in the 

environment of the problem considered, and this leads to 

the emergence of a certain mode of collective intelligence, 

but which is limited to the lifetime of the problem in 

question. It would be very beneficial to inject another 

intelligence mode, also collective, but extensible to the 

agent’s group in the form of a “Collective Knowledge 

Center” or Collective Culture. 

Ant Colony Optimization (ACO) represents one of the 

best alternatives of swarm intelligence algorithms, 

considering its ability to adapt to combinatorial 

optimization problems in a simple as well as efficient 

way, in comparison with other heuristic algorithms. 

However, the main problem with ACO algorithms is the 

setting of the pheromone preferences with respect to 

visibility, which consists in adopting a static 

configuration based on the type of problem and, on the 

other hand, the statistics of the problems dealt with. 

Our work deals with the construction and the 

implementation of a Collective Knowledge Center of ants 

that offers a dynamic and effective parameterization of 

the pheromone preferences in relation to the visibility. 

The so-called Collective Knowledge Center (abbreviated 

as CKC) will model a certain mode of intelligence 

specific to agents (ants). Although our approach is 

general, we will focus on the ACS (Ant Colony System) 

which seems to be the best ACO algorithm because of its 

effectiveness and the stability of its results. 

This article is organized as follows: Section 2 presents 

the general modeling of a combinatorial optimization 

problem for ant colonies as well as the TSP (Travelling 

Salesman Problem), which will constitute the illustration 

support and our implementation approach. Section 3 will 

be devoted to a presentation of the ACS applied to the 

TSP problem. The fourth section will detail the design of 

a first model that integrates a ”Collective Knowledge 

Center” applied to ACS, to address TSP problems, and 

present the results obtained by our first model. The fifth 

section focuses on the critical analysis of the proposed 

model and proposes the appropriate means of 

modification. The sixth section will be devoted to the 

presentation of the second model, its application and the 

results obtained. The seventh section is a discussion that 

provides an analytical view of the legitimacy of the 

model developed in relation to its objective of injecting 

another level of intelligence into multi-agent systems. 

Finally, the last section will constitute a conclusion of 

this work and some future perspectives. 
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II.  COMBINATORIAL OPTIMIZATION PROBLEM AND ANT 

COLONY OPTIMIZATION 

The major constraint of the difficult problems of 

combinatorial optimization lies in the cumbersome space 

of possible solutions that must be checked in order to 

obtain the optimal solution. The heuristic approach, and 

in order to make the search for a feasible solution, 

exploits the notion of randomness in order to reduce, 

intelligently, the space of possibilities to be verified. 

There are, however, two possible paths for the heuristic 

approach: the first is that of the specific heuristic that 

each time sketches a specific problem, while the second 

orientation called meta-heuristics, applies to a larger 

number of problems. ACO algorithms belong to the 

category of methods that provide a family of locally 

optimal solutions, and have the power to solve multitude 

types of problems, however, require in return certain 

conditions and constraints absolutely necessary to 

maintain. 

A.  Combinatorial Optimization Problems (COP) 

In general, a combinatorial optimization problem can 

be defined as follows: 

Let 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛)  be a vector composed of a 

discrete set of variables (also called decision variables) of 

the problem, each variable 𝑥𝑖 can take its values in a set 

called the domain of the 𝑖𝑡ℎ  variable denoted 𝐷𝑖  and of 

cardinal 𝑑𝑖  where 𝑖 = 1,2, 𝐼, 𝑛. We note 𝐷 =  𝐷1 × 𝐷2 ×
 . .×  𝐷𝑛  the set of 𝑛 − 𝑡𝑢𝑝𝑙𝑒  formed by all possible 

values of the decision variables. We note the set of 

constraints of the problem by Ω (knowing that a 

constraint is a relation that can involve one or more 

variables of the  𝑠𝑒𝑡 𝑋 ). We then define the set of all 

feasible solutions by 𝑆 = {𝑠 = (𝑥1, 𝑥2, … , 𝑥𝑛)  ∊
𝐷, s satisfies all the constraints of  Ω } . The set 𝑆  is 

commonly called a search set. The function 𝑓 to optimize 

(minimize or maximize) is defined by 𝑓: 𝑆 →  ℝ . It is 

sometimes necessary to replace the arrival set of 𝑓 by 

ℝ ∪ {+∞} or part thereof. The function 𝑓 is called cost 

function, or quality, or more commonly objective 

function. The COP then consists in finding  𝑠∗ =
argmin𝑠 ∈ 𝑆 𝑓(𝑠)  i.e. all of the solutions 𝑠∗ =
(𝑠1
∗, 𝑠2

∗, . . , 𝑠𝑛
∗)  ∈ 𝑆 verifying   𝑓(𝑠∗) =  min𝑠 ∈ 𝑆 𝑓(𝑠). 

There are in general, many fields of swarm approach 

application in resolving combinatorial optimization 

problems [7-11], and variants of ant colony algorithms, in 

neural network [12], telecommunication network [13], 

computer science engineering [14-15], robotic [16], 

energetic efficiency [17], and other general fields [18-19]. 

B.  Ant Colony Optimization (ACO) 

To solve this type of problem using [20] the ant colony 

approach, the first step consists in modeling it in the form 

of a graph (𝐺, 𝐴) of solutions that realize all the paths. It 

is then a number of nodes and arcs connecting the nodes 

with an appropriate metric that measures the length of the 

arcs. Then, drawing inspiration from the approach of ant 

colonies in nature for the collective research of food, 

artificial ants are built to find the best paths. Ants will do 

this by first interacting indirectly through an exchange of 

information on the quality of the roads. This information 

disseminates it in the environment in the form of 

pheromone (it is the meta-heuristic). The ants will also 

interact directly with the graph (the environment) through 

a local evaluation of the distances between the nodes, i.e. 

according to a visibility criterion. This last criterion is a 

kind of static information, individual and local; it is the 

heuristic of the algorithm. 

The mechanism governed by communication, via the 

pheromone, is done in and through the environment. This 

consists of attracting the ants to the arcs of paths judged 

by quality by increasing the quantity of the pheromone, 

and thus to reinforce the research to the following 

iterations in this direction. It’s called intensification and 

it’s done through dynamic information. In order not to 

force the algorithm to park on local solutions suboptimal, 

a loss of this information process (pheromone) is required; 

this is achieved by imposing an evaporation rule of the 

amount of pheromones. For the occasion, it will also 

serve to avoid going back to the bad choices made before. 

Thus, the diversification of the research field can be 

ensured via the probabilistic character of each ant’s 

decision-making. 

C.  Illustration Of The Ant Colony Algorithm For TSP 

The TSP (Traveling Salesman Problem) can be seen as 

the problem of a business traveler who, given a set of 

cities, must find the best path (Optimization) that will 

allow him to visit all these cities exactly once 

(Constraint). It is then a connected graph (G, A), where G 

denotes the set of all the cities to be visited and A the set 

of all possible arcs connecting these cities to each other. 

The basic algorithm of ant colonies called Ant System 

(AS) [21] consists in making an entire colony of ants 

search for paths, but by collaborating in order to arrive at 

an acceptable collective solution, it is a multi-agent 

approach. Each solution constructed by an agent (an ant) 

will be a combination of arcs of 𝐴  containing all the 

nodes of 𝐺 and never the same node of 𝐺 in more than 

two arcs. 

In the previously defined notations, the variable 𝑋1 will 

designate the first city to be visited by the traveler, 𝑋2 is 

the second, and so on until arriving at the last city 𝑋𝑛 , the 

vector (𝑋1, 𝑋2, . . , 𝑋𝑛)  is the one sought in this problem. 

Each set 𝐷𝑖  contains exactly all the cities and 

therefore  𝐷 = ∏ 𝐴𝑛
𝑖=1  =  𝐴𝑛  . A possible solution 𝑠  is, 

therefore, a vector (𝑋1 = 𝑠1 , 𝑋2 = 𝑠2 , … , 𝑋𝑛 = 𝑠𝑛  ) ∈

 𝐷 = 𝐴𝑛  satisfying the constraint  Ω((𝑋1 = 𝑠1 , 𝑋2 =

𝑠2 , … , 𝑋𝑛 = 𝑠𝑛 )) ≝  {∀(𝑖, 𝑗) ∈  ⟦1, 𝑛⟧, 𝑖 ≠ 𝑗 ⟹ 𝑠𝑖  ≠

𝑠𝑗} , this defines the set  𝑆. This constraint is taken into 

account in the search process by offering each agent (the 

ant) arrived at a certain level of construction of the path 

to a given node the choice restricted to the nodes not 

already visited. This implies that a given ant  𝑘 , for 

example, has constructed a partial path 𝑠𝑝𝑒𝑟𝑡𝑖𝑎𝑙
𝑘 =

 (𝑠1 , 𝑠2 , . . , 𝑠𝑖  ) is located at node 𝑖 will complete its path 

by choosing the next node in a list 𝑁𝑖
𝑘 = 𝐴 −

 {𝑠1 , 𝑠2 , . . , 𝑠𝑖  }. 
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The oriented arcs of the graph are the pairs (𝑎, 𝑏)  ∈
 𝐴2   satisfying 𝑎 ≠ 𝑏  which means that the direction of 

movement is from 𝑎 to 𝑏. A path or route of an agent will 

be completely determined by the data of a 

vector (𝑠1, 𝑠2 , . . , 𝑠𝑛) , which means that the agent in 

question made the overall route along the following 

itinerary: (𝑠1 , 𝑠2 ) then (𝑠2 , 𝑠3) and so on until the last 

step that is (𝑠𝑛−1, 𝑠𝑛  ). Finally, the objective function will 

be the function which totalizes the distances traveled 

according to the configuration of the solution i.e.: 

 

 
𝑓((𝑠1, 𝑠2, . . , 𝑠𝑛)) = (∑‖𝑠𝑖+1 − 𝑠𝑖‖

𝑛−1

𝑛=1

)

+ ‖𝑠𝑛 − 𝑠1‖ . 

(1) 

 

where ‖. ‖  is a certain appropriate norm, usually it is 

taken as the usual distance in ℝ even if other types of 

distances can be considered. 

The heuristic information that is the visibility can be 

modeled in several ways but one of the simplest is to 

consider that it is proportional to the inverse of the 

distance between the nodes, i.e.: 𝜇𝑖𝑗 =
1

‖𝑠𝑖−𝑠𝑗‖
 which 

expresses our willingness to make the agents prefer the 

closer knots rather than those very distant. The set of 

these values defines a square matrix and remains constant 

(static information connected to the single graph). 

The exchange and modification of dynamic 

information between agents will take place through the 

taking account the quantity of pheromone which 

characterizes each ant, at each node 𝑠𝑖  where it is, the 

arcs connecting it to the nodes which are in the list  𝑁𝑖
𝑘 . 

This quantity of pheromone is, in a certain sense, a 

dynamic memory of the multi-agent system but is locally 

visible on the graph and can vary over time. This 

parameter at each instant 𝑡 (iteration) characterizes all the 

arcs (𝑖, 𝑗) of the graph, it will be noted 𝜏𝑖𝑗(𝑡) and it is 

called the intensity of the arc (𝑖, 𝑗), and the set of these 

values defines a dynamic square matrix. 

Each agent (ant) at time 𝑡 and being stationed at node  

𝑠𝑖  makes its choice of the node according to a 

probabilistic law which involves the intensity of the track 

of each possible arc and the visibility of the node in 

question according to a law which can be expressed 

(without loss of generality) according to the following 

formula: 

 

 𝑃𝑖𝑗
𝑘 = 

𝜏𝑖𝑗(𝑡)
𝛼𝜇𝑖𝑗(𝑡)

𝛽

∑ 𝜏𝑖𝑙(𝑡)
𝛼𝜇𝑖𝑙(𝑡)

𝛽
𝑙 ∈ 𝑁𝑖

𝑘
    𝑗 ∈ 𝑁𝑖

𝑘 . (2) 

 

which is the probability that at iteration  𝑡 , the ant 𝑘 

moves from node 𝑖 to node 𝑗 among the possible nodes in 

the list 𝑁𝑖
𝑘 . If the node 𝑗 is already visited, it is enough to 

give it no chance i.e. 𝑃𝑖𝑗
𝑘(𝑡) = 0 if   𝑗 ∉  𝑁𝑖

𝑘 . The 𝛼 and 𝛽 

provide the ability to balance the importance of choices 

with respect to visibility test and the intensity of the track: 

𝛼 =  0 corresponds to a choice guided by the only visual 

accessibility, and each time the agent chooses the nearest 

city, whereas in the case 𝛽 =  0  it is the strategy 

completely dominated by the pheromone rate, and the ant 

certainly chooses the most marked arc. 

The updating of the pheromone is done through two 

mechanisms, evaporation and deposition of the 

pheromone. 

Evaporation is a kind of exponential degradation of the 

quantity of the pheromone over time (possibly iteration) 

according to the law 

 

 𝑓𝑒𝑣𝑎𝑝 (𝜏𝑖𝑗(𝑡)) = 𝜏0𝑒
−𝜃𝑡  𝜃 ∈  ℝ+∗ . (3) 

 

Or 

 

 𝜏𝑖𝑗(𝑡 + 1) =  𝜌𝜏𝑖𝑗(𝑡) 𝜌 ∈ [0,1] . (4) 

 

The parameter 𝜌 indicates the intensity of evaporation, 

which must be chosen carefully so as not to alter the 

information indicated by the pheromone so that the ants 

do not lose the useful arcs also in return to minimize the 

impact of the arcs badly chosen. 

The pheromone deposition in the graph is the process 

that enriched the collective intelligence of colony 

members. This mechanism requires adding an additional 

quantity of pheromone to the arcs involved in the 

construction of the proposed solution for each ant at 

time 𝑡, and the quantity in question depends mainly on 

the quality of the proposed solution which is in the 

general approach proportional to the inverse of the total 

distance of the path of the solution. i.e.: 

 

 

𝜏𝑖𝑗(𝑡 + 1) = 𝜏𝑖𝑗(𝑡) +∑∆𝜏𝑖𝑗
𝑘

𝑚

𝑘=1

 . 

  

m is the number of ants 

 

(5) 

 ∆𝜏𝑖𝑗
𝑘 = {

1

𝐶𝑘
 𝑖𝑓 (𝑖, 𝑗) ∈ 𝑝𝑎𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑛𝑡 𝑘

0 𝑒𝑙𝑠𝑒

 . (6) 

   

There is in fact many alternative of ACO algorithm 

based of the same AS mean idea with some changes , 

such as Elitist Ant System (Elitist-AS) [22], Rank-based 

ant system (Rank-AS) [23], Ant Colony System (ACS) 

[24], and MAX-MIN Ant System (MinMax-AS) [25]. 

 

III.  ACS APPLIED TO TSP 

The alternative of ACS [24] [26] is the most effective 

derivatives ant colonies algorithms because it exploits the 

improvements proposed in the other alternatives. Indeed, 

ACS uses the maximal and minimal values proposed in 

MinMax-AS [25], the implicit framing of pheromone 

values on the arcs by Elitist-AS [22], and the introduction 

of the concept of exploitation in the law of transition ants. 

The ACS is thus based on three changes from the AS 

algorithm: 
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 The reinforcement is done only on the arcs of the 

optimal trail of each stage, unlike the case of the 

AS which reinforces the level of the pheromone on 

all the arcs chosen by the members of the colony. 

 A two-level requirement for updating the 

pheromone, a global level that characterizes the 

search stage, and a local level, which is done at the 

time of the elementary movement of each ant from 

one node to another. 

 The adoption of a decision-making strategy that 

alternates the exploitation of the best choices 

proposed for a transition, and the exploration of 

new choices according to a pseudo-probabilistic 

law. 

 

The approach of ACS based on three fundamental 

principles, the transition rule, the global update of the 

pheromone, and the local updating of the pheromone. 

They can be detailed as follows: 

 

 The transition rule: it is to use the pseudo-

probabilistic law of decision of the ant 𝑘 , 

positioning on the node 𝑖, and it wants to pass to 

the node 𝑗 by : 

 

 𝑠 = {
argmax

𝑗∈𝑁𝑖
𝑘
𝜏(𝑡)𝑖𝑗

𝛼 𝜇(𝑡)𝑖𝑗
𝛽
 𝑖𝑓 𝑞 < 𝑞0

arg 𝑆  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 . (7) 

 

where 𝑞 a random variable is distributed uniformly over 
[0, 1]  and 𝑞0  is a parameter  (𝑞0  ∈  [0, 1])  , and 𝑆  is a 

random variable selected according to the basic 

probabilistic law (Equation (2)). 

 

 The local update of the pheromone: during the 

construction of the solution, ants visit arcs and 

change their pheromone by applying the following 

local rules: 

 

 𝜏𝑖𝑗 ← (1 − 𝛾)𝜏𝑖𝑗 + 𝛾∆𝜏𝑖𝑗  . (8) 

   

 ∆𝜏𝑖𝑗 = 𝛾′max
𝑧∈𝑁𝑗

𝑘
𝜏𝑗𝑧 𝑜𝑟 ∆𝜏𝑖𝑗 = 𝜏0 . (9) 

 

 The global update of the pheromone: it is based 

on the evaporation of the global graph arcs 

pheromone, and the deposition of the pheromone 

which rests on the fact that the ants which are 

classified the best for their result of research, are 

the only ones who have the right to add the 

amount of pheromone during this step, and this is 

done according to the following equation: 

 

 𝜏𝑖𝑗 ← (1 − 𝜌)𝜏𝑖𝑗 + 𝜌∆𝜏𝑖𝑗  . (10) 

   

 

∆𝜏𝑖𝑗

= {

1

𝐶𝑔𝑙𝑜𝑏𝑎𝑙
 𝑖𝑓 (𝑖, 𝑗) ∈ 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑔𝑙𝑜𝑏𝑎𝑙 𝑝𝑎𝑡ℎ

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 . 
(11) 

It should be mentioned that the optimal number of ants 

that can attack the graph in ACS approach verified the 

following equation [24] : 

 

 𝑚 =
log(𝜑2 − 1) − log(𝜑1 − 1) 

𝑞0 log(1 − 𝜌) 
 . (12) 

 

where 𝜑1 and 𝜑2 are respectively the average rates of the 

pheromone respect to 𝜏0 of the arcs before and after the 

global update. These rates do not follow a well-defined 

law, and they vary according to the size of the graph. 

However, the experimental observation states that ACS 

gives good results for the ratio 
𝜑1−1

𝜑2−1
= 0.4 i.e. 𝑚 =  10. 

 

IV.  CHANGED ACS APPROACH 

In the analysis of the following parts, we always define 

𝑛 the number of nodes of a graph 𝐺𝑟, 𝐾 is the number of 

ants in the colony, 𝑁𝐺𝑟  and 𝐴𝐺𝑟  are respectively the set 

of nodes and the set of arcs of the graph 𝐺𝑟, and 𝑟 is the 

research stage of the colony for a TSP solution based on 

the 𝐺𝑟 graph. 

The pair (𝑖, 𝑗) denotes the arc that connects the nodes 

𝑖 and 𝑗 , 𝜏𝑖𝑗  and µ𝑖𝑗  indicate respectively the pheromone 

values and the visibility of the arc (𝑖, 𝑗), the visibility is 

expressed as the inverse of the distance connecting the 

nodes 𝑖  and  𝑗 , 𝛼  and 𝛽  respectively represent the 

preference of the pheromone and the visibility. 

𝑃𝑖𝑗
𝑘  represents the probabilistic decision law of the 𝑘𝑡ℎ 

ant moving from node 𝑖 to node 𝑗 , 𝑞0  expresses the 

exploitation value in the ACS algorithm, 𝐷𝑖
𝑘  denotes the 

decision pseudo-random law of displacement of the 𝑘𝑡ℎ 

ant positioning at the node 𝑖  , 𝑁𝑖
𝑘  indicates the set of 

nodes not visited by the 𝑘𝑡ℎ ant positioning at the node 𝑖. 
Elected and Best indicate respectively the ant elected 

as best ant in a search stage 𝑟, and the best ant in up to a 

search stage  𝑟 , Θ𝑛𝑟
𝑘  and C𝑛𝑟

𝑘  are respectively the set of 

nodes of the solution traversed by the ant 𝑘 in a search 

stage 𝑟, for a graph of 𝑛 nodes, with the value C𝑛𝑟
𝑘 . 

The major shortcoming of ACS is to impose a static 

configuration of a multitude of variables, such 

as 𝛼, 𝛽, 𝑞0 , 𝜌, 𝛾. 

The choice of these variables is intimately linked to the 

nature of the problem studied, for example, the 

application of ACS on the symmetric TSP recommends 

the configuration defined by (𝛼 =  1, 𝛽 =  6, 𝑞0 =
 0.2 , 𝜌 =  0.6), (𝛼 =  1, 𝛽 =  10, 𝑞0 =  0.3 , 𝜌 =
 0.6), (𝛼 =  1, 𝛽 =  12, 𝑞0  =  0.2 , 𝜌 =  0.6) [27]. 

The intelligent mechanism of ACS depends mainly on 

the cumulative experience of the colony along the attack 

of a single problem, this experiment is materialized in the 

form of a pheromone distributed on the environment of 

the problem in question, and modified by all the members 

of the colony. The possibility of designing a dynamic 

configuration model of the ACS variables can be realized 

and we have the power to define a knowledge center of 

the variables of the colony’s own configuration.  

This center must contain the best results obtained in the 
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collection of the problems dealt with and must, therefore, 

be the basic reference of all the members of the colony 

when evoking the transitional law or in the mechanism of 

updating the pheromone. Our first approach will focus on 

the study of a typical case of the optimization problem, 

that of TSP, and this in order to evaluate the model 

afterward. We will also intersect the parameters that 

appear in the pseudo-random transition law, i.e. 𝛼, 𝛽, 𝑞0 . 

So our modeling will target three orientations: 

 

 The study of dependencies or criteria that 

influences the variables of the configuration. 

 Quantification of configuration variables. 

 Assessing the quality of a configuration. 

 

A.  The Dependencies Of 𝛼, 𝛽, 𝑞0 

As already mentioned in [24], ACS exploits a battery 

of 10 ants in attacking TSP problems. However, for the 

preference variables  𝛼, 𝛽 , the predominance of one 

criterion over the other must be structurally linked to the 

evolution of the information quality presented by the 

pheromone. Therefore the attack of problems of different 

dimensions by a fixed number of ants will alter the 

evolution of the pheromone information quality from one 

dimension to another since the fields of possibilities 

exploited by the members of the Colony depend on the 

dimension of the TSP graph. 

The same reasoning can be adopted for the analysis of 

variable. Indeed the uncertainty in the transitions of the 

ants is caused by the inertia of the global vision of the 

colony for the problem treated. For example, for a trivial 

scenario, the colony will be oriented towards a strategy of 

exploitation in problems of small size, and in return, it 

will adopt a strategy of exploration in problems of large 

size. 

The order or cycle of research presents an essential 

element in our present model since it influences 

essentially the configuration of the preferential variables 

in the first place and the exploitation value in the second 

place. Indeed, at the start of the TSP attack problem, the 

pheromone information has no decisional interest, so 

logically the preference 𝛼 must be negligible with respect 

to 𝛽; moreover, the colony must adopt in this stage an 

exploration strategy to widen the field of the possibilities 

of the solutions. 

However, after a number of tests, of research cycles, 

sufficient, the members of the colony present their 

feedback in the form of information traced in the 

pheromone, so the preference 𝛼  increases according to 

the contribution in transitional law, and the mechanism of 

exploitation will be used given the presence of new 

information related to the pheromone. Thus, in summary, 

the input parameters of our model are respectively 𝑛, the 

number of nodes of the graph, and 𝑟 the rank or order of 

the search cycle for the colony, and our configuration 

variables will be presented under the following form: 

 

 {

𝛼 = 𝛼𝑛𝑟
𝛽 = 𝛽𝑛𝑟
𝑞0 = 𝑞0𝑛𝑟

. (13) 

 

B.  Quantification Of Configuration Variables 

Let an ant colony perform the 𝑟𝑡ℎ  search cycle in a 

graph of 𝑛  node. During this cycle, each ant takes a 

particular path based on the pseudo-random transition 

rule. Then, at the end of the cycle, all the members of the 

colony will present a tendency of choice based on one of 

the two criteria of decision: the pheromone or the 

visibility. This trend towards a criterion can be measured 

by the distance between the value of the criterion chosen 

by the transition rule and its maximum value proposed in 

the choices available during the transition. 

Let the elite ant be the one with the best solution in a 

cycle 𝑟 for a graph of 𝑛 nodes. During the construction of 

the solution, the ant positions itself on node 𝑖 and decides 

to choose the node 𝑗𝑒𝑙𝑖𝑡𝑒  from a list of proposed 

choices 𝑁𝑒𝑙𝑖𝑡𝑒  . 

Let the generic value 

 

 
𝜀𝑥𝑖
𝑒𝑙𝑖𝑡𝑒 =

𝑥𝑖𝑗𝑒𝑙𝑖𝑡𝑒
max

𝑗∈𝑁𝑖
𝑒𝑙𝑖𝑡𝑒

𝑥𝑖𝑗
 . 

(14) 

 

with 𝑥 one of the parameters to be evaluated.This value 

represents the degree of closeness between the choice 

made 𝑥𝑖𝑗𝑒𝑙𝑖𝑡𝑒 and the maximum value proposed in the set 

of possible transitions. Thus for 𝑥 taking the values of  𝜏 
or  µ or  𝑓𝑒𝑣𝑎𝑙  (𝑞0 ) = 𝜏𝛼𝜇𝛽, the associated values of will 

be the following: 

 

 
𝜀𝜏𝑖
𝑒𝑙𝑖𝑡𝑒 =

𝜏𝑖𝑗𝑒𝑙𝑖𝑡𝑒
max

𝑗∈𝑁𝑖
𝑒𝑙𝑖𝑡𝑒

𝜏𝑖𝑗
 . 

(15) 

   

 
𝜀𝜇𝑖
𝑒𝑙𝑖𝑡𝑒 =

𝜇𝑖𝑗𝑒𝑙𝑖𝑡𝑒
max

𝑗∈𝑁𝑖
𝑒𝑙𝑖𝑡𝑒

𝜇𝑖𝑗
 . 

(16) 

   

 𝜀𝑓𝑒𝑣𝑎𝑙(𝑞0)𝑖
𝑒𝑙𝑖𝑡𝑒 =

𝜏𝑖𝑗𝑒𝑙𝑖𝑡𝑒
𝛼 𝜇𝑖𝑗𝑒𝑙𝑖𝑡𝑒

𝛽

max
𝑗∈𝑁𝑖

𝑒𝑙𝑖𝑡𝑒
𝜏𝑖𝑗

𝛼𝜇𝑖𝑗
𝛽
 . (17) 

 

This represents the degrees of closeness between the 

choice of transition and, respectively the choice based on 

the total preference of the pheromone, the total preference 

of the visibility, and the total preference of the 

exploitation. If 𝜀𝑥𝑖
𝑒𝑙𝑖𝑡𝑒 converges to 1, then the choice 

reinforces the maximum preference of the variable 

studied, otherwise it disadvantages it. 

In some cases, the possible choices of the transitions 

proposed for the ant have the same numerical values (for 

example when starting the search, the graph initializes 

with the same value of the pheromone in all the arcs). 

These cases must be removed from the analysis as they 

present some confusion with the local assessment of the 

preference in question. 
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We define for the ant 𝑘, the generic set 

 

 𝐺𝑛𝑟𝑥
𝑘 = {𝑖 ∈ 𝐺𝑟𝑛𝑟  , max

𝑗∈𝑁𝑖
𝑘
𝑥𝑖𝑗 ≠ min

𝑗∈𝑁𝑖
𝑘
𝑥𝑖𝑗}. (18) 

 

Then the values of  𝛼𝑛𝑟 ,𝛽𝑛𝑟 and 𝑞0𝑛𝑟will be defined as 

follows 

 

 𝛼𝑛𝑟 = 𝛼𝑛𝑟
𝑒𝑙𝑖𝑡𝑒 =

1

𝑐𝑎𝑟𝑑(𝐺𝑛𝑟𝜏
𝑒𝑙𝑖𝑡𝑒)

∑ 𝜀𝜏𝑖
𝑒𝑙𝑖𝑡𝑒

𝑖∈𝐺𝑛𝑟𝜏
𝑒𝑙𝑖𝑡𝑒

 . (19) 

   

 
𝛽𝑛𝑟 = 𝛽𝑛𝑟

𝑒𝑙𝑖𝑡𝑒 =
1

𝑐𝑎𝑟𝑑(𝐺𝑛𝑟𝜇
𝑒𝑙𝑖𝑡𝑒)

∑ 𝜀𝜇𝑖
𝑒𝑙𝑖𝑡𝑒

𝑖∈𝐺𝑛𝑟𝜇
𝑒𝑙𝑖𝑡𝑒

 . 
(20) 

   

 

𝑞0𝑛𝑟 = 𝑞0𝑛𝑟
𝑒𝑙𝑖𝑡𝑒

=
1

𝑐𝑎𝑟𝑑(𝐺𝑛𝑟𝑓𝑒𝑣𝑎𝑙(𝑞0)
𝑒𝑙𝑖𝑡𝑒 )

∑ 𝜀𝑓𝑒𝑣𝑎𝑙(𝑞0)𝑖
𝑒𝑙𝑖𝑡𝑒

𝑖∈𝐺𝑛𝑟𝑓𝑒𝑣𝑎𝑙(𝑞0)
𝑒𝑙𝑖𝑡𝑒

 . (21) 

   

C.  Evaluation of A Configuration Quality  

To evaluate the previously calculated parameters and 

compare them to those already existing in the knowledge 

center, it is important to define a variable that will 

express both the stability of the strategy adopted by the 

colony and the evaluation of the result compared to the 

previous one. For the first criterion, a strategy adopted by 

the colony that is qualified as stable must not present a 

minimum dispersion of the research results obtained by 

the members, and this can be expressed simply by the 

standard deviation of the results obtained by the totality 

of the ants. With regard to the second criterion, that of 

evaluating the strategy itself, the measurement of the ratio 

between the optimal solutions makes in the preceding 

cycles and that of the current cycle seems to be a good 

criterion for evaluating the quality of the solution in 

question. Therefore, it is possible to consider a pair 𝜁𝑛𝑟  

such that: 

 

 𝜁𝑛𝑟 =

(

 
𝐶𝑛𝑟
𝑒𝑙𝑖𝑡𝑒

𝐶𝑛𝑏𝑒𝑠𝑡
, √
1

𝐾
∑(𝐶𝑛𝑟

𝑘 − 𝐶𝑛𝑟
𝑎𝑣𝑒𝑟𝑎𝑔𝑒

)2
𝐾

𝑘=1
)

  . (22) 

 

We define the order relation ≼ for pairs 𝜁1 = (𝐻1, Γ1 ) 
and 𝜁2 = (𝐻2, Γ2 ) by the relation: 

 

 
𝜁1 ≼  𝜁2 ⟺ 𝐻1 > 𝐻2 𝑜𝑟 (𝐻1 = 𝐻2 𝑎𝑛𝑑 Γ1

> Γ2) . 
(23) 

 

Our Collective Knowledge Center of the colony will be 

modeled matrix (vector matrix   𝑎𝑛𝑟⃗⃗ ⃗⃗ ⃗⃗  ⃗ ) where 𝑛  varies in 
⟦1, 𝑁𝑚𝑎𝑥⟧ and 𝑟  in  ⟦1, 𝑅𝑚𝑎𝑥⟧. The vector  𝑎𝑛𝑟⃗⃗ ⃗⃗ ⃗⃗  ⃗ will then 

have the components: 

 

 𝛼𝑛𝑟 : The preference of the pheromone for the 

graph of dimension 𝑛 and in the research stage 𝑟. 

 𝛽𝑛𝑟 : The preference of the visibility of the next 

node for the graph of dimension 𝑛  and in the 

search rank 𝑟. 

 𝑞0𝑛𝑟: The preference of exploitation value for the 

graph of dimension 𝑛 and in the search rank 𝑟. 

 𝜁𝑛𝑟: A quality indicator of the strategy adopted by 

the colony for the graph of dimension 𝑛 and in the 

search rank 𝑟. 

 

Thereafter, the updating of the variables of the 

experiment matrix is carried out according to the 

following logic: 

 

 𝜁𝑛𝑟 ≼ 𝜁𝑛𝑟
𝑛𝑒𝑤  ⇒  𝑎𝑛𝑟⃗⃗ ⃗⃗ ⃗⃗  ⃗ ←   𝑎𝑛𝑟⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑛𝑒𝑤
 . (24) 

 

V.  SIMULATION AND RESULTS 

The simulation of the ACS model based on the 

knowledge center was done by the engagement of 10 ants 

in two test problem cartridges, the first involving the 

random extraction of 40 subgraphs from the graph 

att532.tsp Proposed in the TSP lib graph reference list. 

The second cartridge concerns the identical repetition of 

40 graphs of berlin52.tsp of the [28]. 

The simulation program is written in the Java language 

on Windows 7. The global and local evaporation 𝜌, 𝛾 are 

set to the value 0.001, and the maximum number of 

search cycles is set to 400 cycles. 

The simulation was performed in three modes; the first 

one is the normal ACS based on the static 

configuration  (𝛼 =  1, 𝛽 =  2, 𝑞0  =  0.9) , this mode 

will be used as a comparison mode with the target model. 

The second mode is the one that sets the operating 

index 𝑞0 = 0.9  and uses the configuration of the 

knowledge center for parameters 𝛼 and 𝛽. The last mode 

exploits the total configuration of the parameters 𝛼, 𝛽 and  

𝑞0 . 

The colony knowledge center is presented in a MySQL 

relational database in a table structure as follows: 

 

 

Fig.1. ACS-CKC Database Schema 

The simulation runs at an estimated time of 10 minutes 

20 seconds, on an 8 GB RAM machine, with a 2.00 GHz 

4 - core processor and SSD storage Disk for fast access. 

The evolution of the parameters 𝛼, 𝛽 , and 𝜁  as a 

function of the experiments and the research stages are 
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represented in the following graphs. 

 

 

Fig.2. The 𝟏𝒔𝒕, 𝟐𝟎𝒕𝒉, 𝟒𝟎𝒕𝒉and 𝟕𝟎𝒕𝒉 experience of ACS Normal 

 

Fig.3. The 𝟏𝒔𝒕, 𝟐𝟎𝒕𝒉, 𝟒𝟎𝒕𝒉and 𝟕𝟎𝒕𝒉 experience of ACS-CKC  

with static 𝒒𝟎 

 

Fig.4. The 𝟏𝒔𝒕, 𝟐𝟎𝒕𝒉, 𝟒𝟎𝒕𝒉and 𝟕𝟎𝒕𝒉 experience of ACS-CKC with 

dynamic 𝒒𝟎 

 

Fig.5. 𝜶, 𝜷, learning indicator,  
𝑪𝒏𝒓
𝒆𝒍𝒊𝒕𝒆

𝑪𝒏𝒃𝒆𝒔𝒕
 , 𝒒𝟎 and standard deviation graphs 

in terms of 𝒏 and 𝒓 for ACS Normal  

 

Fig.6. 𝜶, 𝜷, learning indicator,  
𝑪𝒏𝒓
𝒆𝒍𝒊𝒕𝒆

𝑪𝒏𝒃𝒆𝒔𝒕
 , 𝒒𝟎 and standard deviation graphs 

in terms of 𝒏 and 𝒓 for ACS-CKC with static 𝒒𝟎 
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Fig.7. 𝜶, 𝜷, learning indicator,  
𝑪𝒏𝒓
𝒆𝒍𝒊𝒕𝒆

𝑪𝒏𝒃𝒆𝒔𝒕
 , 𝒒𝟎 and standard deviation graphs 

in terms of 𝒏 and 𝒓 for ACS-CKC with dynamic 𝒒𝟎 

 

Fig.8. Optimal distances obtained by ACS Normal, ACS-CKC with 

static 𝒒𝟎 and ACS-CKC with dynamic 𝒒𝟎 

 

Fig.9. Optimal stages obtained by ACS Normal, ACS-CKC with static 

𝒒𝟎 and ACS-CKC with dynamic 𝒒𝟎 

 

VI.  ANALYSIS OF THE IMPROVED FIRST MODEL 

The analysis of the results of the simulation models 

shows a close evolution with respect to the optimal 

distance found between the normal ACS and the 

proposed models. 

Note that the two models of the knowledge center have 

a tendency to have the same results, but an analysis of the 

speed of convergence towards the optimal result shows 

an advantage for the exploitation of all the parameters in 

average, and also it makes a stable pattern in term of 

results. 

In another analysis, at first glance, it seems that there is 

a stability of the 𝛼, 𝛽  preference values during the 40 

experiments, but the analysis of the 3d perspective of the 

dispersion values and the quality shows a discontinuity 

between Phase of the random experiments and the last 40 

experiments which concern a single graph. 

A simple analysis of proposed data for the simulation 

shows that there is a lack of modeling of the quality value, 

which is based on the dispersion of the search results. 

Indeed, the dispersion has the unit of distance (the meter 

in our case), and the fact to test first on random samples 

of the example att532.tsp (which proposes a drilling 

problem of order of magnitude distances 300) and then to 

approach the example berlin52.tsp (which proposes the 

capital of the US of the order of magnitude of the 

distances 10000) will obviously give a discontinuity of 

the dispersions of the results during the simulation. 

So our first quality criterion proposal is not the best 

one, and it needs to be improved by developing a variant 

that requires the following: 

 

 It depends on many of the nodes of the graph. 

 It is invariant by a change of scale. 

 It depends on the metric of the graph. 

 

A.  The Construction of the Homogeneity Level of a 

Colony 

We have seen that the mechanism of optimization by 

the colony of ants has a tendency to have, in convergence, 

a common solution between all agents of the colony. 

During the research, the ants deposit the pheromone on 

the roads of quality, in order to guide the other members 

of the colony to follow them, and in the end the colony 

tends to adopt the same solution which will be considered 

the better solution. 

Suppose the colony ends a research stage. Let an arc 

(𝑖, 𝑗) in the graph 𝐺𝑟, we define 𝑋𝐺𝑟
𝑟  as a function which 

expresses the frequency of use of the arc (𝑖, 𝑗)  by the 

member of the colony, that it will present the number of 

ants whose the arc (𝑖, 𝑗) is an element of the solution. So 

formally: 

 

 

𝐴𝐺𝑟 ⟶ ⟦0, 𝐾⟧ 
(𝑖, 𝑗) ⟼ 𝑋𝐺𝑟

𝑟 (𝑖, 𝑗) = 𝑐𝑎𝑟𝑑({𝑘 ∈ ⟦0, 𝐾⟧ ,

𝑖 ∈ Θ𝑛𝑟
𝑘  𝑎𝑛𝑑 𝑗 = 𝑗𝑐ℎ𝑜𝑜𝑠𝑒𝑛

𝑖𝑘𝑟 }). 

(25) 

 

We define 𝛹𝑟  a function that binds each ant to its 

degree of commitment to follow the policy of the colony. 

Indeed if an ant adopts the same strategy as that of the 

other members of the colony, then its degree of 

commitment will be better, if not, i.e. It diverges in terms 

of choice of the arcs compared to the other members, it 

will have a mediocre score. Formally: 

 

 

⟦0, 𝐾⟧ ⟶ ℕ 

𝑘 ⟼ 𝛹𝑟(𝑘) = ∑ 𝑋𝐺𝑟
𝑟 (𝑖, 𝑗)

𝑖∈Θ𝑛𝑟
𝑘  𝑎𝑛𝑑  𝑗=𝑗𝑐ℎ𝑜𝑜𝑠𝑒𝑛

𝑖𝑘𝑟  

 . (26) 

 

Then, finally, we define Γ𝑛𝑟  as the degree of the 

homogeneity of the colony in terms of the strategy 

adopted by the members of the colony by: 

 

 Γ𝑛𝑟 =∑𝛹𝑟(𝑘)

𝐾

𝑘=1

 . (27) 

 

B.  Analysis Of ,𝛤𝑛𝑟  For A Homogeneous Strategy And A 

Dispersed Strategy Of The Colony 

We have seen previously in the analysis of the old 

dispersion parameter that there was an anomaly with 

respect to the scaling of the graph. Our new modeling is 
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based on a construction based on an abstraction linked to 

the basic choices of the ants, and not to the associated 

values. We will then observe the behavior of our variable 

𝛤𝑛𝑟  in the two most extreme situations, where the total 

orientation of the members of the colony is directed 

towards a single solution (a totally homogeneous 

strategy), and the second situation where each member of 

the colony adopts a totally different solution to the other 

members (totally dispersed strategy). 

 

 A totally homogeneous strategy : In such a 

situation, the colony adopts a single solution 

namely Θ𝑛𝑟
𝑐  

 

 ∀(𝑖, 𝑗) ∈ 𝐴𝐺𝑟

{
 
 

 
 
{

𝑖 ∈ Θ𝑛𝑟
𝑐

𝑎𝑛𝑑
𝑗 = 𝑗𝑐ℎ𝑜𝑜𝑠𝑒𝑛

𝑖𝑐𝑟
⟹ 𝑋𝐺𝑟

𝑟 (𝑖, 𝑗) = 𝐾

{
𝑖 ∉ Θ𝑛𝑟

𝑐

𝑜𝑟
𝑗 ≠ 𝑗𝑐ℎ𝑜𝑜𝑠𝑒𝑛

𝑖𝑐𝑟
⟹ 𝑋𝐺𝑟

𝑟 (𝑖, 𝑗) = 0

. (28) 

 

Then, all the members of the colony have an 

engagement score expressed by: 

 

 ∀ 𝑘 ∈ ⟦0, 𝐾⟧ Ψ𝑟(𝑘) = 𝑛𝐾 . (29) 

 

And the degree of homogeneity of the colony is thus 

expressed: 

 Γ𝑛𝑟 =∑Ψ𝑟(𝑘) =

𝐾

𝑘=1

∑𝑛𝐾 = 𝑛𝐾2
𝐾

𝑘=1

 . (30) 

 

 A totally dispersed strategy: In such a situation, 

the colony members adopt disjoint solutions, it is 

assumed that there will be enough arcs for the ants 

to have such a possibility. 

 

 ∀(𝑖, 𝑗) ∈ 𝐴𝐺𝑟  𝑋𝐺𝑟
𝑟 (𝑖, 𝑗) = 1 𝑜𝑟 𝑋𝐺𝑟

𝑟 (𝑖, 𝑗) = 1 .  (31) 

 

Then, all the members of the colony have an 

engagement score expressed by: 

 

 ∀ 𝑘 ∈ ⟦0, 𝐾⟧ Ψ𝑟(𝑘) = 𝑛 . (32) 

 

And then the degree of homogeneity of the colony is 

given by: 

 

 Γ𝑛𝑟 =∑Ψ𝑟(𝑘) =

𝐾

𝑘=1

∑𝑛 = 𝑛𝐾

𝐾

𝑘=1

 . (33) 

 

In conclusion, between the homogeneous strategy and 

the dispersed strategy, we always have 𝑛𝐾2, 𝑛𝐾, so the 

more homogeneous the strategy, the greater is its value, 

and we always 𝛤𝑛𝑟 ∈ ⟦𝑛𝐾, 𝑛𝐾
2⟧. 

And we define the new relation of order ≼ for 𝜁1 =
(𝐻1, Γ1) and 𝜁2 = (𝐻2, Γ2) by the relation: 

 

 

 

 𝜁1 ≼ 𝜁2 ⇔ 𝐻1 ≥ 𝐻2 𝑜𝑟 (𝐻1 = 𝐻2 𝑎𝑛𝑑 Γ1 ≤ Γ2). (34) 

 

C.  Simulation And Results 

The simulation of the second ACS-CKC model 

precedes with the same conditions, such as the problem 

cartridges, the hardware processing capacity. The results 

are indicated in the top graphs. 

 

 

Fig.100. The 𝟏𝒔𝒕, 𝟐𝟎𝒕𝒉, 𝟒𝟎𝒕𝒉and 𝟕𝟎𝒕𝒉 experience of ACS-CKC 𝟐𝒏𝒅 

model with static 𝒒𝟎 

 

Fig.11. The 𝟏𝒔𝒕, 𝟐𝟎𝒕𝒉, 𝟒𝟎𝒕𝒉and 𝟕𝟎𝒕𝒉  experience of ACS-CKC 𝟐𝒏𝒅 

model with dynamic 𝒒𝟎 
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Fig.12. 𝜶,𝜷, learning indicator,  
𝑪𝒏𝒓
𝒆𝒍𝒊𝒕𝒆

𝑪𝒏𝒃𝒆𝒔𝒕
 , 𝒒𝟎 and standard deviation 

graphs in terms of 𝒏 and 𝒓 for ACS-CKC 𝟐𝒏𝒅 model with static 𝒒𝟎  

 

Fig.13. 𝜶,𝜷, learning indicator,  
𝑪𝒏𝒓
𝒆𝒍𝒊𝒕𝒆

𝑪𝒏𝒃𝒆𝒔𝒕
 , 𝒒𝟎 and standard deviation 

graphs in terms of 𝒏 and 𝒓 for ACS-CKC 𝟐𝒏𝒅 model with dynamic 𝒒𝟎 

 

Fig.14. Optimal distances obtained by 𝟏𝒔𝒕 𝒂𝒏𝒅 𝟐𝒏𝒅ACS-CKC model 

with static and dynamic 𝒒𝟎 

 

Fig.15. Optimal stages obtained by 𝟏𝒔𝒕 𝒂𝒏𝒅 𝟐𝒏𝒅ACS-CKC model with 

static and dynamic 𝒒𝟎 

The analysis of the results obtained by the second 

model shows a new evolution on the homogeneity and the 

learning index variations. We note that the homogeneity 

evolution presents a smooth continuous variation which 

will end up being maximized at the end of the learning 

period. This variation does not depend on the nature of 

the graph or its metric, something which is not verified in 

the first model. 

 

 

 

 

 

 

Due to the new variation in homogeneity, the colony 

finds better configurations, which is not the case in the 

first model that uses metric dispersion to express 

homogeneity. 

 

VII.  STATISTICAL ANALYSIS OF MODELS WITH A 

COLLECTIVE KNOWLEDGE CENTER 

The comparison of the results between the first model 

and the second shows a slight advantage of the first 

model, in terms of the optimal distance found. But, 

statistically, we can prove that the four models: ACS-

CKC 1^st model with static and dynamic q_0 , and ACS-

CKC 2^nd model with static and dynamic q_0 , and the 

classical ACS model have a tendency to give the same 

results.  

Indeed, we performed a static analysis on 33 graphs of 

TSP, comparing, on the one hand, the four models that 

illustrate our approach of dynamic parameterization, and 

the basic model ACS. 

Statistical analysis [ANOVA test (for a level of 

significance α = 0.01), Tukey Tests (confidence level = 

99.89%), Dunnett Simultaneous Tests (confidence level = 

99.73%), Hsu Simultaneous Tests (confidence level = 

99.44%), shows an equivalence between the five models 

to more than 99%.  

Table 1. Statistical Analysis Graphs  

a280.tsp eil76.tsp lin105.tsp 

att48.tsp kroa100.tsp lin318.tsp 

berlin52.tsp kroa150.tsp pr76.tsp 

dantzig42.tsp kroa200.tsp pr107.tsp 

eil101.tsp krob100.tsp pr136.tsp 

eil51.tsp krob150.tsp ch150.tsp 

st70.tsp krob200.tsp pr124.tsp 

pr152.tsp ts225.tsp pr144.tsp 

pr226.tsp tsp225.tsp rat195.tsp 

pr264.tsp bier127.tsp pr299.tsp 

rat99.tsp ch130.tsp rd100.tsp 

 

 

Fig.16. Individual value plot of normal ACS, ACS-CKC 𝟏𝐬𝐭 and  𝟐𝐧𝐝 

model with static and dynamic 𝐪𝟎
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Fig.17. Tukey simultaneous 99% CIs for normal ACS, ACS-CKC 𝟏𝐬𝐭 
and  𝟐𝐧𝐝 models with static and dynamic 𝐪𝟎 

 

Fig.18. Dunnett Simultaneous 99% CIs for normal ACS, ACS-CKC 𝟏𝐬𝐭 
and  𝟐𝐧𝐝 model with static and dynamic 𝐪𝟎 

 

Fig.19. Hsu Simultaneous 99% CIs for normal ACS, ACS-CKC 𝟏𝐬𝐭 and  

𝟐𝐧𝐝 model with static and dynamic 𝐪𝟎 

 

VIII.  CONCLUSION 

In conclusion, the approach with Collective 

Knowledge Center provides comparable results to those 

of the classic ACS alternative. However, our approach 

has many advantages, including the most important ones: 

 

 It offers the possibility to carry the optimal 

configuration like a data briefcase. This briefcase 

is exportable, that is to say, it can be used in 

different contexts and dimensions of graphs. In 

addition, this briefcase is scalable, that is to say, 

that every time it is used, it will improve itself, by 

collecting the new optimal configurations. 

 It also shows behavior stability, both in terms of 

the results obtained, or in the solutions research 

evolution. 

 It can be seen as an alternative to a machine 

learning model using reinforcement learning 

approach, applied to a multi-agent system; Namely, 

the ant colony system. 
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