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Abstract—The paper deals with the problem of 

estimating the execution time of firmware. Any firmware 

is bound to wait for a response from peripheral devices 

such as external memory chips, displays, analog-to-

digital converters, etc. The firmware’s execution is frozen 

until the expected response is obtained. Thus, any 

firmware’s execution time depends not only on the 

computational resources of the embedded system being 

inspected but also on peripheral devices each of which is 

able to perform a set of operations during some random 

time period residing, however, within a known interval. 

The paper introduces a model of a computer application 

for evaluation of microcontroller-based embedded 

systems’ firmware’s execution time that takes into 

consideration the type of the microcontroller, the total 

duration of all the assembler-like instructions for a 

specific microcontroller, all the occasions of waiting for a 

response from hardware components, and the possible 

time periods for all the responses being waited for. 

Besides, we proposed the architecture of the computer 

application that assumes a reusable database retaining 

data on microcontrollers’ instructions. 

 

Index Terms—Firmware execution time, execution time 

uncertainty, modeling, Monte-Carlo, embedded systems. 

 

I.  INTRODUCTION 

Nowadays, the market of real-time embedded systems 

is constantly growing. Thus, in order to keep up with the 

market, one needs to speed up the process of bringing out 

each new release of a real-time embedded system [1, 2]. 

Consequently, it raises the need to intensify all the 

production processes including quality assurance 

procedures. All this testifies the importance of reliable, 

time-efficient, automated tools for quality assurance of 

both software and hardware components of real-time 

embedded systems. 

In hard real-time systems, each time-critical activity 

should meet its deadline. However, any firmware 

execution time depends not only on the microcontroller 

itself but also on peripheral devices connected to it. 

Moreover, the latter can be inclined to more or less 

uncertainty in their response. Depending on their type, 

model and the time of being in use, i.e., when a peripheral 

device wears out, its characteristics make their operation 

slower in general and their behaviors become less 

determined. In order to evaluate the firmware’s execution 

time, they use the following metrics: worst-case 

execution time (WCET) [3, 4], best-case execution time 

(BCET) [5, 6] and average-case execution time, (ACET) 

[7, 8]. The latter resides within the interval [BCET -

WCET] and depends on the distribution of the program 

execution time. The narrower the above-mentioned range, 

the less uncertainty we have to deal with, and a slow 

high-predictable system might be preferable than a fast 

unpredictable one. Despite the fact there exist different 

methods and techniques for execution time estimation, 

they all ignore the influence of hardware components on 

the total execution time [9-22]. However, hardware 

components not only contribute to the total delay, they 

also posse a great deal of uncertainty which is to be 

measured and taken into account.  

From the point of view of its users, a system should 

perform some actions within an expected time period. 

From the embedded software engineers’ slant, each of 

such activities is performed by a set of functions in 

firmware and the total predictability of each activity is 

determined by the weakest item among these functions. A 

model allows embedded software engineers to evaluate 

the predictability of execution time for each function in 

firmware and thus detects the weakest items in their 

systems might be of significant importance in the testing 

and maintenance stages of the system’s life cycle. First, 

as mentioned above, any hardware component is prone to 

get less predictable over-time and inspection of the 

existing embedded system by using the model, it allows 

us to detect and to replace hardware items that contribute 

most uncertainty to the whole system. Second, the system 

might be ported to another, newer and more advantageous 

hardware platform while its main application logic should 

be preserved. The model allows us to avoid an erroneous 

choice of hardware components reducing the 

predictability of the execution time of the system’s time-



 A Model for Estimating Firmware Execution Time Taking Into Account Peripheral Behavior 23 

Copyright © 2018 MECS                                                             I.J. Intelligent Systems and Applications, 2018, 6, 22-29 

critical functions. Moreover, since there is time limitation 

for any project and any single stage, the model is helpful 

for quality assurance engineers when they plan their 

activities (here, we assume that less determined functions 

require more attention).The work is aimed at developing 

and verifying a model for evaluating the predictability of 

the execution time of all the functions in a system and a 

software tool based on this model. 

This paper is organized as follows: a proposed model is 

presented in section II. The process of verification of the 

proposed model that had been conducted on a real 

embedded system is described in section III. A 

conclusion and future work is suggested in section VI. 

 

II.  A MODEL FOR ESTIMATION OF EMBEDDED SYSTEMS’ 

CODE EXECUTION TIME 

We divide all the instructions in the firmware into two 

groups: 1) those dependent only on the microcontroller 

itself and 2) those dependent on peripheral devices. Thus, 

the execution time of any function will have its more or 

less stable component and a variable component 

influenced by hardware. 

Step 1. The first stage assumes the syntax analysis of 

the whole system performed using the map-file generated 

during firmware compilation. The names of all the 

functions are placed into the dedicated table in a database, 

the structure of which is represented by Table 1.  

Step 2. All the instructions of the first group written in 

a high-level language come down to a set of assembler-

like instructions. The latter depends on the 

microcontroller and an IDE keeps its database of the 

microcontrollers. The database suggests which 

instructions are used to transform any hi-level code. In 

RISC microcontrollers, each instruction typically takes 

one clock pulse to be executed, an instruction may take 1 

to 12 clock pulses in CISC. Using IDE’s capabilities, one 

may find out which assembler-like instructions represent 

each high-level instruction. For example, Fig. 1 shows 

how such a correspondence is provided by IDE Keil 

uVision for a code written in C, the instructions for 

microcontroller STM32F205. 

At this stage, the total duration of all the hi-level 

instructions contained inside the function being evaluated 

should be calculated. I.e. the algorithm starts with the 

function beginning, parses the information about the 

correspondence between its high-level and assembler-like 

instructions and counts the total duration of the latter. I.e., 

the algorithm selects all distinct function names from 

Table 1. Each function iteratively searches name in all the 

listing files for all the references to this name. Among 

these references, only one will be the function’s body, all 

the others are just invocations. The body of any function 

starts with PUSH and ends with POP in the assembler-

like code and this fact can be used to recognize the first 

and last instruction in the assembler-like representation of 

a function. During the phase of compilation, an IDE 

creates as many listing files as many .c files in the project 

under compilation. The set of instructions supported by 

each microcontroller is available from its programming 

manual; it’s convenient to keep this data in a separate 

table in the database as shown in Table 3. As the result of 

this stage, Table 1 is appended by two values per function 

– the possible total duration of all the minimum 

microcontroller-dependent instructions in the function 

being analyzed and the corresponding maximum value. 

The need of keeping two values instead of one is 

attributed to the fact that the clock frequency might not 

be perfectly stable. It depends on the clock generator 

selected (quartz generators are the most accurate whereas 

RC circuits are generally inferior to them in accuracy). 

Thus, the minimum stable execution time is the result T 

of counting the total duration of all the relevant 

assembler-like instructions minus N% of the clock 

frequency, whereas the maximum stable execution time is 

equal to T + N%. 

Step 3. Next, we evaluate the range of random 

execution time for each hardware-dependent instruction. 

Typically, the code of an embedded system contains 

parts like this: 

while(<waiting_for_hardware_responses>) {}; /* a 

blocking condition needed because the next instruction 

simply does not make sense without the result of the 

previous action */ 

Table 1. The table for storing the main results of execution time estimation 

Function  

Name 

Branch  

Number 
Min. Stable, s Max. Stable, s Mean Value, s 

Mean – Variance,  

s 

Mean + Variance,  

s 

main Branch 1 3.676·10-7 4.063·10-7 0 0 0 

FlashDataRead Branch 1 1.244·10-7 1.375·10-7 0 0 0 

FlashDataRead Branch 2 1.979·10-7 2.188·10-7 1.166·10-4 ·10-3 ·10-3 

FlashDataRead Branch 3 2.714·10-7 3·10-7 2.332·10-4 ·10-3 ·10-3 

FlashDataWrite Branch 1 1.131·10-7 1.25·10-7 0 0 0 

FlashDataWrite Branch 2 1.866·10-7 2.063·10-7 1.166·10-4 1.1658672·10-4 1.1661328·10-4 

FlashDataWrite Branch 3 2.488·10-7 2.75·10-7 2.332·10-4 2.3314687·10-4 2.3325313·10-4 

EraseSector Branch 1 1.414·10-7 1.563·10-7 0 0 0 

EraseSector Branch 2 1.866·10-7 2.063·10-7 0.721 0.691 0.751 

EraseFlash Branch 1 1.696·10-3 1.875·10-3 0 0 0 

EraseFlash Branch 2 1.866·10-7 2.063·10-7 5.452 1.386 9.518 
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Fig.1. A fragment of a Listing file showing the correspondence between C code and assembler-like code of function main 

Waiting is implemented by a flag which is initially set 

to TRUE. The flag is a variable in the firmware that its 

value may changes when the state of the corresponding 

hardware component changes. Any change of state is 

reported to the microcontroller in different ways, for 

example, by polling the state of the corresponding pin, 

via an interrupt or via reading some RX (receiving buffer), 

etc. 

There scarcely might be a situation when two different 

flags are used in the same condition of while. I.e., we can 

reasonably assume that every operator ‘while’ 

corresponds to no more than one hardware-dependent 

flag. 

The idea is to track those of the flags (i.e. variables 

value of which are changed along with the state of 

hardware components) that are used in blocking 

conditions like that one presented above, and to collect all 

the information on them in a database table, the structure 

of which is reflected in Table 4. In order to obtain such a 

table, one should parse all the library files being in use in 

the project first. Besides, all the IRQ handlers should be 

parsed as well. Table 5 summarizes the correspondences 

between constructs with a random execution time, the 

flags and the corresponding hardware activity to be 

waited for. In order to evaluate the possible duration of 

the blocking conditions, we just represent them as a range 

[T1,T2] where T1 and T2 are the minima and maximum 

possible duration of the corresponding hardware activity. 

Information about all the hardware delays can be found in 

the manual of a specific hardware component (an 

example is shown in Table 2). 

It’s worth bearing in mind that any hardware-

dependent instruction partially depends on the 

microcontroller itself. That’s why all the assembler-like 

instructions will be considered when the invariable part 

of the firmware execution time is analyzed no matter 

whether they are blocking conditions or not. 

Step 4. Let’s suppose that the function under 

evaluation contains M instructions with some time 

uncertainty, which are described by intervals [a1,a2], 

[b1,b2]…[x1, x2] (as shown in Fig. 2). We assumed that 

the duration of any hardware-dependent operation 

follows the Gaussian distribution and verified this 

assumption having conducted a range of experiments 

with a sample of random-time operations in real 

embedded systems. The results tended to be close to the 

mean value of the interval where each tested operation 

was supposed to be in accordance with its documentation  

In order to evaluate the minimum and maximum values 

of the random component of the function’s execution 

time, Monte-Carlo method is applicable【】. It provides 

the accuracy 1/sqrt(N) where N is a number of numerical 

experiments performed. Number N should be big enough 

to enable us making any statistical conclusions. 

Table 2. Part of AT45DB041D Flash-SPI’s documentation showing the minimum, maximum and typical duration of each operation 

Symbol Parameter 

AT45DB041D 

(2.5V version)  
AT45DB041D 

Units 

Min. Typ. Max. Min. Typ. Max. 

tXFR Page to  Buffer Transfer Time   200   200 ms 

tcomp Page to  Buffer Compare Time   200   200 ms 

tEP 
Page Erase and programming time 
(256/264 bytes) 

 14 35  14 35 ms 

tP Page Programming Time   2 4  2 4 ms 

tPE Page Erase Time   13 32  13 32 ms 

tBE Block Erase Time   30 75  30 75 ms 

tSE Sector erase time   0.7 1.3  0.7 1.3 s 

tCE Chip erase  5 12  5 12 s 

tRST RESET pulse width 10   10   μs 

tREC RESET recovery time   1   1 μs 
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Fig.2. A list of time intervals representing uncertainty of the  
execution time of a function 

At this step, each function should be considered again 

“from scratch” on the basis of the database Table 1 that 

have been already filled in. 

For each function in the firmware being evaluated, a 

temporary table (the structure of which is shown in Table 

6), should be populated with the intervals of values that 

each of the hardware flags influencing our function’s 

execution time might be assigned. Then the algorithm 

iteratively generates N sets of random values normally 

distributed inside the intervals [a1,a2], [b1,b2]…[x1, x2], 

and each iteration calculates the total function’s execution 

time (using the above mentioned constant components). 

The mean value of all the numerical experiments 

characterizes the most probable value of the function 

execution time while the variance indicates the maximum 

value by which the execution time ξ in any single 

experiment may differ from the mean value. 
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Table 1 should be appended by the values Mean, 

(Mean – Variance) and (Mean + Variance). 

In practice, instructions might possess some 

uncertainties in their execution time which are placed in 

parallel branches of the function code. Thus, there is a 

need to associate each instruction with a random 

execution time and the function’s branch to which the 

instruction belongs. This approach allows us to evaluate 

the execution time of each branch in a function separately 

and to define the branches that quality engineers should 

focus on most assiduously.  

The model might give more accurate results if we take 

into account the probabilities of the conditions in 

conditional statements being true. That’s because some 

operation with great uncertainty in its execution time may 

be executed only under a very unlikely condition and thus 

have little influence on the total function’s execution time. 

In contrast, some less uncertain operation occurring 

frequently contributes as much or even more into the total 

uncertainty in the function’s execution time. For example, 

if cyclic redundancy code for the data retained in an 

EEPROM chip indicates data corruption, the whole chip 

should be rewritten [26]. This time-consuming operation 

slows down execution of the whole function but is not 

likely to be executed every day since data corruption 

normally does not take place so often. On the opposite, 

check on EEPROM chip’s presence is a comparatively 

fast operation with little uncertainty but it should take 

place every time when the embedded system is switched 

on. 

In order to enhance the accuracy of the results, we 

evaluate the probabilities of all the conditions being true. 

Step 5. Using SQL and the information accumulated in 

the database at the previous stages, one can figure out the 

dependencies between the functions with the least certain 

execution time and the hardware components they use. 

Moreover, one can detect the hardware components with 

the greatest relative contribution to the system’s behavior 

in general. 

Table 3. Assembler instructions info list 

Assembler  
Instruction 

A number of cycles taken 

MOVE 1 

ADD 1 

ADDS 1 

Table 4. Hardware blocking condition list 

File 

Name 

Function  

Name 

Row 

number 

Flag  

Name 

Init HardwareInit 15 
SPI_I2S_FL

AG_TXE 

MainLoop MainLoopTask 45 
SPI_I2S_FL
AG_RXNE 

Background BackgrnTask 22 
DMA_IT_T

CIF0 

Background BackgrnTask 43 
DMA_IT_T

EIF0 

Table 5. Hardware flags list 

Flag Name 

Hardware 
model/Operation 

type 

Procedure 

SPI_I2S_FLAG_TXE 
AT45DB041D/ 

Write Buffer  
Interrupt data send 

SPI_I2S_FLAG_RXNE 
AT45DB041D/ 

Read Buffer 

Interrupt data 

receive 

DMA_IT_TCIF0 
Internal DAC/ 

Send data 

Interrupt transfer 

complete 

DMA_IT_TEIF0 
Internal DAC/ 

Send data error 

Interrupt transfer 

error 

Table 6. Hardware response time 

Hardware 

model 

Operation 

type 

Min response 

time, us 

Max response 

time, us 

LIS302_DL Read register 20 200 

AT45DB041D Page erase  13000 32000 

AT45DB041D Block erase 30000 75000 

 

The proposed algorithm is represented by its block 

diagram (Fig. 3). The module structure of a computer 

application for estimating firmware execution time is 

shown in Fig. 4. 
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Fig.3. The block diagram of the proposed algorithm 
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Fig.4. The module structure of the proposed computer application 

 

III.  EXPERIMENTS 

Verification of the proposed model has been performed 

in several stages. 

At the first stage, a number of experiments were 

conducted on a real embedded system. We selected the 

functions from a project that depend on a response from 

hardware components more than other functions in the 

same project. The example of such functions is given 

below.  

 

Code example 

//Input: Signal Flag  

 
void ReadTempAndPressTask (void const *argument) 

{ 

    osEvent evt; 
    float SampleBuffer[3][10]; 

    float average[3]; 

    short internal  = 0; 
    short temp = 0; 

    short Chanel = 0; 

    byte  i, j = 0; 
    byte Counter = 0; 

  

    for (;;) 
    { 

/* The body of the loop itself executes each time when the thread is 

invoked by the operating system, however, no meaningful code is 
run until the thread receives the signal it’s waiting for. */ 

   

           evt = osSignalWait(0x0001, osWaitForever); 
          if (evt.status == osEventSignal) 

          { /* once the desired signal is obtained, the following code is  

             executed once and then the signal is automatically cleared */ 
              for (Counter = 0; Counter < 10; Counter++) 

             { /* here we get 10 samples of ADC readings */ 

/* starting conversion using an internal ADC */  
StartConversionOfInternalADC_1(); 

/* waiting until SPI gets free */ 

while(SPI_Get_Flag(SPI1, SPI_FLAG_BSY) == SET); 
/* starting conversion using channel 1 of the ADC */ 

internal = ADS_Read(ADSCON_CH1); 

/* starting conversion using channel 2 of the ADC */ 
Chanel = ADS_Read(ADSCON_CH2);  

 temp = Chanel + local_compensation(internal); 
 /* converting the value into the temperature */ 

SampleBuffer[0][Counter] = ADC_code2temp(temp); 

/* waiting until SPI gets free */ 
while(SPI_Get_Flag(SPI1, SPI_FLAG_BSY) == SET); 

/* starting conversion of data obtained from the internal 

temperature sensor */ 

Chanel = ADS_Read(ADSCON_INTERNAL);  
 temp = Chanel + local_compensation(internal); 

/* converting the value into the temperature */ 

 SampleBuffer[1][Counter] = ADC_code2temp(temp); 
 

/* waiting for the flag “end of conversion” that is to be 

set by the internal ADC */ 
 while(ADC_Get_Flag(ADC1, ADC_FLAG_EOC) == 

SET); 

 /* here we calculate the pressure value and put this value 
into a buffer */ 

 SampleBuffer[2][Counter] = (GetPressure() / 100.0);  

              }  
              for(i = 0; i < 10; i++) 

              { 

 for(j = 0; j < 3; j++) 
 {  

      average [i] += SampleBuffer[j][i]; 

 } 
              } 

              /* averaging the measured values */ 

              for(j = 0; j < 3; j++) 
             {  

   average [j] = (average [j] / 10); 

              } 
 

             /* if the temperature is greater than some preset alarm value, 

we send a special signal for another thread, identified by handler 
tid_EmergencyTask */ 

              if ((average[0] > TEMP_ALARM_VALUE) || 

                   (average[1] > TEMP_ALARM_VALUE)) 

              { 

  osSignalSet(tid_EmergencyTask, 0x0001); 
               } 

             /* if the pressure is greater than some preset alarm value, we 

send a special signal for another thread, identified by handler 
tid_EmergencyTask */ 

               if (average[2] > PRESS_ALARM_VALUE) 

               { 
                         osSignalSet(tid_EmergencyTask, 0x0002); 

                } 

             } 
       } 

} 

 

 

This is the code of a thread intended for taking 

readings of temperature and pressure. The code waits 

three times for a response of hardware components – 

twice for the SPI to change its state from “busy” to “free” 

and once for an ADC having finished the process of 



28 A Model for Estimating Firmware Execution Time Taking Into Account Peripheral Behavior  

Copyright © 2018 MECS                                                             I.J. Intelligent Systems and Applications, 2018, 6, 22-29 

conversion. 

We called this function 200 times and measured its 

actual total execution time and the time of waiting for 

these three conditions separately. In order to measure the 

execution time of each of the three blocking conditions, 

we used a 64-bit-long variable g_GlobalTime that 

changes each millisecond in a parallel high-priority 

thread. The difference between two values of this variable 

(one is taken just before a blocking condition, another 

variable is taken immediately after it) was logged each 

time the function had been invoked. Thus, we obtained a 

file of the structure, presented in Table 6. 

Upon this measured data, we calculated sets of the 

mean and variance values for each blocking condition. 

These values characterize the most likely time of their 

execution and their worst-case time (the mean plus the 

variance) and the best-case time (the mean minus the 

variance). 

Besides, we obtained the mean execution time for the 

whole function, and its error characterized by the 

variance. 

At the second stage, we performed the non-automated 

calculation of all the assembler-like instructions. 

The source code and the corresponding listing file were 

manually analyzed, all the encountered instructions were 

summarized and their durations counted up. 

After that, numerical experiments using Monte-Carlo 

method were performed (in accordance with the logic 

described earlier). 

Then we evaluated the sum of the calculated total 

duration of all the microcontroller-based instructions in 

the function and the average duration of all the blocking 

conditions in it simulated by Monte-Carlo. We compared 

this sum with the results of stage 1 (performed on a real 

system). 

A slight difference in the calculations and experiments 

might be attributed to the amount of experiments 

conducted (about 200). In general, the obtained results 

have proven the applicability of the proposed model. 

 

IV.  CONCLUSION 

The practicability of the proposed model and computer 

application developed on its basis for estimating firmware 

execution time have been proved on relatively small 

projects. Being based on numerical experiments using 

Monte-Carlo method, the application enables static 

estimation of the firmware execution time with no need 

of performing tiresome multiple experiments in real 

embedded systems. If the amount of performed numerical 

experiments is large enough, the estimated mean and 

variance of the execution time characterize WCET, 

BCET and ACET. In contrast to known techniques of 

evaluating WCET, BCET, and ACET, the proposed 

method takes into account the uncertainty in a response of 

hardware components contained by an embedded system 

being evaluated. 

The authors are planning to enhance the proposed 

model and computer tool by taking into account the 

conditional probabilities of entering each branch in the 

code. Since there can be a situation when some time-

consuming operation is rather unlikely, there might be 

introduced weight coefficients to balance the relative 

contribution of all the delays introduced by hardware 

components. 

Besides, we are going to investigate into the 

applicability of the proposed software tool for larger 

projects, since syntax analysis of large amounts of code 

might be time-consuming without failures. 
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