
I.J. Intelligent Systems and Applications, 2018, 6, 49-58
Published Online June 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2018.06.06

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 6, 49-58

Winograd’s Inequality: Effectiveness for

Efficient Training of Deep Neural Networks

D.T.V. Dharmajee Rao
Aditya Institute of Technology and Management, Tekkali-532201, Srikakulam, Andhra Pradesh, India

E-mail: dtvdrao@gmaill.com

K.V. Ramana
JNTUK College of Engineering, JNTUK University, Kakinada - 533003, Andhra Pradesh, India

E-mail: vamsivihar@gmail.com

Received: 02 November 2017; Accepted: 24 April 2018; Published: 08 June 2018

Abstract—Matrix multiplication is widely used in a

variety of applications and is often one of the core

components of many scientific computations. This paper

will examine three algorithms to compute the product of

two matrices: the Naive, Strassen’s and Winograd’s

algorithms. One of the main factors of determining the

efficiency of an algorithm is the execution time factor,

how much time the algorithm takes to accomplish its

work. All the three algorithms will be implemented and

the execution time will be calculated and we find that

Winograd’s algorithm is the best and fast method

experimentally for finding matrix multiplication. Deep

Neural Networks are used for many applications.

Training a Deep Neural Network is a time consuming

process, especially when the number of hidden layers and

nodes is large. The mechanism of Backpropagation

Algorithm and Boltzmann Machine Algorithm for

training a Deep Neural Network is revisited and

considered how the sum of weighted input is computed.

The process of computing the sum of product of weight

and input matrices is carried out for several hundreds of

thousands of epochs during the training of Deep Neural

Network. We propose to modify Backpropagation

Algorithm and Boltzmann Machine Algorithm by using

fast Winograd’s algorithm. Finally, we find that the

proposed methods reduce the long training time of Deep

Neural Network than existing direct methods.

Index Terms—Deep Neural Networks, Backpropagation

Algorithm, Boltzmann Machine Algorithm, Matrix

multiplication algorithms: Naive, Strasen’s, Winograd’s

algorithms.

I. INTRODUCTION

Matrix multiplication is an important problem in

Mathematics and Computer Science. It plays an

important role in the areas of Graph Theory, Computer

Graphics, Digital Signal Processing and Neural Networks.

Fast Matrix Multiplication is still an open problem which

has attracted a lot of attention for the past few decades

[1]. In this paper we will consider matrix multiplication

as the problem, implement various methods to solve this

problem and find the best one that takes the least time.

This paper aims to evaluate the theoretical and

experimental performance of three key matrix

multiplication algorithms (The Naive algorithm,

Winograd’s algorithm and Strassen’s algorithm).

Starting with the mathematical definitions of above three

algorithms, this paper derives their theatrical run-time

complexity and then compares these theoretical values to

each algorithm’s real-world performance.

Deep Neural Networks(DNN) have been widely used

for various tasks, such as classification of various types

of data [2-4], clustering of data [5], speech recognition

[6], and natural language processing [7] to name just a

few. As neural networks research moves from state-of-

the-art paradigms to real world applications, the

associated training time and computing requirements

become an increasingly important factor affecting the

comparison of neural networks with alternative,

competing techniques. Thus the existence of fast and

efficient learning algorithms is crucial for the evolution

of this research field in the future.

The computational efficiency depends on the time

spent training the network. In the worst cases scenario,

the number of epochs can be exponential in n , the

number of inputs. In practice, the time required for the

networks to converge is highly variable. Several

hundreds of thousands of epochs may be required before

the weights converge. A number of techniques exist that

help speed-up the training time [8]. The same paper

proposes a technique of replacing standard matrix

multiplication (Naive) for computing the sum of

weighted input with Winograd’s matrix multiplication to

speed-up the training time of a neural network.

This paper is organized as follows. Section II presents

related work. Section III presents mathematical

definitions, theoretical and experimental comparison of

three matrix multiplication algorithms. Section IV

presents Winograd’s implementation of Backpropagation

Algorithm and its performance comparison with direct

method. Section V presents Winograd’s implementation

of Boltzmann Machine Algorithm and its performance

50 Winograd’s Inequality: Effectiveness for Efficient Training of Deep Neural Networks

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 6, 49-58

comparison with existing direct method. Finally, section

VI contains conclusions and future work.

II. RELATED WORK

For the past few years, a huge research is going on

actively to cut the computing cost of complex computer

algorithms in various areas by applying innovative

techniques like Winograd’s method instead of direct and

straightforward methods. Kuo-Liang et al. proposed a

simple Improved Full Search (IFS) for Vector

Quantization (VQ) based on Winograd’s Identity [9]. In

this letter, authors have mentioned that although VQ is an

efficient method for low bit rate image compression, it is

time consuming for high-dimensional vectors in the

search phase. Employing Winograd’s Identity, they

presented simple IFS in order to cut the computation time

in FS for VQ nearly 50%. They have carried out some

experiments on four popular images as the bench mark to

evaluate the performance of the proposed method. The

four adopted images are Lena, Baboon, F16 and Pepper.

The experimental results showed that the proposed

method cuts computation time nearly 50%. Winograd’s

method: a perspective for some pattern recognition

problems [10] is presented, In this article, N.B.

Venkateswarulu and P.S.V.S.K. Raju used Winograd’s

method with Euclidean distance, Mahalanobis distance

and Maximum Likelyhood (ML) classifiers to reduce

their computational time requirements. They performed

experiments with six band thematic mapper data. Their

result showed that the proposed algorithms for Euclidean

and ML classifiers are observed to be two times faster

than their literal algorithms. In the case of the

Mahalanobis distance classifier, the proposed fast

algorithm is showing a speed-up of 7. Utility of this

Winograd’s method with other Pattern Recognition

algorithms is also discussed. Ch. Ramesh et al.

implemented fast DCT algorithm using Winograd’s

method [11]. In this paper, they presented Winograd’s

matrix multiplication approach for forward Discrete

Cosine Transform (DCT) and inverse Discrete Cosine

Transform (IDCT) computation to reduce their CPU

time. Experiments are conducted with standard images

and synthetic images. In their study, authors have used 15

gray level images and 15 color images in tiff format

including widely used Lena, Mandrill and Pepper images.

From their experiments it is shown that Winograd’s

based DCT and IDCT algorithms are most preferred

algorithms as they consume very less CPU time

compared to conventional implementation and MATLAB.

D.J. Nagendra Kumar et al. implemented Expectation

Maximization (EM) Clustering using Winograd’s method

to reduce the computing cost [12]. In this paper, authors

have proposed eight methods to speed-up quadratic-term

computation in EM. All methods are implemented and

executed on synthetic datasets with varying number of

dimensions, clusters and samples. Out of all approaches,

the result showed that Winograd’s implemented one is

the fastest approach.

III. THREE MATRIX MULTIPLICATION ALGORITHMS

As we mentioned before, there are three methods to

calculate the multiplication of matrices. All of them give

the same result but each one consumes different space in

memory and takes different processor time. The methods

that we will examine are:

i. Naive algorithm

ii. Strassen’s algorithm

iii. Winograd’s algorithm

The above three algorithms are defined firstly and then

the performances of the algorithms are compared

theoretically and by experiments.

A. Naive Algorithm

 


n

k jkkiji baC
1 ,,, . (1)

The naive algorithm is solely based on the familiar

mathematical definition for the multiplication of two

matrices, as shown in (1). To compute each entry in the

final nn matrix, we need exactly n multiplications and

1n additions. And since each of the 2n entries in the

first matrix (A) is multiplied by exactly n entries from

the second matrix (B), the total number of multiplications

is
32 nnn  , and the total number of additions is

232)1(nnnn  .

B. Strassen’s Algorithm




























2,21,2

2,11,1

2,21,2

2,11,1

2,21,2

2,11,1

CC

CC

BB

BB

AA

AA
 (2)

)B +)(BA + (AP 22112211

112221)BA + (AQ 

)B - (BAR 221211

)B-(BAS 112122 (3)

221211)BA+(AT 

)B + (B)A - (AU 12111121

)B + (B)A - (AV 22212212

VTSPC 11

TRC 12

SQC 21 (4)

UQRPC 22

Strassen devised a clever method of dividing the given

matrices into four sub-matrices and then recursively

multiplying them to obtain the resultant matrix. This

method is known as "divide-and-conquer" and adds not

only elegance but also improved theoretical performance

[13]. First, the two matrices are divided into four

 Winograd’s Inequality: Effectiveness for Efficient Training of Deep Neural Networks 51

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 6, 49-58

quadrants, or 2/n by 2/n submatrices each as shown in

(2). Now, via a series of intermediate variables,

Strassen’s method uses only seven multiplications and

eighteen additions for each recursive call in order to

compute the final matrix product as shown in (3) and (4)

instead of the usual eight multiplications and four

additions as in case of Naive method.

Since Strassen’s algorithm is recursive, we can solve a

set of recurrence relations for the number of scalar

multiplications and additions. It is relatively

straightforward to show that the number of

multiplications for an n-by-n matrix is 807.2n and the

number of additions is nn 2
2 log)5.4(.

C. Winograd’s Algorithm






2/

1

2,12, .

n

k

kikii aaA
(5)






2/

1

,2,12 .

n

k

jkjkj bbB (6)

ji

n

k

jkkijkkiji BAbabaC 




2/

1

,122,,212,,))(((7)

As demonstrated in [14] Winograd’s algorithm is

defined as shown in (5), (6), and (7). Instead of

multiplying individual numbers as in the naive algorithm,

Winograd’s algorithm uses pair wise multiplication of

couples of entries and then subtracts the accumulated

error.

Since Ai and Bj are pre-computed only once for each

row and column, they require only n
2
 scalar

multiplications. The final summation does require O(n
3
)

multiplications, but only half of those in the naive

algorithm. Thus, the total number of scalar

multiplications has been reduced to 23

2

1
nn  . However,

the number of additions has been increased by 3

2

1
n .

D. Theoretical Study of Matrix Multiplication

Algorithms

Table 1 compares the three algorithms in terms of the

number of additions, the number of multiplications and

complexity as function of the matrix parameter n. Both

Naive and Winograd’s algorithms appear to run as the

cube of n, but Winograd’s algorithm is faster by a

constant because of the tradeoff between additions and

multiplications. The Naive algorithm always had the

lowest number of scalar additions with the largest

number of scalar multiplications where as Winograd’s

algorithm had the lowest number of multiplications with

the largest number of additions. Strassen’s Algorithm

performs more quickly as it has fewer multiplications

than other two algorithms assuming that the recursive

calls of Strassen’s algorithm should not take up too much

time theoretically. It clearly appears that Strassen’s

multiplication algorithm is theoretically the best

algorithm than Naive and Winograd’s algorithms.

Table 1. Theoretical Comparison of Three Algorithms

Algorithm

No. of

Multiplicati

ons

No. of Additions Complexity

Naïve 3n
23 nn )(3nO

Strassen’s 807.2n nn 2
2 log)5.4()(807.2nO

Winograd’s
23

2

1
nn  23

2

3
nn )(3nO

E. Experimental Study of Matrix Multiplication

Algorithms

The performance comparison of our interest is time

consumption. All the algorithms were implemented using

C++ and then tested, the information about execution

time was collected. In order to compare the performance,

testing was performed on a personal desktop (HP

Compaq 8200 Elite SFF Intel Core I7-2600 CPU@3.40

GHz, 64 Bit, 4 GB RAM) with different booting

(Windows 7 Ultimate and GNU /Linux 4.4.0 – 57

generic#78-Ubuntu SMP Operating Systems). Software

versions are as follows: Microsoft Visual Studio 2008

VC++ and g++ (Ubuntu 5.4.0-6 ubuntu~16.04.4) 5.4.0.

The same environment has been used for all other

experiments that were carried out in this paper. All the

implemented algorithms were rerun for five times and the

average execution time was calculated.

As with the Strassen’s recursive algorithm, we assume

that square matrices, with a size that is a power of 2, are

used for all matrices. With careful implementation, the

experiments can be carried out to more general matrices

that may not have power of 2 dimensions. Matrix

elements are produced by a random function and they are

converted into required data type.

The time costs for all three algorithms are

demonstrated by the Tables 2, 3, 4, and 5 for integer,

long integer, float and double data types respectively.

From the tables, It has been observed that the Strassen’s

algorithm performs more slowly than expected in the

theoretical study mainly due to the large number of

recursive calls, which theoretically should not take up too

much time, large number of stack operations, and large

addressing headers in order to contain all four sub-matrix

pointers. Winograd’s algorithm is faster than the Naïve

algorithm both theoretically and experimentally, because

computers add faster than they multiply, while the total

number of operations remains almost unchanged. It is

clearly appeared in all the tables below that the

Winograd’s algorithm takes less time than other two

algorithms for all data types.

52 Winograd’s Inequality: Effectiveness for Efficient Training of Deep Neural Networks

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 6, 49-58

Table 2. Experimental Comparison of Three Algorithms for Integer Data under Windows and Linux Environments

Matrix

Dimension

Elapsed time (secs)

Windows Environment Linux Environment

Naive Strassen’s Winograd’s

Speed-up of

winograd’s
Naive Strassen’s Winograd’s

Speed-up of winograd

Over

naive

Over

Strassen’s

Over

naive

Over

Strassen’s

2 0.000001 0.000001 0.000008 0.08 0.12 0.000001 0.000001 0.000003 0.29 0.47

4 0.000001 0.000162 0.000008 0.12 21.44 0.000001 0.000011 0.000002 0.73 6.76

8 0.000005 0.001051 0.000012 0.41 84.93 0.000006 0.000055 0.000005 1.17 10.36

16 0.000039 0.007692 0.00003 1.32 260.02 0.000048 0.000358 0.000031 1.53 11.53

32 0.000299 0.050205 0.000077 3.89 652.26 0.000354 0.002511 0.000235 1.51 10.67

64 0.001037 0.231829 0.000669 1.55 346.43 0.002847 0.016569 0.001578 1.8 10.5

128 0.008584 1.594599 0.00491 1.75 324.74 0.020583 0.085338 0.008745 2.35 9.76

256 0.073749 10.050447 0.045367 1.63 221.54 0.107674 0.362238 0.062703 1.72 5.78

512 0.775164 78.68554 0.436088 1.78 180.43 0.92492 2.52392 0.562478 1.64 4.49

1024 7.42673 439.95222 6.439806 1.15 68.32 7.510656 17.83601 4.48925 1.67 3.97

Table 3. Experimental Comparison of Three Algorithms for Long Integer Data under Windows and Linux Environments

Matrix

Dimension

Elapsed time (secs)

Windows Environment Linux Environment

Naive Strassen’s Winograd’s

Speed-up of

winograd’s
Naive Strassen’s Winograd’s

Speed-up of winograd

Over

naive

Over

Strassen’s

Over

naive

Over

Strassen’s

2 0.000001 0.000001 0.000008 0.12 0.15 0.000001 0.000001 0.000003 0.31 0.35

4 0.000001 0.000171 0.000007 0.13 23.54 0.000002 0.000016 0.000002 1.08 10.18

8 0.000006 0.00112 0.000012 0.48 92.73 0.00001 0.000078 0.000007 1.44 11.49

16 0.00004 0.008116 0.00003 1.36 274.38 0.000047 0.000406 0.000032 1.47 12.75

32 0.000301 0.056046 0.000074 4.08 760.99 0.00036 0.002578 0.000225 1.6 11.46

64 0.001018 0.237391 0.000586 1.74 404.98 0.002911 0.018132 0.001604 1.81 11.3

128 0.008475 1.663021 0.00504 1.68 329.97 0.021652 0.087398 0.009198 2.35 9.5

256 0.072891 10.550669 0.045064 1.62 234.13 0.133874 0.388812 0.072268 1.85 5.38

512 0.76461 82.012985 0.429161 1.78 191.1 1.056532 2.679844 0.602787 1.75 4.45

1024 7.376128 463.63663 6.376367 1.16 72.71 9.2931 18.33164 6.081719 1.53 3.01

Table 4. Experimental Comparison of Three Algorithms for Float Data under Windows and Linux Environments

Matrix

Dimension

Elapsed time (secs)

Windows Environment Linux Environment

Naive Strassen’s Winograd’s

Speed-up of winograd’s

Naive Strassen’s Winograd’s

Speed-up of winograd

Over

naive

Over

Strassen’s

Over

naive

Over

Strassen’s

2 0.000001 0.000001 0.000008 0.08 0.16 0.000001 0.000001 0.000002 0.68 0.46

4 0.000001 0.000162 0.000007 0.17 23.39 0.000002 0.000014 0.000002 0.68 6.16

8 0.000006 0.001051 0.000012 0.46 84.9 0.000011 0.000063 0.000009 1.15 6.71

16 0.00004 0.007622 0.000031 1.27 245.17 0.000049 0.000378 0.000036 1.37 10.62

32 0.000312 0.046014 0.000077 4.06 597.82 0.000361 0.002545 0.000231 1.56 11.01

64 0.001192 0.228117 0.000617 1.93 369.56 0.002839 0.017424 0.001618 1.76 10.77

128 0.009424 1.596176 0.005357 1.76 297.97 0.020683 0.086754 0.008642 2.39 10.04

256 0.078255 10.074509 0.048628 1.61 207.18 0.118087 0.379269 0.066494 1.78 5.7

512 0.817374 79.029947 0.459184 1.78 172.11 0.949597 2.594051 0.556212 1.71 4.66

1024 7.763171 439.9591 6.310935 1.23 69.71 7.83877 18.12968 4.510095 1.74 4.02

 Winograd’s Inequality: Effectiveness for Efficient Training of Deep Neural Networks 53

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 6, 49-58

Table 5. Experimental Comparison of Three Algorithms for Double Data under Windows and Linux Environments

Matrix

Dimension

Elapsed time (secs)

Windows Environment Linux Environment

Naive Strassen’s Winograd’s

Speed-up of

winograd’s
Naive Strassen’s Winograd’s

Speed-up of winograd

Over

naive

Over

Strassen’s
Over naive

Over

Strassen’s

2 0.000001 0.000001 0.000008 0.07 0.11 0.000001 0.000001 0.000002 0.4 0.54

4 0.000001 0.000157 0.000007 0.13 21.71 0.000001 0.00001 0.000002 0.54 4.59

8 0.000005 0.001236 0.000007 0.78 178.04 0.000008 0.000063 0.000006 1.38 11.16

16 0.000039 0.009409 0.000031 1.24 302.65 0.000046 0.000379 0.000031 1.47 12.12

32 0.000326 0.053596 0.000081 4.03 662.55 0.00035 0.002609 0.000228 1.53 11.43

64 0.001103 0.177866 0.000645 1.71 275.88 0.002883 0.017403 0.001611 1.79 10.81

128 0.009063 1.723981 0.005358 1.69 321.74 0.023482 0.08734 0.01021 2.3 8.55

256 0.101053 10.34754 0.058246 1.73 177.65 0.131894 0.384518 0.070332 1.88 5.47

512 0.86402 72.14182 0.494861 1.75 145.78 1.001293 2.597018 0.577752 1.73 4.5

1024 8.339114 603.20766 6.755024 1.23 89.3 8.821907 18.19347 5.370864 1.64 3.39

IV. BACKPROPAGATION ALGORITHM (BPA)

A neural network is a set of connected input/output

units in which each connection has a weight associated

with it. There are many different kinds of neural networks

and neural network algorithms. The most popular neural

network algorithm is Backpropagation learning algorithm

[15].

The Backpropagation algorithm performs learning on a

multilayer feed-forward neural network. It iteratively

learns a set of weights for prediction of the class label of

tuples. A multilayer feed-forward Deep Neural Network

(DNN) consists of an input layer, more number of hidden

layers and an output layer as shown in Fig. 1 [16, 17].

Fig.1. A multilayer feed-forward Deep Neural Network

A. Winograd’s Modified Backpropagation Algorithm

(WMBPA):

In order to reduce the long training time, the standard

Backpropagation Algorithm (BPA) gets modified by

using Winograd’s matrix multiplication algorithm as

explained below.

Consider a Neural Network with two-inputs and single

output

Output of the neuron f (activation value)

Activation value 2211 xwxw 

Now, the above equation can be written as

21211211

2121122121

2121212122112211

xx - w w-)x+(w)x+(w=

xx-ww-)x+(w x +)x + (ww=

xx + w w+ xx - w w- x w+ x w= x w+ xw

i.e.

212112112211 xx - w w-)x+(w)x+(w = x w+ xw (8)

Winograd’s Inequality is an expansion of (8) and it can

be generalized to neural networks with n-inputs as shown

in (9), where n is even number. If n is odd, we can

make it even by padding zero elements to both vectors to

apply the method.

1x

2x

1w

2w

)(f

54 Winograd’s Inequality: Effectiveness for Efficient Training of Deep Neural Networks

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 6, 49-58

= x w+ +x w+ xw nn2211

)9())((

2/

1

2/

1

2/

1

122122122212  
  

 

n

i

n

i

n

i

iiiiiiii xxwwxwxw

(9)

Consider a multilayer networks m - n - p , where

m designates number of nodes in the input layer.

n designates number of nodes in the hidden layer.

p designates number of nodes in the output layer.

Terminology:

]x x [x = X imi2i1i Training sample.

] X ,X ,{X = D t21 Training Data Set.

jiW Weight connecting neuron j in the current layer

 from neuron i in the previous layer.

Oj

Output at the neuron j .

  
2/

1 212

s

i ijijj wwP Partial weight sum at the

neuron j

m/n = S depending upon hidden or output layers.

  
2/

1 212

s

i ijijj xxQ Partial input sum at the neuron j

m/n = S depending upon hidden or output layers.

jiX Input from neuron j in the current layer

coming

from the neuron i in the previous layer.

jI Activation value of the neuron j .

jE Error at neuron j in the output layer.

 


2/

1
212

s

i
iij EEPE Partial error sum for the neuron

j in

the hidden layer.

iT Target of the neuron j in the out layer.

l Learning rate

Activation value

))()(122

2/

1 212 jjijij

s

i ijijj QPxwxW=I   

Where mnS / depending on hidden or output layer.

Algorithm 1: Winograd’s implementation of BPA

1. Initialize all weights and bias in network

2. While terminating condition is not satisfied

{

3. For each training sample Xi in D {

4. For each Input layer unit j

5. jj IO 

6. For each hidden or output layer unit j {

7. Compute    
2/

1 212)(
s

i ijijj wwP

8. Compute    
2/

1 212)(
s

i ijijj xxQ

9. Activation Value    
2/

1 212)(
s

i ijijj xwI

jjijij QPxw  )(122

10.
jIj

e
O





1

1
 }

11. For each unit j in the output layer

12.))(1(jjjj OTOOEj 

13. For each unit j in the hidden layer, from the last

to first hidden layer

14.    
2/

1 121222))(()1(
S

i iijiijjj EWEWOOEj

jj PEP 

15. For each weight jiW in network {

16. jjji OEW)1(

17. jijiji W + W = W  }

18. For each bias j in the network. {

19. jj E)1(

20. jjj   }

}}

B. Performance Comparison of BPA and WMBPA:

Updating the weights and biases after the presentation

of each tuple referred to as case updating. Alternatively,

the weight and bias increments could be accumulated in

variables, so that the weights and biases are updated after

all of the tuples in the training set have been presented.

The latter strategy is called epoch updating, where one

iteration through the training set is an epoch [18]. In our

implementation, Backpropagation employed epoch

updating.

The weights in the networks are initialized to small

random numbers ranging from -1.0 to 1.0. The biases are

similarly initialized to small random numbers. We have

considered Deep Neural Network with six hidden layers

in addition to input and output layers. The observations

are obtained by training the network for 30,000 epochs.

The logistic or sigmoid function is used as activation

function.

Table 6 Demonstrates that proposed Winograd’s

implementation (WMBPA) shows significant

improvement in decreasing neural network training time

compared to Naive implementation (BPA). From the Fig.

2 it is completely clear that the training time further

reduced as we are increasing training pattern size. Fig. 3

shows speed-up of WMBPA over BPA under windows &

Linux environments.

 Winograd’s Inequality: Effectiveness for Efficient Training of Deep Neural Networks 55

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 6, 49-58

Table 6. Training Time Comparison of BPA and WMBPA under
Windows and Linux Environments

Pattern
size

Elapsed time (Secs)

Windows Environment Linux Environment

BPA WMBPA
SPEED

UP
BPA WMBPA

SPEED

UP

10 0.93 0.65 1.43 1.06 0.74 1.42

20 6.52 4.42 1.48 7.74 5.25 1.47

30 22.82 13.59 1.68 25.59 16.60 1.54

40 54.24 30.71 1.77 62.43 38.37 1.63

50 104.6 58.85 1.78 118.15 74.22 1.59

60 185.9 101.1 1.84 205.55 128.34 1.60

70 293.7 161.4 1.82 327.11 202.62 1.61

80 443.7 238.9 1.86 493.19 309.80 1.59

90 620.4 340.3 1.82 696.63 425.90 1.64

100 855.1 463.8 1.84 963.22 585.39 1.65

Fig.2. Performance of WMBPA vs BPA

Fig.3. Speed-up of WMBPA over BPA

V. BOLTZMANN MACHINE ALGORITHM (BMA)

A general Boltzmann Machine is a network of

symmetrically coupled stochastic binary units. It

Contains a set of visible units and a set of hidden units

with visible-to-visible, visible-to-hidden, and hidden-to-

hidden connections. As shown in Fig. 4 a Restricted

Boltzmann Machine (RBM) is Boltzmann Machine with

no Hidden-to-hidden and no visible-to-visible

connnections. A stack of RBMs are then composed to

create a Deep Boltzmann Machine (DBM) [19].

Fig.4. Restricted Boltzmann Machine (RBM)

A. Winograd’s Modified Boltzmann Machine Algorithm

(WMBMA)

In order to reduce the long training time, the direct

Boltzmann Machine Algorithm(BMA) gets modified by

using Winograd’s matrix multiplication algorithm as per

(9). Consider the following simple RBN with visible and

hidden units as shown in Fig. 4.

Terminology:

Here n21 v.......... ,v ,v are visible units.

n1 hhh .,,........., 2 are hidden units.

bv bias unit connecting all visible units

bh bias unit connecting all hidden units

ijW the connecting weight from visible node iv to

hidden

 node jh

},........,,{ 21 nvvvV  visible values.

},.........,{ 21 nhhhH  hidden values.

Weight matrix W is defined as

 1h 2h ….. nh

 1v 11w 12w ….. nw1

W 2v 21w 22w ….. nw2

 . . . ….. .

. . . ….. .

nv 1nw 2nw ….. nnw

].............[21 njjjhidden
j wwwW  is the weight vector for

the hidden node jh as shown in Fig. 5.

Fig.5. Representation of Vector
j

hidden
W

jw1

jw2

njw

1v

1v

2v

nv

jh

1v

56 Winograd’s Inequality: Effectiveness for Efficient Training of Deep Neural Networks

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 6, 49-58

]......[21 jnjj
j wwwvisibleW  is the weight vector for

the visible node jv as shown in Fig. 6.

Fig.6. Representation of Vector
J

vissible
W

)(xywin Winograd’s multiplication between x and
Ty .

xe
x




1

1
)( is the activation function for nodes.

Now we can see a Deep RBN as stack of simple RBN

as illustrated in Fig. 7 and Fig. 8.

Fig.7. RBM

Fig.8. Stack of RBMs

For an RBM network all the visible units are

conditionally independent of given hidden vector i.e.

 


n

i i HvPH)|P(V
1

)|(

and also all the hidden units are conditionally

independent of given visible vector i.e.

 


n

i i VhPV)|P(H
1

)|(

Conditional distribution over hidden and visible units

with Winograd’s multiplication is given by

))*(()|1(VWwinWVhp
j

hiddenhbj j
 

V))*win(W(w- j
hiddenjhb

e1

1






))*(()|1(HWwinWHvp
j

visiblevbj j
 

H))*win(W(w- j
visiblejvb

e1

1






Algorithm 2 : Winograd’s implementation of BMA

1. Take the training dataset, set the states of the

visible units to the training data.

2. Positive phase : Reconstruct hidden units using

positive statistics (jE) is given by

))*((
1

1
)/1(

Vwwinw
j j

hiddenhbje

VhP






3. Negative phase: Reconstruct visible units using

negative statistics (jE) is given by

))*((
1

1
)/1(

Hwwinw
j j

visiblevbje

HvP






4. Update Phase

)())((jj

old

ijij EnegativeEpositiveww  

Repeat with all training vectors until required

threshold gets satisfied.

B. Performance Comparison of BMA and WMBMA:

Deep Neural Networks (DNNs) are often much harder

to train than shallow neural networks. If we could train

deep nets they would be much more powerful than

shallow nets [20]. A stack of six RBM layers are

arranged for the composition of a DBM. The

observations are obtained by training the network for

30,000 epochs in both forward and backward direction

for each layer.

Table 7 demonstrates that proposed Winograd’s

implementation (WMBMA) shows significant

improvement in decreasing neural network training time

compared to Naive implementation (BMA). From Fig. 9

it is completely clear that the training time further

reduced as we are increasing training pattern size. Fig. 10

shows speed-up of WMBMA over BMA under Windows

& Linux environments.

v1

h1 h3 h2

v2 v3 v4
1Layer

2Layer

3Layer)H|P(H 23

)H|P(H 12

V)|P(H1

1h 2h
3h

1v 2v 3v
4v

)|(VHP

jw1

jw2

njw
jv

1h

2h

1h

nh

1h

 Winograd’s Inequality: Effectiveness for Efficient Training of Deep Neural Networks 57

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 6, 49-58

Table 7. Training Time Comparison of BMA & WMBMA under
Windows and Linux Environments

Pattern

Size

Elapsed time (Secs)

Windows Environment Linux Environment

BMA WMBMA
SPEED

UP
BMA WMBMA

SPEED

UP

10 1.65 1.17 1.41 1.75 1.27 1.37

20 11.70 7.65 1.53 13.17 8.97 1.47

30 39.16 23.21 1.69 44.24 28.49 1.55

40 93.55 52.94 1.77 107.10 65.76 1.63

50 178.98 101.24 1.77 202.61 126.80 1.60

60 316.45 175.55 1.80 352.00 218.14 1.61

70 509.24 280.55 1.82 560.24 346.57 1.62

80 757.59 408.04 1.85 850.29 528.02 1.61

90 1056.53 586.53 1.80 1198.00 733.86 1.63

100 1432.29 794.37 1.80 1656.76 1003.04 1.65

Fig.9. Performance of WMBMA vs BMA

Fig.10. Speed-up of WMBMA over BMA

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we examined three matrix multiplication

algorithms: the Naive, Strassen’s and Winograd’s. After

our experiments, we found that Winograd’s method is

faster than other two algorithms for finding the matrix

multiplication. Then it has been proposed to use

Winograd’s algorithm to modify Backpropagation

Algorithm (BPA) and Boltzmann Machine Algorithm

(BMA). It was experimentally verified that the proposed

methods (WMBPA and WMBMA) perform the training

of multilayer Deep Neural Networks much faster than the

existing algorithms.

For the future work, we will parallelize the Deep

Neural Network algorithms. These algorithms will

further be implemented using parallel programming

models and tested on multi core systems.

REFERENCES

[1] Khaled Thabet, “Matrix Multiplication Algorithms”,

IJCSNS, vol.12, No.2, February 2012, pp: 74-79.

[2] Rita Georgina Guimaraes, Renata L. Rosa, Denise De

Gaetano, Demostenes Z. Rodriguez, and Graca Bressan,

“Age Groups Classification in Social Network Using

Deep Learning”, IEEE Access, Vol. 5, pp. 10805-10816,

May 2017.DOI: 10.1109/ACCESS.2017.2706674

[3] Kamini Goyal, Dapinder Kaur,"A Novel Vehicle

Classification Model for Urban Traffic Surveillance

Using the Deep Neural Network Model", International

Journal of Education and Management

Engineering(IJEME), Vol.6, No.1, pp.18-31, 2016.DOI:

10.5815/ijeme.2016.01.03

[4] Xinhuai Zou, Ming Cheng, Cheng Wang, Yan Xia, and

Jonathan Li, “Tree Classification in Complex Forest Point

Clouds Based on Deep Learning”, IEEE Geoscience and

Remote Sensing Letters, Vol. 14, No. 12, December 2017,

pp. 2360-2364.

[5] C. Bhanuprakash, Y. S. Nijagunarya, and M. A. Jayaram,

“Clustering of Faculty by Evaluating their Appraisal

Performance by Using Feed Forward Neural Network

Approach”, International Journal of Intelligent Systems

and Applications (IJISA), Vol.9, No.3, pp.34-40,

2017.DOI: 10.5815/ijisa.2017.03.05

[6] Haytham M. Fayek, Margaret Lech, and Lawrence

Cavedon, “Evaluating deep learning architectures for

Speech Emotion Recognition”, Neural Networks, Special

Issue 2017, Article in Press.

[7] Ruhi Srikaya, Geoffrey E. Hinton, and Anoop deoras,

“Application of Deep Belief Networks for Natural

Language Understanding”, IEEE/ACM Transactions on

Audio, Speech, and Language Processing, Vol. 22, No. 4,

April 2014.

[8] John Paul T. Yusiong, “Optimizing Artificial Neural

Networks using Cat Swarm Optimization Algorithm,” I. J.

Intelligent Systems and Applications, 2013, 01, 69-80,

DOI: 10.5815/ijisa.2013.01.07

[9] Kuo-Liang Chung, Wen-Ming Yan, and Jung-Gen Wu,

“A Simple Improved Full Search for Vector Quantization

Based on Winograd’s Identity”, IEEE Signal Processing

Letters, vol. 7, No. 12, December 2000, pp. 342-344.

[10] N.B. Venkteswarulu and P.S. V.S.K. Raju “Winograd’s

method: Aperspective for some pattern recognintion

problems”, Pattern Recognitions Letters, Vol-15, No.2,

PP. 105-109, 1994.

[11] Ch. Ramesh, Dr. N. B. Venkateswarlu, and Dr. J. V. R.

Murthy, “Fast DCT Algorithm using Winograd’s Method,”

IJECET, vol. 3, Issue 1, January-June 2012, pp. 98-110.

[12] D. J. Nagendra Kumar, J.V.R. Murthy and N.B.

Venkateswarlu, “Computation Reduction of Expectation

Maximization Clustering using Winograd’s Method”, 4th

International Conference on Electronics Computer

Technology (ICECT 2012), pp. 255 to 259.

[13] Steven Huss-Lederman, Elaine M. Jacobson, Jeremy R.

Johnson, Anna Tsao, and Thomas Turnbull,

“Implementation of Strassen’s Algorithm for Matrix

Multiplication”, IEEE Conference on Super Computing,

January 1996. DOI: 10.1109/SUPERC.1996.183534.

[14] Udi Manber, Introduction to Algorithms: A Creative

58 Winograd’s Inequality: Effectiveness for Efficient Training of Deep Neural Networks

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 6, 49-58

Approach, pp.301-304, Pearson Education, New Jersey,

1989.

[15] Shaminder Singh, and Jasmeen Gill, “Temporal Weather

Prediction using Backpropagation based Genetic

Algorithm Technique”, International Journal of Intelligent

Systems and Applications, 2014, 12, 55-61.

DOI:10.5815/ijisa.2014.12.08.

[16] Jurgen Schmidhuber, “Deep learning in neural networks:

An overview”, Neural Networks, 61, 85-117,

http://dx.doi.org/10.1016/j.neunet.2014.09.003.

[17] Musab Coskun, Ozal Yildirim, and Aysegul Ucar, and

Yakup Demir, “An Overview of Popular Deep Learning

Methods”, EJT,Vol. 7, Number 2, pp. 165-176, December

2017, DOI: 10.23884/EJT.2017.7.2.11

[18] Pierre Baldi, Peter Sadowski, and Zhiqin Lu, “Learning in

the Machine: The Symmetries of the Deep Learning

Channel,” Neural Networks 95(2017), pp. 110-114,

http://dx.doi.org/10.1016/j.neunet.2017.08.008

[19] C. L. Philip Chen, Chun-Yang Zhang, Long Chen, and

Min Gan, “Fuzzy Restricted Boltzmann Machine for the

Enhancement of Deep Learning”, IEEE Transactions on

Fuzzy Systems, vol.23, No.6, Dec.2015, pp.2163-2173.

[20] Mohammad Rafiqul Alam, Mohammed Bennamoun,

Roberto Togneri, and Ferdous Sohel, “A joint Deep

Boltzmann Machine (jDBM) Model for Person

Identification Using Mobile Phone Data”, IEEE

Transactions on Multimedia, vol. 19, No. 2, February

2017, pp. 317-326.

Authors’ Profiles

D.T.V. Dharamajee Rao is currently

working as Professor in the Department of

Computer Science and Engineering at

Aditya Institute of Technology and

Management, Tekkali, Srikakulam, Andhra

Pradesh, India. He received B.Tech. degree

in Computer Science and Engineering in

1993 and M.Tech. degree in Computer

Science and Technology in 2001 from Andhra University,

Visakhapatnam, Andhra Pradesh, India. He is pursuing Ph.D. in

the Department of Computer Science and Engineering, JNT

University, Kakinada, Andhra Pradesh, India. He got published

more than 12 papers in International and National, Conferences

and Journals. His current Research interests include Data

Mining, Neural Networks, Parallel Programming and Linear

Algebra Techniques.

K.V. Ramana received B.Tech. degree in

Electronics and Communication

Engineering from JNT University,

Hyderabad. Telangana, India in 1986,

M.Tech. degree in Computer Science and

Engineering from University of

Hyderabad, Hyderabad, Telangana, India

in 1990, and Ph.D. in Computer Science

and Engineering from Rayalaseema University, Kurnool,

Andhra Pradesh, India in 2011. He is working as Professor in

the Department of Computer Science and Engineering, JNTUK

College of Engineering, JNTUK University, Kakinada, Andhra

Pradesh, India. He got published more than 20 papers in

International and National, Conferences and Journals. His

research interests include Data Warehousing and Mining,

Neural Networks, Image Processing, and Pattern Recognition.

How to cite this paper: D.T.V. Dharmajee Rao, K.V. Ramana,

"Winograd’s Inequality: Effectiveness for Efficient Training of

Deep Neural Networks", International Journal of Intelligent

Systems and Applications(IJISA), Vol.10, No.6, pp.49-58, 2018.

DOI: 10.5815/ijisa.2018.06.06

