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Abstract—Matrix multiplication is widely used in a 

variety of applications and is often one of the core 

components of many scientific computations. This paper 

will examine three algorithms to compute the product of 

two matrices:  the Naive, Strassen’s and Winograd’s 

algorithms. One of the main factors of determining the 

efficiency of an algorithm is the execution time factor, 

how much time the algorithm takes to accomplish its 

work. All the three algorithms will be implemented and 

the execution time will be calculated and we find that 

Winograd’s algorithm is the best and fast method 

experimentally for finding matrix multiplication. Deep 

Neural Networks are used for many applications. 

Training a Deep Neural Network is a time consuming 

process, especially when the number of hidden layers and 

nodes is large. The mechanism of Backpropagation 

Algorithm and Boltzmann Machine Algorithm for 

training a Deep Neural Network is revisited and 

considered how the sum of weighted input is computed. 

The process of computing the sum of product of weight 

and input matrices is carried out for several hundreds of 

thousands of epochs during the training of Deep Neural 

Network. We propose to modify Backpropagation 

Algorithm and Boltzmann Machine Algorithm by using 

fast Winograd’s algorithm. Finally, we find that the 

proposed methods reduce the long training time of Deep 

Neural Network than existing direct methods.  

 

Index Terms—Deep Neural Networks, Backpropagation 

Algorithm, Boltzmann Machine Algorithm, Matrix 

multiplication algorithms: Naive, Strasen’s, Winograd’s 

algorithms. 

 

I.  INTRODUCTION 

Matrix multiplication is an important problem in 

Mathematics and Computer Science. It plays an 

important role in the areas of Graph Theory, Computer 

Graphics, Digital Signal Processing and Neural Networks. 

Fast Matrix Multiplication is still an open problem which 

has attracted a lot of attention for the past few decades 

[1]. In this paper we will consider matrix multiplication 

as the problem, implement various methods to solve this 

problem and find the best one that takes the least time.    

This paper aims to evaluate the theoretical and 

experimental performance of three key matrix 

multiplication algorithms (The Naive algorithm, 

Winograd’s algorithm and Strassen’s algorithm).   

Starting with the mathematical definitions of above three 

algorithms, this paper derives their theatrical run-time 

complexity and then compares these theoretical values to 

each algorithm’s real-world performance.  

Deep Neural Networks(DNN) have been widely used 

for various tasks, such as classification of various types 

of data [2-4], clustering of data [5], speech recognition 

[6], and natural language processing [7] to name just a 

few. As neural networks research moves from state-of-

the-art paradigms to real world applications, the 

associated training time and computing requirements 

become an increasingly important factor affecting the 

comparison of neural networks with alternative, 

competing techniques. Thus the existence of fast and 

efficient learning algorithms is crucial for the evolution 

of this research field in the future.  

The computational efficiency depends on the time 

spent training the network.  In the worst cases scenario, 

the number of epochs can be exponential in n , the 

number of inputs.  In practice, the time required for the 

networks to converge is highly variable. Several 

hundreds of thousands of epochs may be required before 

the weights converge.  A number of techniques exist that 

help speed-up the training time [8].  The same paper 

proposes a technique of replacing standard matrix 

multiplication (Naive) for computing the sum of 

weighted input with Winograd’s matrix multiplication to 

speed-up the training time of a neural network.   

This paper is organized as follows. Section II presents 

related work. Section III presents mathematical 

definitions, theoretical and experimental comparison of 

three matrix multiplication algorithms. Section IV 

presents Winograd’s implementation of Backpropagation 

Algorithm and its performance comparison with direct 

method. Section V presents Winograd’s implementation 

of Boltzmann Machine Algorithm and its performance 
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comparison with existing direct method. Finally, section 

VI contains conclusions and future work.  

 

II.  RELATED WORK 

For the past few years, a huge research is going on 

actively to cut the computing cost of complex computer 

algorithms in various areas by applying innovative 

techniques like Winograd’s method instead of direct and 

straightforward methods. Kuo-Liang et al. proposed a 

simple Improved Full Search (IFS) for Vector 

Quantization (VQ) based on Winograd’s Identity [9]. In 

this letter, authors have mentioned that although VQ is an 

efficient method for low bit rate image compression, it is 

time consuming for high-dimensional vectors in the 

search phase. Employing Winograd’s Identity, they 

presented simple IFS in order to cut the computation time 

in FS for VQ nearly 50%. They have carried out some 

experiments on four popular images as the bench mark to 

evaluate the performance of the proposed method. The 

four adopted images are Lena, Baboon, F16 and Pepper. 

The experimental results showed that the proposed 

method cuts computation time nearly 50%. Winograd’s 

method: a perspective for some pattern recognition 

problems [10] is presented, In this article, N.B. 

Venkateswarulu and P.S.V.S.K. Raju used Winograd’s 

method with Euclidean distance, Mahalanobis distance 

and Maximum Likelyhood (ML) classifiers to reduce 

their computational time requirements. They performed 

experiments with six band thematic mapper data. Their 

result showed that the proposed algorithms for Euclidean 

and ML classifiers are observed to be two times faster 

than their literal algorithms. In the case of the 

Mahalanobis distance classifier, the proposed fast 

algorithm is showing a speed-up of 7. Utility of this 

Winograd’s method with other Pattern Recognition 

algorithms is also discussed. Ch. Ramesh et al. 

implemented fast DCT algorithm using Winograd’s 

method [11]. In this paper, they presented Winograd’s 

matrix multiplication approach for forward Discrete 

Cosine Transform (DCT) and inverse Discrete Cosine 

Transform  (IDCT) computation to reduce their CPU 

time. Experiments are conducted with standard images 

and synthetic images. In their study, authors have used 15 

gray level images and 15 color images in tiff format 

including widely used Lena, Mandrill and Pepper images. 

From their experiments it is shown that Winograd’s 

based DCT and IDCT algorithms are most preferred 

algorithms as they consume very less CPU time 

compared to conventional implementation and MATLAB. 

D.J. Nagendra Kumar et al. implemented Expectation 

Maximization (EM) Clustering using Winograd’s method 

to reduce the computing cost [12]. In this paper, authors 

have proposed eight methods to speed-up quadratic-term 

computation in EM. All methods are implemented and 

executed on synthetic datasets with varying number of 

dimensions, clusters and samples. Out of all approaches, 

the result showed that Winograd’s implemented one is 

the fastest approach. 

 

III.  THREE MATRIX MULTIPLICATION ALGORITHMS 

As we mentioned before, there are three methods to 

calculate the multiplication of matrices.  All of them give 

the same result but each one consumes different space in 

memory and takes different processor time.  The methods 

that we will examine are: 

 

i. Naive algorithm 

ii. Strassen’s algorithm  

iii. Winograd’s algorithm 

 

The above three algorithms are defined firstly and then 

the performances of the algorithms are compared 

theoretically and by experiments.  

A.  Naive Algorithm 

 

 


n

k jkkiji baC
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The naive algorithm is solely based on the familiar 

mathematical definition for the multiplication of two 

matrices, as shown in (1).  To compute each entry in the 

final nn  matrix, we need exactly n  multiplications and 

1n additions.  And since each of the 2n entries in the 

first matrix (A) is multiplied by exactly n  entries from 

the second matrix (B), the total number of multiplications 

is 
32 nnn  , and the total number of additions is 

232)1( nnnn  .   

B.  Strassen’s Algorithm 
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Strassen devised a clever method of dividing the given 

matrices into four sub-matrices and then recursively 

multiplying them to obtain the resultant matrix. This 

method is known as "divide-and-conquer" and adds not 

only elegance but also improved theoretical performance  

[13]. First, the two matrices are divided into four 



 Winograd’s Inequality: Effectiveness for Efficient Training of Deep Neural Networks 51 

Copyright © 2018 MECS                                                             I.J. Intelligent Systems and Applications, 2018, 6, 49-58 

quadrants, or 2/n  by 2/n  submatrices each as shown in 

(2). Now, via a series of intermediate variables, 

Strassen’s method uses only seven multiplications and 

eighteen additions for each recursive call in order to 

compute the final matrix product as shown in (3) and (4) 

instead of the usual eight multiplications and four 

additions as in case of Naive method. 

Since Strassen’s algorithm is recursive, we can solve a 

set of recurrence relations for the number of scalar 

multiplications and additions. It is relatively 

straightforward to show that the number of 

multiplications for an n-by-n matrix is 807.2n  and the 

number of additions is nn 2
2 log)5.4( .  

C.  Winograd’s Algorithm 
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As demonstrated in [14] Winograd’s algorithm is 

defined as shown in (5), (6), and (7). Instead of 

multiplying individual numbers as in the naive algorithm, 

Winograd’s algorithm uses pair wise multiplication of 

couples of entries and then subtracts the accumulated 

error.    

Since Ai and Bj are pre-computed only once for each 

row and column, they require only n
2
 scalar 

multiplications. The final summation does require O(n
3
) 

multiplications, but only half of those in the naive 

algorithm.  Thus, the total number of scalar 

multiplications has been reduced to 23

2

1
nn  . However, 

the number of additions has been increased by 3

2

1
n . 

D.  Theoretical Study of Matrix Multiplication 

Algorithms 
 

Table 1 compares the three algorithms in terms of the 

number of additions, the number of multiplications and 

complexity as function of the matrix parameter n.  Both 

Naive and Winograd’s algorithms appear to run as the 

cube of n, but Winograd’s algorithm is faster by a 

constant because of the tradeoff between additions and 

multiplications.  The Naive algorithm always had the 

lowest number of scalar additions with the largest 

number of scalar multiplications where as Winograd’s 

algorithm had the lowest number of multiplications with 

the largest number of additions. Strassen’s Algorithm 

performs more quickly as it has fewer multiplications 

than other two algorithms assuming that the recursive 

calls of Strassen’s algorithm should not take up too much 

time theoretically. It clearly appears that Strassen’s 

multiplication algorithm is theoretically the best 

algorithm than Naive and Winograd’s algorithms.   

Table 1. Theoretical Comparison of Three Algorithms 

 

Algorithm 

No. of 

Multiplicati

ons 

No. of Additions Complexity 

Naïve 3n  
23 nn   )( 3nO  

Strassen’s 807.2n  nn 2
2 log)5.4(  )( 807.2nO  

Winograd’s 
23

2

1
nn   23

2

3
nn   )( 3nO  

 

E.  Experimental Study of Matrix Multiplication 

Algorithms  

The performance comparison of our interest is time 

consumption. All the algorithms were implemented using 

C++ and then tested, the information about execution 

time was collected.  In order to compare the performance, 

testing was performed on a personal desktop (HP 

Compaq 8200 Elite SFF Intel Core I7-2600 CPU@3.40 

GHz, 64 Bit, 4 GB RAM) with different booting 

(Windows 7 Ultimate and GNU /Linux 4.4.0 – 57 

generic#78-Ubuntu SMP Operating Systems).  Software 

versions are as follows: Microsoft Visual Studio 2008 

VC++ and g++ (Ubuntu 5.4.0-6 ubuntu~16.04.4) 5.4.0. 

The same environment has been used for all other 

experiments that were carried out in this paper. All the 

implemented algorithms were rerun for five times and the 

average execution time was calculated.  

As with the Strassen’s recursive algorithm, we assume 

that square matrices, with a size that is a power of 2, are 

used for all matrices. With careful implementation, the 

experiments can be carried out to more general matrices 

that may not have power of 2 dimensions. Matrix 

elements are produced by a random function and they are 

converted into required data type.  

The time costs for all three algorithms are 

demonstrated by the Tables 2, 3, 4, and 5 for integer, 

long integer, float and double data types respectively. 

From the tables, It has been observed that the Strassen’s 

algorithm performs more slowly than expected in the 

theoretical study mainly due to the large number of 

recursive calls, which theoretically should not take up too 

much time, large number of stack operations, and large 

addressing headers in order to contain all four sub-matrix 

pointers. Winograd’s algorithm is faster than the Naïve 

algorithm both theoretically and experimentally, because 

computers add faster than they multiply, while the total 

number of operations remains almost unchanged. It is 

clearly appeared in all the tables below that the 

Winograd’s algorithm takes less time than other two 

algorithms for all data types. 
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Table 2. Experimental Comparison of Three Algorithms for Integer Data under Windows and Linux Environments 

 

Matrix 

Dimension 

Elapsed time (secs) 

Windows Environment Linux Environment 

Naive Strassen’s Winograd’s 

Speed-up of 

winograd’s 
Naive Strassen’s Winograd’s 

Speed-up of winograd 

Over 

naive 

Over 

Strassen’s 

Over 

naive 

Over 

Strassen’s 

2 0.000001 0.000001 0.000008 0.08 0.12 0.000001 0.000001 0.000003 0.29 0.47 

4 0.000001 0.000162 0.000008 0.12 21.44 0.000001 0.000011 0.000002 0.73 6.76 

8 0.000005 0.001051 0.000012 0.41 84.93 0.000006 0.000055 0.000005 1.17 10.36 

16 0.000039 0.007692 0.00003 1.32 260.02 0.000048 0.000358 0.000031 1.53 11.53 

32 0.000299 0.050205 0.000077 3.89 652.26 0.000354 0.002511 0.000235 1.51 10.67 

64 0.001037 0.231829 0.000669 1.55 346.43 0.002847 0.016569 0.001578 1.8 10.5 

128 0.008584 1.594599 0.00491 1.75 324.74 0.020583 0.085338 0.008745 2.35 9.76 

256 0.073749 10.050447 0.045367 1.63 221.54 0.107674 0.362238 0.062703 1.72 5.78 

512 0.775164 78.68554 0.436088 1.78 180.43 0.92492 2.52392 0.562478 1.64 4.49 

1024 7.42673 439.95222 6.439806 1.15 68.32 7.510656 17.83601 4.48925 1.67 3.97 

Table 3. Experimental Comparison of Three Algorithms for Long Integer Data under Windows and Linux Environments 

 

Matrix 

Dimension 

Elapsed time (secs) 

Windows Environment Linux Environment 

Naive Strassen’s Winograd’s 

Speed-up of 

winograd’s 
Naive Strassen’s Winograd’s 

Speed-up of winograd 

Over 

naive 

Over 

Strassen’s 

Over 

naive 

Over 

Strassen’s 

2 0.000001 0.000001 0.000008 0.12 0.15 0.000001 0.000001 0.000003 0.31 0.35 

4 0.000001 0.000171 0.000007 0.13 23.54 0.000002 0.000016 0.000002 1.08 10.18 

8 0.000006 0.00112 0.000012 0.48 92.73 0.00001 0.000078 0.000007 1.44 11.49 

16 0.00004 0.008116 0.00003 1.36 274.38 0.000047 0.000406 0.000032 1.47 12.75 

32 0.000301 0.056046 0.000074 4.08 760.99 0.00036 0.002578 0.000225 1.6 11.46 

64 0.001018 0.237391 0.000586 1.74 404.98 0.002911 0.018132 0.001604 1.81 11.3 

128 0.008475 1.663021 0.00504 1.68 329.97 0.021652 0.087398 0.009198 2.35 9.5 

256 0.072891 10.550669 0.045064 1.62 234.13 0.133874 0.388812 0.072268 1.85 5.38 

512 0.76461 82.012985 0.429161 1.78 191.1 1.056532 2.679844 0.602787 1.75 4.45 

1024 7.376128 463.63663 6.376367 1.16 72.71 9.2931 18.33164 6.081719 1.53 3.01 

Table 4. Experimental Comparison of Three Algorithms for Float Data under Windows and Linux Environments 

 

Matrix 

Dimension 

Elapsed time (secs) 

Windows Environment Linux Environment 

Naive Strassen’s Winograd’s 

Speed-up of winograd’s 

Naive Strassen’s Winograd’s 

Speed-up of winograd 

Over 

naive 

Over 

Strassen’s 

Over 

naive 

Over 

Strassen’s 

2 0.000001 0.000001 0.000008 0.08 0.16 0.000001 0.000001 0.000002 0.68 0.46 

4 0.000001 0.000162 0.000007 0.17 23.39 0.000002 0.000014 0.000002 0.68 6.16 

8 0.000006 0.001051 0.000012 0.46 84.9 0.000011 0.000063 0.000009 1.15 6.71 

16 0.00004 0.007622 0.000031 1.27 245.17 0.000049 0.000378 0.000036 1.37 10.62 

32 0.000312 0.046014 0.000077 4.06 597.82 0.000361 0.002545 0.000231 1.56 11.01 

64 0.001192 0.228117 0.000617 1.93 369.56 0.002839 0.017424 0.001618 1.76 10.77 

128 0.009424 1.596176 0.005357 1.76 297.97 0.020683 0.086754 0.008642 2.39 10.04 

256 0.078255 10.074509 0.048628 1.61 207.18 0.118087 0.379269 0.066494 1.78 5.7 

512 0.817374 79.029947 0.459184 1.78 172.11 0.949597 2.594051 0.556212 1.71 4.66 

1024 7.763171 439.9591 6.310935 1.23 69.71 7.83877 18.12968 4.510095 1.74 4.02 
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Table 5. Experimental Comparison of Three Algorithms for Double Data under Windows and Linux Environments 

Matrix 

Dimension 

Elapsed time (secs) 

Windows Environment Linux Environment 

Naive Strassen’s Winograd’s 

Speed-up of 

winograd’s 
Naive Strassen’s Winograd’s 

Speed-up of winograd 

Over 

naive 

Over 

Strassen’s 
Over naive 

Over 

Strassen’s 

2 0.000001 0.000001 0.000008 0.07 0.11 0.000001 0.000001 0.000002 0.4 0.54 

4 0.000001 0.000157 0.000007 0.13 21.71 0.000001 0.00001 0.000002 0.54 4.59 

8 0.000005 0.001236 0.000007 0.78 178.04 0.000008 0.000063 0.000006 1.38 11.16 

16 0.000039 0.009409 0.000031 1.24 302.65 0.000046 0.000379 0.000031 1.47 12.12 

32 0.000326 0.053596 0.000081 4.03 662.55 0.00035 0.002609 0.000228 1.53 11.43 

64 0.001103 0.177866 0.000645 1.71 275.88 0.002883 0.017403 0.001611 1.79 10.81 

128 0.009063 1.723981 0.005358 1.69 321.74 0.023482 0.08734 0.01021 2.3 8.55 

256 0.101053 10.34754 0.058246 1.73 177.65 0.131894 0.384518 0.070332 1.88 5.47 

512 0.86402 72.14182 0.494861 1.75 145.78 1.001293 2.597018 0.577752 1.73 4.5 

1024 8.339114 603.20766 6.755024 1.23 89.3 8.821907 18.19347 5.370864 1.64 3.39 

 

IV.  BACKPROPAGATION ALGORITHM (BPA) 

A neural network is a set of connected input/output 

units in which each connection has a weight associated 

with it. There are many different kinds of neural networks 

and neural network algorithms. The most popular neural 

network algorithm is Backpropagation learning algorithm 

[15].  

The Backpropagation algorithm performs learning on a 

multilayer feed-forward neural network. It iteratively 

learns a set of weights for prediction of the class label of 

tuples. A multilayer feed-forward Deep Neural Network 

(DNN) consists of an input layer, more number of hidden 

layers and an output layer as shown in Fig. 1 [16, 17]. 

 

 
Fig.1. A multilayer feed-forward Deep Neural Network 

A.  Winograd’s Modified Backpropagation Algorithm 

(WMBPA): 
 

In order to reduce the long training time, the standard 

Backpropagation Algorithm (BPA) gets modified by 

using Winograd’s matrix multiplication algorithm as 

explained below.  

Consider a Neural Network with two-inputs and single 

output 

 

 

Output of the neuron f (activation value)  

Activation value 2211 xwxw   

Now, the above equation can be written as  

 

21211211

2121122121

2121212122112211

xx - w w- )x+(w )x+(w=                      

xx-ww- )x+(w x + )x + (ww=                      

xx + w w+ xx - w w- x w+ x w= x w+ xw

i.e.  

212112112211 xx - w w- )x+(w )x+(w  = x w+ xw         (8) 

 

Winograd’s Inequality is an expansion of (8) and it can 

be generalized to neural networks with n-inputs as shown 

in (9), where n  is even number. If n  is odd, we can 

make it even by padding zero elements to both vectors to 

apply the method.  
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2x
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Consider a multilayer networks m - n - p , where  

m  designates number of nodes in the input layer. 

n  designates number of nodes in the hidden layer. 

p  designates number of nodes in the output layer. 

 

Terminology: 

]x .....  x [x = X imi2i1i Training sample. 

] X  .... ,X ,{X = D t21 Training Data Set. 

jiW  Weight connecting neuron j in the current layer  

            from neuron i in the previous layer. 

Oj
 
Output at the neuron j . 

  
2/

1 212

s

i ijijj wwP Partial weight sum at the 

neuron j  

m/n = S  depending upon hidden or output layers. 

  
2/

1 212

s

i ijijj xxQ Partial input sum at the neuron j   

m/n = S  depending upon hidden or output layers. 

jiX  Input from neuron j in the current layer 

coming  

from the neuron i in the previous layer. 

jI Activation value of the neuron j . 

jE  Error at neuron j in the output layer. 

 


2/

1
212

s

i
iij EEPE  Partial error sum for the neuron 

j in  

the hidden layer. 

iT Target of the neuron j in the out layer. 

l  Learning rate  

Activation value 
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Where mnS / depending on hidden or output layer. 

 

Algorithm 1: Winograd’s implementation of BPA 

1. Initialize all weights and bias in network          

2. While terminating condition is not satisfied           

{ 

3. For each training sample Xi  in D           { 

4. For each Input layer unit j           

5. jj IO   

6. For each hidden or output layer unit j           { 

7. Compute    
2/

1 212 )(
s

i ijijj wwP  

8. Compute     
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1 212 )(
s

i ijijj xxQ   

9. Activation Value    
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        } 

11. For each unit j in the output layer 

12. ))(1( jjjj OTOOEj   

13. For each unit j  in the hidden layer, from the last 

to  first hidden layer 

14.    
2/

1 121222 ))(()1(
S

i iijiijjj EWEWOOEj  

     

jj PEP   

15. For each weight jiW in network     { 

16. jjji OEW )1(  

17. jijiji W  + W = W    } 

18. For each bias j in the network.          { 

19. jj E)1(   

20. jjj      } 

}} 

 

B.  Performance Comparison of BPA and WMBPA: 

Updating the weights and biases after the presentation 

of each tuple referred to as case updating. Alternatively, 

the weight and bias increments could be accumulated in 

variables, so that the weights and biases are updated after 

all of the tuples in the training set have been presented. 

The latter strategy is called epoch updating, where one 

iteration through the training set is an epoch [18]. In our 

implementation, Backpropagation employed epoch 

updating.  

The weights in the networks are initialized to small 

random numbers ranging from -1.0 to 1.0. The biases are 

similarly initialized to small random numbers. We have 

considered Deep Neural Network with six hidden layers 

in addition to input and output layers. The observations 

are obtained by training the network for 30,000 epochs. 

The logistic or sigmoid function is used as activation 

function. 

Table 6 Demonstrates that proposed Winograd’s 

implementation (WMBPA) shows significant 

improvement in decreasing neural network training time 

compared to Naive implementation (BPA).  From the Fig. 

2 it is completely clear that the training time further 

reduced as we are increasing training pattern size. Fig. 3 

shows speed-up of WMBPA over BPA under windows & 

Linux environments.  
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Table 6. Training Time Comparison of BPA and WMBPA under 
Windows and Linux Environments 

 

Pattern 
size 

Elapsed time (Secs) 

Windows Environment Linux Environment 

BPA WMBPA 
SPEED 

UP 
BPA WMBPA 

SPEED 

UP 

10 0.93 0.65 1.43 1.06 0.74 1.42 

20 6.52 4.42 1.48 7.74 5.25 1.47 

30 22.82 13.59 1.68 25.59 16.60 1.54 

40 54.24 30.71 1.77 62.43 38.37 1.63 

50 104.6 58.85 1.78 118.15 74.22 1.59 

60 185.9 101.1 1.84 205.55 128.34 1.60 

70 293.7 161.4 1.82 327.11 202.62 1.61 

80 443.7 238.9 1.86 493.19 309.80 1.59 

90 620.4 340.3 1.82 696.63 425.90 1.64 

100 855.1 463.8 1.84 963.22 585.39 1.65 

 

 
Fig.2. Performance of WMBPA vs BPA 

 
Fig.3. Speed-up of WMBPA over BPA 

 

V.  BOLTZMANN MACHINE ALGORITHM (BMA) 

A general Boltzmann Machine is a network of 

symmetrically coupled stochastic binary units. It 

Contains a set of visible units and a set of hidden units 

with visible-to-visible, visible-to-hidden, and hidden-to-

hidden connections. As shown in Fig. 4 a Restricted 

Boltzmann Machine (RBM) is Boltzmann Machine  with 

no Hidden-to-hidden and no visible-to-visible 

connnections. A stack of RBMs are then composed to 

create a Deep Boltzmann Machine (DBM) [19].  

 

Fig.4. Restricted Boltzmann Machine (RBM) 

A.  Winograd’s Modified Boltzmann Machine Algorithm 

(WMBMA) 
 

In order to reduce the long training time, the direct 

Boltzmann Machine Algorithm(BMA) gets modified by 

using Winograd’s matrix multiplication algorithm as per 

(9). Consider the following simple RBN with visible and 

hidden units as shown in Fig. 4. 

Terminology:  

Here n21 v.......... ,v ,v are visible units. 

n1 hhh .,,........., 2 are hidden units. 

bv  bias unit connecting all visible units 

bh  bias unit connecting all hidden units 

ijW the connecting weight from visible node iv to 

hidden  

       node jh  

},........,,{ 21 nvvvV   visible values. 

},.........,{ 21 nhhhH   hidden values. 

Weight matrix W  is defined as 

 

  1h  2h  …..    nh  

 1v  11w  12w  …..    nw1  

W  2v  21w        22w  …..     nw2  

 .              .            .          …..     . 

.              .            .          …..     . 

nv  1nw  2nw  …..    nnw   

 

].............[ 21 njjjhidden
j wwwW  is the weight vector for 

the hidden node jh  as shown in Fig. 5. 

 

 

Fig.5. Representation of Vector 
j

hidden
W  

jw1

jw2

njw

1v  

1v  

2v  

nv  

jh  

1v  
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]......[ 21 jnjj
j wwwvisibleW  is the weight vector for 

the visible node jv as shown in Fig. 6. 

 

 

Fig.6. Representation of Vector 
J

vissible
W  

)(xywin Winograd’s multiplication between x  and 
Ty . 

xe
x




1

1
)( is the activation function for nodes. 

 

Now we can see a Deep RBN as stack of simple RBN 

as illustrated in Fig. 7 and Fig. 8. 

 

 

Fig.7. RBM 

 

Fig.8. Stack of RBMs 

For an RBM network all the visible units are 

conditionally independent of given hidden vector i.e. 

 

 


n

i i HvPH)|P(V
1

)|(
 

 

and also all the hidden units are conditionally 

independent of given visible vector i.e. 

 

 


n

i i VhPV)|P(H
1

)|(  

 

Conditional distribution over hidden and visible units 

with Winograd’s multiplication is given by 

 

 

))*(()|1( VWwinWVhp
j

hiddenhbj j
   

V))*win(W(w- j
hiddenjhb

e1

1




  

))*(()|1( HWwinWHvp
j

visiblevbj j
   

H))*win(W(w- j
visiblejvb

e1

1




  

 

Algorithm 2 : Winograd’s implementation of BMA 

1. Take the training dataset, set the states of the 

visible units to the training data. 

2. Positive phase : Reconstruct hidden units using 

positive statistics ( jE ) is given by  

))*((
1

1
)/1(

Vwwinw
j j

hiddenhbje

VhP




  

3. Negative phase: Reconstruct visible units using 

negative statistics ( jE ) is given by 

))*((
1

1
)/1(

Hwwinw
j j

visiblevbje

HvP




  

4. Update Phase

)())(( jj

old

ijij EnegativeEpositiveww  

                                   
Repeat with all training vectors until required 

threshold gets satisfied. 

B.  Performance Comparison of BMA and WMBMA: 
 

Deep Neural Networks (DNNs) are often much harder 

to train than shallow neural networks. If we could train 

deep nets they would be much more powerful than 

shallow nets [20].  A stack of six RBM layers are 

arranged for the composition of a DBM. The 

observations are obtained by training the network for 

30,000 epochs in both forward and backward direction 

for each layer.  

Table 7 demonstrates that proposed Winograd’s 

implementation (WMBMA) shows significant 

improvement in decreasing neural network training time 

compared to Naive implementation (BMA).  From Fig. 9 

it is completely clear that the training time further 

reduced as we are increasing training pattern size. Fig. 10 

shows speed-up of WMBMA over BMA under Windows 

& Linux environments.  

 

 

 

 

v1 

h1 h3 h2 

v2 v3 v4 
1Layer

2Layer

3Layer)H|P(H 23

)H|P(H 12

V)|P(H1

1h 2h
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1v 2v 3v
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jw2

njw
jv  

1h  

2h  

1h  

nh  

1h  



 Winograd’s Inequality: Effectiveness for Efficient Training of Deep Neural Networks 57 

Copyright © 2018 MECS                                                             I.J. Intelligent Systems and Applications, 2018, 6, 49-58 

Table 7. Training Time Comparison of BMA & WMBMA under 
Windows and Linux Environments 

Pattern 

Size 

Elapsed time (Secs) 

Windows Environment Linux Environment 

BMA WMBMA 
SPEED 

UP 
BMA WMBMA 

SPEED 

UP 

10 1.65 1.17 1.41 1.75 1.27 1.37 

20 11.70 7.65 1.53 13.17 8.97 1.47 

30 39.16 23.21 1.69 44.24 28.49 1.55 

40 93.55 52.94 1.77 107.10 65.76 1.63 

50 178.98 101.24 1.77 202.61 126.80 1.60 

60 316.45 175.55 1.80 352.00 218.14 1.61 

70 509.24 280.55 1.82 560.24 346.57 1.62 

80 757.59 408.04 1.85 850.29 528.02 1.61 

90 1056.53 586.53 1.80 1198.00 733.86 1.63 

100 1432.29 794.37 1.80 1656.76 1003.04 1.65 

 

 

Fig.9. Performance of WMBMA vs BMA 

 

 

Fig.10. Speed-up of WMBMA over BMA 

 

VI.  CONCLUSIONS AND FUTURE WORK 

In this paper, we examined three matrix multiplication 

algorithms: the Naive, Strassen’s and Winograd’s.  After 

our experiments, we found that Winograd’s method is 

faster than other two algorithms for finding the matrix 

multiplication. Then it has been proposed to use 

Winograd’s algorithm to modify Backpropagation 

Algorithm (BPA) and Boltzmann Machine Algorithm 

(BMA). It was experimentally verified that the proposed 

methods (WMBPA and WMBMA) perform the training 

of multilayer Deep Neural Networks much faster than the 

existing algorithms.     

For the future work, we will parallelize the Deep 

Neural Network algorithms. These algorithms will 

further be implemented using parallel programming 

models and tested on multi core systems.  
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