
I.J. Intelligent Systems and Applications, 2018, 6, 22-29
Published Online June 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2018.06.03

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 6, 22-29

A Model for Estimating Firmware Execution

Time Taking Into Account Peripheral Behavior

Dmytro V. Fedasyuk
Lviv Polytechnic National University/Software Department, Lviv, 79013, Ukraine

E-mail: fedasyuk@gmail.com

Tetyana A. Marusenkova and Ratybor S. Chopey
Lviv Polytechnic National University/Software Department, Lviv, 79013, Ukraine

E-mail: tetyana.marus@gmail.com, chopey.ratybor@gmail.com

Received: 21 November 2017; Accepted: 24 April 2018; Published: 08 June 2018

Abstract—The paper deals with the problem of

estimating the execution time of firmware. Any firmware

is bound to wait for a response from peripheral devices

such as external memory chips, displays, analog-to-

digital converters, etc. The firmware’s execution is frozen

until the expected response is obtained. Thus, any

firmware’s execution time depends not only on the

computational resources of the embedded system being

inspected but also on peripheral devices each of which is

able to perform a set of operations during some random

time period residing, however, within a known interval.

The paper introduces a model of a computer application

for evaluation of microcontroller-based embedded

systems’ firmware’s execution time that takes into

consideration the type of the microcontroller, the total

duration of all the assembler-like instructions for a

specific microcontroller, all the occasions of waiting for a

response from hardware components, and the possible

time periods for all the responses being waited for.

Besides, we proposed the architecture of the computer

application that assumes a reusable database retaining

data on microcontrollers’ instructions.

Index Terms—Firmware execution time, execution time

uncertainty, modeling, Monte-Carlo, embedded systems.

I. INTRODUCTION

Nowadays, the market of real-time embedded systems

is constantly growing. Thus, in order to keep up with the

market, one needs to speed up the process of bringing out

each new release of a real-time embedded system [1, 2].

Consequently, it raises the need to intensify all the

production processes including quality assurance

procedures. All this testifies the importance of reliable,

time-efficient, automated tools for quality assurance of

both software and hardware components of real-time

embedded systems.

In hard real-time systems, each time-critical activity

should meet its deadline. However, any firmware

execution time depends not only on the microcontroller

itself but also on peripheral devices connected to it.

Moreover, the latter can be inclined to more or less

uncertainty in their response. Depending on their type,

model and the time of being in use, i.e., when a peripheral

device wears out, its characteristics make their operation

slower in general and their behaviors become less

determined. In order to evaluate the firmware’s execution

time, they use the following metrics: worst-case

execution time (WCET) [3, 4], best-case execution time

(BCET) [5, 6] and average-case execution time, (ACET)

[7, 8]. The latter resides within the interval [BCET -

WCET] and depends on the distribution of the program

execution time. The narrower the above-mentioned range,

the less uncertainty we have to deal with, and a slow

high-predictable system might be preferable than a fast

unpredictable one. Despite the fact there exist different

methods and techniques for execution time estimation,

they all ignore the influence of hardware components on

the total execution time [9-22]. However, hardware

components not only contribute to the total delay, they

also posse a great deal of uncertainty which is to be

measured and taken into account.

From the point of view of its users, a system should

perform some actions within an expected time period.

From the embedded software engineers’ slant, each of

such activities is performed by a set of functions in

firmware and the total predictability of each activity is

determined by the weakest item among these functions. A

model allows embedded software engineers to evaluate

the predictability of execution time for each function in

firmware and thus detects the weakest items in their

systems might be of significant importance in the testing

and maintenance stages of the system’s life cycle. First,

as mentioned above, any hardware component is prone to

get less predictable over-time and inspection of the

existing embedded system by using the model, it allows

us to detect and to replace hardware items that contribute

most uncertainty to the whole system. Second, the system

might be ported to another, newer and more advantageous

hardware platform while its main application logic should

be preserved. The model allows us to avoid an erroneous

choice of hardware components reducing the

predictability of the execution time of the system’s time-

 A Model for Estimating Firmware Execution Time Taking Into Account Peripheral Behavior 23

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 6, 22-29

critical functions. Moreover, since there is time limitation

for any project and any single stage, the model is helpful

for quality assurance engineers when they plan their

activities (here, we assume that less determined functions

require more attention).The work is aimed at developing

and verifying a model for evaluating the predictability of

the execution time of all the functions in a system and a

software tool based on this model.

This paper is organized as follows: a proposed model is

presented in section II. The process of verification of the

proposed model that had been conducted on a real

embedded system is described in section III. A

conclusion and future work is suggested in section VI.

II. A MODEL FOR ESTIMATION OF EMBEDDED SYSTEMS’

CODE EXECUTION TIME

We divide all the instructions in the firmware into two

groups: 1) those dependent only on the microcontroller

itself and 2) those dependent on peripheral devices. Thus,

the execution time of any function will have its more or

less stable component and a variable component

influenced by hardware.

Step 1. The first stage assumes the syntax analysis of

the whole system performed using the map-file generated

during firmware compilation. The names of all the

functions are placed into the dedicated table in a database,

the structure of which is represented by Table 1.

Step 2. All the instructions of the first group written in

a high-level language come down to a set of assembler-

like instructions. The latter depends on the

microcontroller and an IDE keeps its database of the

microcontrollers. The database suggests which

instructions are used to transform any hi-level code. In

RISC microcontrollers, each instruction typically takes

one clock pulse to be executed, an instruction may take 1

to 12 clock pulses in CISC. Using IDE’s capabilities, one

may find out which assembler-like instructions represent

each high-level instruction. For example, Fig. 1 shows

how such a correspondence is provided by IDE Keil

uVision for a code written in C, the instructions for

microcontroller STM32F205.

At this stage, the total duration of all the hi-level

instructions contained inside the function being evaluated

should be calculated. I.e. the algorithm starts with the

function beginning, parses the information about the

correspondence between its high-level and assembler-like

instructions and counts the total duration of the latter. I.e.,

the algorithm selects all distinct function names from

Table 1. Each function iteratively searches name in all the

listing files for all the references to this name. Among

these references, only one will be the function’s body, all

the others are just invocations. The body of any function

starts with PUSH and ends with POP in the assembler-

like code and this fact can be used to recognize the first

and last instruction in the assembler-like representation of

a function. During the phase of compilation, an IDE

creates as many listing files as many .c files in the project

under compilation. The set of instructions supported by

each microcontroller is available from its programming

manual; it’s convenient to keep this data in a separate

table in the database as shown in Table 3. As the result of

this stage, Table 1 is appended by two values per function

– the possible total duration of all the minimum

microcontroller-dependent instructions in the function

being analyzed and the corresponding maximum value.

The need of keeping two values instead of one is

attributed to the fact that the clock frequency might not

be perfectly stable. It depends on the clock generator

selected (quartz generators are the most accurate whereas

RC circuits are generally inferior to them in accuracy).

Thus, the minimum stable execution time is the result T

of counting the total duration of all the relevant

assembler-like instructions minus N% of the clock

frequency, whereas the maximum stable execution time is

equal to T + N%.

Step 3. Next, we evaluate the range of random

execution time for each hardware-dependent instruction.

Typically, the code of an embedded system contains

parts like this:

while(<waiting_for_hardware_responses>) {}; /* a

blocking condition needed because the next instruction

simply does not make sense without the result of the

previous action */

Table 1. The table for storing the main results of execution time estimation

Function

Name

Branch

Number
Min. Stable, s Max. Stable, s Mean Value, s

Mean – Variance,

s

Mean + Variance,

s

main Branch 1 3.676·10-7 4.063·10-7 0 0 0

FlashDataRead Branch 1 1.244·10-7 1.375·10-7 0 0 0

FlashDataRead Branch 2 1.979·10-7 2.188·10-7 1.166·10-4 ·10-3 ·10-3

FlashDataRead Branch 3 2.714·10-7 3·10-7 2.332·10-4 ·10-3 ·10-3

FlashDataWrite Branch 1 1.131·10-7 1.25·10-7 0 0 0

FlashDataWrite Branch 2 1.866·10-7 2.063·10-7 1.166·10-4 1.1658672·10-4 1.1661328·10-4

FlashDataWrite Branch 3 2.488·10-7 2.75·10-7 2.332·10-4 2.3314687·10-4 2.3325313·10-4

EraseSector Branch 1 1.414·10-7 1.563·10-7 0 0 0

EraseSector Branch 2 1.866·10-7 2.063·10-7 0.721 0.691 0.751

EraseFlash Branch 1 1.696·10-3 1.875·10-3 0 0 0

EraseFlash Branch 2 1.866·10-7 2.063·10-7 5.452 1.386 9.518

24 A Model for Estimating Firmware Execution Time Taking Into Account Peripheral Behavior

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 6, 22-29

Fig.1. A fragment of a Listing file showing the correspondence between C code and assembler-like code of function main

Waiting is implemented by a flag which is initially set

to TRUE. The flag is a variable in the firmware that its

value may changes when the state of the corresponding

hardware component changes. Any change of state is

reported to the microcontroller in different ways, for

example, by polling the state of the corresponding pin,

via an interrupt or via reading some RX (receiving buffer),

etc.

There scarcely might be a situation when two different

flags are used in the same condition of while. I.e., we can

reasonably assume that every operator ‘while’

corresponds to no more than one hardware-dependent

flag.

The idea is to track those of the flags (i.e. variables

value of which are changed along with the state of

hardware components) that are used in blocking

conditions like that one presented above, and to collect all

the information on them in a database table, the structure

of which is reflected in Table 4. In order to obtain such a

table, one should parse all the library files being in use in

the project first. Besides, all the IRQ handlers should be

parsed as well. Table 5 summarizes the correspondences

between constructs with a random execution time, the

flags and the corresponding hardware activity to be

waited for. In order to evaluate the possible duration of

the blocking conditions, we just represent them as a range

[T1,T2] where T1 and T2 are the minima and maximum

possible duration of the corresponding hardware activity.

Information about all the hardware delays can be found in

the manual of a specific hardware component (an

example is shown in Table 2).

It’s worth bearing in mind that any hardware-

dependent instruction partially depends on the

microcontroller itself. That’s why all the assembler-like

instructions will be considered when the invariable part

of the firmware execution time is analyzed no matter

whether they are blocking conditions or not.

Step 4. Let’s suppose that the function under

evaluation contains M instructions with some time

uncertainty, which are described by intervals [a1,a2],

[b1,b2]…[x1, x2] (as shown in Fig. 2). We assumed that

the duration of any hardware-dependent operation

follows the Gaussian distribution and verified this

assumption having conducted a range of experiments

with a sample of random-time operations in real

embedded systems. The results tended to be close to the

mean value of the interval where each tested operation

was supposed to be in accordance with its documentation

In order to evaluate the minimum and maximum values

of the random component of the function’s execution

time, Monte-Carlo method is applicable【】. It provides

the accuracy 1/sqrt(N) where N is a number of numerical

experiments performed. Number N should be big enough

to enable us making any statistical conclusions.

Table 2. Part of AT45DB041D Flash-SPI’s documentation showing the minimum, maximum and typical duration of each operation

Symbol Parameter

AT45DB041D

(2.5V version)
AT45DB041D

Units

Min. Typ. Max. Min. Typ. Max.

tXFR Page to Buffer Transfer Time 200 200 ms

tcomp Page to Buffer Compare Time 200 200 ms

tEP
Page Erase and programming time
(256/264 bytes)

 14 35 14 35 ms

tP Page Programming Time 2 4 2 4 ms

tPE Page Erase Time 13 32 13 32 ms

tBE Block Erase Time 30 75 30 75 ms

tSE Sector erase time 0.7 1.3 0.7 1.3 s

tCE Chip erase 5 12 5 12 s

tRST RESET pulse width 10 10 μs

tREC RESET recovery time 1 1 μs

 A Model for Estimating Firmware Execution Time Taking Into Account Peripheral Behavior 25

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 6, 22-29

Fig.2. A list of time intervals representing uncertainty of the
execution time of a function

At this step, each function should be considered again

“from scratch” on the basis of the database Table 1 that

have been already filled in.

For each function in the firmware being evaluated, a

temporary table (the structure of which is shown in Table

6), should be populated with the intervals of values that

each of the hardware flags influencing our function’s

execution time might be assigned. Then the algorithm

iteratively generates N sets of random values normally

distributed inside the intervals [a1,a2], [b1,b2]…[x1, x2],

and each iteration calculates the total function’s execution

time (using the above mentioned constant components).

The mean value of all the numerical experiments

characterizes the most probable value of the function

execution time while the variance indicates the maximum

value by which the execution time ξ in any single

experiment may differ from the mean value.

2

2

1 1

1 1
()

1

N N

j

j j

D
N N

  
 

  
    

    
  (1)

Table 1 should be appended by the values Mean,

(Mean – Variance) and (Mean + Variance).

In practice, instructions might possess some

uncertainties in their execution time which are placed in

parallel branches of the function code. Thus, there is a

need to associate each instruction with a random

execution time and the function’s branch to which the

instruction belongs. This approach allows us to evaluate

the execution time of each branch in a function separately

and to define the branches that quality engineers should

focus on most assiduously.

The model might give more accurate results if we take

into account the probabilities of the conditions in

conditional statements being true. That’s because some

operation with great uncertainty in its execution time may

be executed only under a very unlikely condition and thus

have little influence on the total function’s execution time.

In contrast, some less uncertain operation occurring

frequently contributes as much or even more into the total

uncertainty in the function’s execution time. For example,

if cyclic redundancy code for the data retained in an

EEPROM chip indicates data corruption, the whole chip

should be rewritten [26]. This time-consuming operation

slows down execution of the whole function but is not

likely to be executed every day since data corruption

normally does not take place so often. On the opposite,

check on EEPROM chip’s presence is a comparatively

fast operation with little uncertainty but it should take

place every time when the embedded system is switched

on.

In order to enhance the accuracy of the results, we

evaluate the probabilities of all the conditions being true.

Step 5. Using SQL and the information accumulated in

the database at the previous stages, one can figure out the

dependencies between the functions with the least certain

execution time and the hardware components they use.

Moreover, one can detect the hardware components with

the greatest relative contribution to the system’s behavior

in general.

Table 3. Assembler instructions info list

Assembler
Instruction

A number of cycles taken

MOVE 1

ADD 1

ADDS 1

Table 4. Hardware blocking condition list

File

Name

Function

Name

Row

number

Flag

Name

Init HardwareInit 15
SPI_I2S_FL

AG_TXE

MainLoop MainLoopTask 45
SPI_I2S_FL
AG_RXNE

Background BackgrnTask 22
DMA_IT_T

CIF0

Background BackgrnTask 43
DMA_IT_T

EIF0

Table 5. Hardware flags list

Flag Name

Hardware
model/Operation

type

Procedure

SPI_I2S_FLAG_TXE
AT45DB041D/

Write Buffer
Interrupt data send

SPI_I2S_FLAG_RXNE
AT45DB041D/

Read Buffer

Interrupt data

receive

DMA_IT_TCIF0
Internal DAC/

Send data

Interrupt transfer

complete

DMA_IT_TEIF0
Internal DAC/

Send data error

Interrupt transfer

error

Table 6. Hardware response time

Hardware

model

Operation

type

Min response

time, us

Max response

time, us

LIS302_DL Read register 20 200

AT45DB041D Page erase 13000 32000

AT45DB041D Block erase 30000 75000

The proposed algorithm is represented by its block

diagram (Fig. 3). The module structure of a computer

application for estimating firmware execution time is

shown in Fig. 4.

26 A Model for Estimating Firmware Execution Time Taking Into Account Peripheral Behavior

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 6, 22-29

Fig.3. The block diagram of the proposed algorithm

 A Model for Estimating Firmware Execution Time Taking Into Account Peripheral Behavior 27

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 6, 22-29

Fig.4. The module structure of the proposed computer application

III. EXPERIMENTS

Verification of the proposed model has been performed

in several stages.

At the first stage, a number of experiments were

conducted on a real embedded system. We selected the

functions from a project that depend on a response from

hardware components more than other functions in the

same project. The example of such functions is given

below.

Code example

//Input: Signal Flag

void ReadTempAndPressTask (void const *argument)

{

 osEvent evt;
 float SampleBuffer[3][10];

 float average[3];

 short internal = 0;
 short temp = 0;

 short Chanel = 0;

 byte i, j = 0;
 byte Counter = 0;

 for (;;)
 {

/* The body of the loop itself executes each time when the thread is

invoked by the operating system, however, no meaningful code is
run until the thread receives the signal it’s waiting for. */

 evt = osSignalWait(0x0001, osWaitForever);
 if (evt.status == osEventSignal)

 { /* once the desired signal is obtained, the following code is

 executed once and then the signal is automatically cleared */
 for (Counter = 0; Counter < 10; Counter++)

 { /* here we get 10 samples of ADC readings */

/* starting conversion using an internal ADC */
StartConversionOfInternalADC_1();

/* waiting until SPI gets free */

while(SPI_Get_Flag(SPI1, SPI_FLAG_BSY) == SET);
/* starting conversion using channel 1 of the ADC */

internal = ADS_Read(ADSCON_CH1);

/* starting conversion using channel 2 of the ADC */
Chanel = ADS_Read(ADSCON_CH2);

 temp = Chanel + local_compensation(internal);
 /* converting the value into the temperature */

SampleBuffer[0][Counter] = ADC_code2temp(temp);

/* waiting until SPI gets free */
while(SPI_Get_Flag(SPI1, SPI_FLAG_BSY) == SET);

/* starting conversion of data obtained from the internal

temperature sensor */

Chanel = ADS_Read(ADSCON_INTERNAL);
 temp = Chanel + local_compensation(internal);

/* converting the value into the temperature */

 SampleBuffer[1][Counter] = ADC_code2temp(temp);

/* waiting for the flag “end of conversion” that is to be

set by the internal ADC */
 while(ADC_Get_Flag(ADC1, ADC_FLAG_EOC) ==

SET);

 /* here we calculate the pressure value and put this value
into a buffer */

 SampleBuffer[2][Counter] = (GetPressure() / 100.0);

 }
 for(i = 0; i < 10; i++)

 {

 for(j = 0; j < 3; j++)
 {

 average [i] += SampleBuffer[j][i];

 }
 }

 /* averaging the measured values */

 for(j = 0; j < 3; j++)
 {

 average [j] = (average [j] / 10);

 }

 /* if the temperature is greater than some preset alarm value,

we send a special signal for another thread, identified by handler
tid_EmergencyTask */

 if ((average[0] > TEMP_ALARM_VALUE) ||

 (average[1] > TEMP_ALARM_VALUE))

 {

 osSignalSet(tid_EmergencyTask, 0x0001);
 }

 /* if the pressure is greater than some preset alarm value, we

send a special signal for another thread, identified by handler
tid_EmergencyTask */

 if (average[2] > PRESS_ALARM_VALUE)

 {
 osSignalSet(tid_EmergencyTask, 0x0002);

 }

 }
 }

}

This is the code of a thread intended for taking

readings of temperature and pressure. The code waits

three times for a response of hardware components –

twice for the SPI to change its state from “busy” to “free”

and once for an ADC having finished the process of

28 A Model for Estimating Firmware Execution Time Taking Into Account Peripheral Behavior

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 6, 22-29

conversion.

We called this function 200 times and measured its

actual total execution time and the time of waiting for

these three conditions separately. In order to measure the

execution time of each of the three blocking conditions,

we used a 64-bit-long variable g_GlobalTime that

changes each millisecond in a parallel high-priority

thread. The difference between two values of this variable

(one is taken just before a blocking condition, another

variable is taken immediately after it) was logged each

time the function had been invoked. Thus, we obtained a

file of the structure, presented in Table 6.

Upon this measured data, we calculated sets of the

mean and variance values for each blocking condition.

These values characterize the most likely time of their

execution and their worst-case time (the mean plus the

variance) and the best-case time (the mean minus the

variance).

Besides, we obtained the mean execution time for the

whole function, and its error characterized by the

variance.

At the second stage, we performed the non-automated

calculation of all the assembler-like instructions.

The source code and the corresponding listing file were

manually analyzed, all the encountered instructions were

summarized and their durations counted up.

After that, numerical experiments using Monte-Carlo

method were performed (in accordance with the logic

described earlier).

Then we evaluated the sum of the calculated total

duration of all the microcontroller-based instructions in

the function and the average duration of all the blocking

conditions in it simulated by Monte-Carlo. We compared

this sum with the results of stage 1 (performed on a real

system).

A slight difference in the calculations and experiments

might be attributed to the amount of experiments

conducted (about 200). In general, the obtained results

have proven the applicability of the proposed model.

IV. CONCLUSION

The practicability of the proposed model and computer

application developed on its basis for estimating firmware

execution time have been proved on relatively small

projects. Being based on numerical experiments using

Monte-Carlo method, the application enables static

estimation of the firmware execution time with no need

of performing tiresome multiple experiments in real

embedded systems. If the amount of performed numerical

experiments is large enough, the estimated mean and

variance of the execution time characterize WCET,

BCET and ACET. In contrast to known techniques of

evaluating WCET, BCET, and ACET, the proposed

method takes into account the uncertainty in a response of

hardware components contained by an embedded system

being evaluated.

The authors are planning to enhance the proposed

model and computer tool by taking into account the

conditional probabilities of entering each branch in the

code. Since there can be a situation when some time-

consuming operation is rather unlikely, there might be

introduced weight coefficients to balance the relative

contribution of all the delays introduced by hardware

components.

Besides, we are going to investigate into the

applicability of the proposed software tool for larger

projects, since syntax analysis of large amounts of code

might be time-consuming without failures.

ACKNOWLEDGEMENT

The authors thank the stuff of Dinamica Generale

S.p.A. for their consistent support and sharing experience.

REFERENCES

[1] S. Vasudevan, S. R, S. V and M. N, "Design and

Development of an Embedded System for Monitoring the

Health Status of a Patient", International Journal of

Intelligent Systems and Applications, vol. 5, no. 4, pp. 64-

71, 2013. doi:10.5815/ijisa.2013.04.06.

[2] O. Oyetoke, "A Practical Application of ARM Cortex-M3

Processor Core in Embedded System Engineering",

International Journal of Intelligent Systems and

Applications, vol. 9, no. 7, pp. 70-88, 2017.

doi:10.5815/ijisa.2017.07.08.

[3] L. Insup, J. Leung and S. Son, Handbook of Real-Time

and Embedded Systems. Boca Raton, Fla.: Chapman &

Hall, 2008.

[4] R. Wilhelm, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J.

Staschulat, et al. "The worst-case execution-time problem

— overview of methods and survey of tools", ACM

Transactions on Embedded Computing Systems, vol. 7, no.

3, pp. 1-53, 2008. doi:10.1145/1347375.1347389

[5] P. Lokuciejewski and P. Marwedel, Worst-case execution

time aware compilation techniques for real-time systems.

New York: Springer, 2011.

[6] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin,

M. Schmidt, H. Theiling et al. "Reliable and Precise

WCET Determination for a Real-Life Processor",

Embedded Software, pp. 469-485, 2001. doi:10.1007/3-

540-45449-7_32.

[7] D. Stewart, "Measuring Execution Time and Real-Time

Performance", in Embedded Systems Conference ESC-

341/361, Boston, 2006.

[8] M. Wahler, E. Ferranti, R. Steiger, R. Jain and K. Nagy,

"CAST: Automating Software Tests for Embedded

Systems", 2012 IEEE Fifth International Conference on

Software Testing, Verification and Validation, 2012.

doi:10.1109/ICST.2012.126

[9] R. Kirner, "The WCET Analysis Tool CalcWcet167",

Leveraging Applications of Formal Methods, Verification

and Validation. Applications and Case Studies, pp. 158-

172, 2012. doi:10.1007/978-3-642-34032-1_17.

[10] H. Aljifri, A. Pons and M. Tapia, "Tighten the

computation of worst-case execution-time by detecting

feasible paths", Conference Proceedings of the 2000 IEEE

International Performance, Computing, and

Communications Conference, 2000.

doi:10.1109/PCCC.2000.830347.

[11] C. Healy, M. Sjödin, V. Rustagi, D. Whalley and R.

Engelen, "Supporting timing analysis by automatic

bounding of loop iterations", Real-Time Systems, vol. 18,

no. 23, pp. 129-156, 2000. doi:10.1023/A:1008189014032.

[12] C. Healy and D. Whaley, "Tighter timing predictions by

 A Model for Estimating Firmware Execution Time Taking Into Account Peripheral Behavior 29

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 6, 22-29

automatic detection and exploitation of value-dependent

constraints", Proceedings of the Fifth IEEE Real-Time

Technology and Applications Symposium, pp. 79-92,

1999. doi:10.1109/RTTAS.1999.777663.

[13] Y. Liu and G. Gomez, "Automatic accurate time-bound

analysis for high-level languages", Lecture Notes in

Computer Science, pp. 31-40, 1998.

doi:10.1007/BFb0057778.

[14] J. Engblom, "Processor Pipelines and Static Worst-Case

Execution Time Analy- sis", Dissertation for the Degree

of Doctor of Philosophy in Computer Systems, Uppsala,

2002.

[15] L. Xianfeng, A. Roychoudhury and T. Mitra, "Modeling

Out-of-Order Processors for Software Timing Analysis",

25th IEEE International Real-Time Systems Symposium,

2004. doi:10.1109/REAL.2004.33.

[16] S. Lim, Y. Bae, G. Jang, B. Rhee, S. Min, C. Park, et al.

"An accurate worst case timing analysis for RISC

processors", IEEE Transactions on Software Engineering,

vol. 21, no. 7, pp. 593-604, 1995. doi:10.1109/32.392980.

[17] C. Healy, R. Arnold, F. Mueller, D. Whalley and M.

Harmon, "Bounding pipeline and instruction cache

performance", IEEE Transactions on Computers, vol. 48,

no. 1, pp. 53-70, 1999. doi:10.1109/12.743411.

[18] F. Stappert and P. Altenbernd, "Complete worst-case

execution time analysis of straight-line hard real-time

programs", Journal of Systems Architecture, vol. 46, no. 4,

pp. 339-355, 2000. doi:10.1016/S1383-7621(99)00010-7.

[19] C. Ferdinand, R. Heckmann, and H. Theiling.

"Convenient user annotations for a WCET tool",

International Workshop on Worst-Case Execution Time

Analysis, pp 17–20, 2003.

[20] J. Engblom, A. Ermedahl and F. Stappert, "Structured

Testing of Worst-Case Execution Time Analysis

Methods", in Work-In-Progress Sessions of The 21st

IEEE Real-Time Systems Symposium (RTSSWIP00),

Orlando, Florida, 2000.

[21] D. Fedasyuk, R. Chopey and B. Knysh, "Architecture of a

tool for automated testing the worst-case execution time

of real-time embedded systems' firmware", 14th

International Conference The Experience of Designing

and Application of CAD Systems in Microelectronics

(CADSM), Lviv, Ukraine, 2017, pp. 278-282.

doi:10.1109/cadsm.2017.7916134.

[22] R. Chopey, B. Knysh and D. Fedasyuk, "The model of

software execution time remote testing", in 7th

International youth science forum “LITTERIS ET

ARTIBUS”, Lviv, Ukraine, 2017, pp. 398-402.

Authors’ Profiles

Dmytro V. Fedasyuk was born in 1955. He

graduated from Lviv Polytechnic National

University in 1977 as an expert in radio-

frequency engineering. He started his career

in State Enterprise “Scientific-Research

Institute For Metrology of Measurement And

Control Systems” (“Systema”). Three years

later he returned to Lviv Polytechnic National

University in order to proceed with both scientific and teaching

activities. There he gradually evolved from a junior researcher

to the Vice-Rector for Undergraduate Education.

In 1985 he defended his Ph.D. thesis “Automated methods

for modeling and analysis of thermo-electrical characteristics of

microelectronic units for radio-electronic hardware CAD” in the

city named today St. Petersburg. In 2000 he became a doctor of

science after defending his work “Automation of thermal design

of microelectronic systems” in Lviv. In 2002 he was promoted

to the academic rank of professor. In 2004 he became the head

of Software Department, a relatively recent department of the

same university and left this position in 2015 to focus on his

vice-rector role.

His scientific contribution is contained in two monographs

and over 140 works published in a wide range of scientific

journals included those well-known all over the world. He

attended conferences in Germany, France, Italy, Poland,

Hungary and many other countries. Under his supervision, a

number of Ph.D. students have successfully got their degrees.

Prof. Fedasyuk is a Member of IEEE, a Member of Shevchenko

Science Society, a Member of UFI in Ukraine and a co-editor of

several scientific journals.

His main fields of interest are mathematical modeling;

modeling and analysis of thermo-electrical processes in

microelectronic systems, Internet technologies, software design.

Tetyana A. Marusenkova was born in 1982.

She received the master degree in the

Institute of Computer Science and

Informational Technologies of Lviv

Polytechnic National University in 2005.

After working as a software engineer in

several IT companies, she came back to the

University in 2009 and joined Electronic

Devices Department as a postgraduate student. In 2013 she got

Ph.D. degree having defended thesis “Semiconductor magnetic

sensors based on split Hall structures”.

In 2011 she joined Software Department of Lviv Polytechnic

National University as a teacher. In 2014 she started working in

the team built of teachers and students of Software department

in order to develop embedded systems in collaboration with

Dinamica Generale S.p.A., an Italian company providing

modern electronic solutions and sensors. She is a co-author of

over 50 papers and proceedings.

Ratybor S. Chopey is a postgraduate

student of the Software Department of Lviv

Polytechnic National University. He

received his bachelor and master degree in

radio-frequency engineering in Lviv

Polytechnic National University in 2013 and

2014 correspondingly.

He has been developing embedded

systems since 2014 when The University and Italian company

Dinamica Generale S.p.A. signed a cooperation agreement.

During these years of collaboration, he had been investigating

into problems of embedded systems’ automated testing and

execution time estimation and observing and recording behavior

of various peripheral devices.

He is a co-author of 7 papers in scientific journals and

international conferences proceedings. His area of interest is

embedded systems and reliability of complex systems.

How to cite this paper: Dmytro V. Fedasyuk, Tetyana A.

Marusenkova, Ratybor S. Chopey, "A Model for Estimating

Firmware Execution Time Taking Into Account Peripheral

Behavior", International Journal of Intelligent Systems and

Applications(IJISA), Vol.10, No.6, pp.22-29, 2018. DOI:

10.5815/ijisa.2018.06.03

