
I.J. Intelligent Systems and Applications, 2018, 7, 74-81
Published Online July 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2018.07.08

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 7, 74-81

An Improved Hybrid Distributed Collaborative

Filtering Model for Recommender Engine

using Apache Spark

Rakesh K. Lenka
Department of Computer Science & Engineering, IIIT Bhubaneswar, India

E-mail: rakeshkumar@iiit-bh.ac.in

Rabindra K. Barik
School of Computer Application, KIIT University, India

E-mail: rabindra.mnnit@gmail.com

Sasmita Panigrahi and Sai S. Panda
Department of Computer Science & Engineering, IIIT Bhubaneswar, India

E-mail: sasmita239@gmail.com, saipsiddhant@gmail.com

Received: 23 June 2017; Accepted: 15 September 2017; Published: 08 July 2018

Abstract—The present scenario there is a serious need of

scalability for efficient analytics of big data. In order to

achieve this, technology like MapReduce, Pig and HIVE

came into action but when the question comes to

scalability; Apache Spark maintains a great position far

ahead. In this research paper, it has designed and

developed an improved hybrid distributed collaborative

model for filtering recommender engine. Execution time,

scalability and robustness of the engine are the three

evaluation parameters; has been considered for this

present study. The present work keeps an eye on

recommender system built with help of Apache Spark.

Apart from this, it has been proposed and implemented

the bisecting KMeans clustering algorithms. It has

discussed about the comparative analysis between

KMeans and Bisecting KMeans clustering algorithms on

Apache Spark environment.

Index Terms—Apache Spark, Recommendation Engine,

Collaborative Filtering, Machine learning, KMeans,

Bisecting KMeans, Bigdata.

I. INTRODUCTION

In this dynamic era, the technology is ever updating. A

small add-on counts a lot in the next accomplishment of

work/project. There are up to ‘n’ parameters that are

taken care of, but even after that as per the field

requirements necessary changes are brought up and

released as new distributions, projects and in some cases

it’s contributed to the existing model. For consideration

of big data analytics, the recommendation system has

been growing tremendous popularity in the field of e-

commercial marketplace. It has been greater benefit for

the businesses grow by taking accurate business strategies

and policies by suitable analysis through recommendation

engine. Initially for recommendation engine,

Collaborative Filtering (CF) has used as one of the

efficient technique which depends on the past user

transaction and feedback data [1-3].

Latent factor models and neighborhood approaches

have been used in the recommendation engine for the

traditional CF algorithms. There are several issues like

Scalability, Sparsely and Cold start problems have been

found in the traditional CF. For solving these issues, there

are different kind of approaches have been implemented.

Feature based recommendation engine using tagging,

Clustering and hybrid techniques are the various technical

approaches being used for the solving out the problems

associated on the recommendation engine. But these

approaches are not suitable for massive big dataset.

Recently, various works have been done with

parallisation CF algorithm in Hadoop Environment. But it

has been found that the cost efficient and greater

computation time in MapReduce of Hadoop framework.

By keeping this in mind, Apache Spark has been used for

a new hybrid solution for recommendation engine with

traditional CF methods by combing both dimension

reductionality and KMeans clustering methods of

machine learning [4-5].

In the present research paper, it has developed the

Bisecting KMeans clustering methods of machine

learning by taking the same dataset which has been

previously implemented [9]. Comparison analysis

between KMeans and Bisecting KMeans has been

illustrated. Thus, the present study has been categorized

into the number of sections. The section 2 deals with the

related works which has been done in the field of

recommendation engine. Section 3 illustrates about the

objective of the present research and the detail

description about the data set and proposed model

 An Improved Hybrid Distributed Collaborative Filtering Model for Recommender Engine using Apache Spark 75

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 7, 74-81

representation. Section 4 describes the parallel

implementation of Bisecting KMeans clustering on

Apache Spark. Section 5 contains the comparison

analysis and observations of KMeans and Bisecting

KMeans clustering. A final conclusion is drawn in

Sections 6 with future avenues of research.

II. RELATED WORKS

Recommender Systems have developed a lot since

their evolution. From the period of its origin

Recommender System are based upon three forms i.e.

demographic, content based and collaborative filtering,

but currently they are even utilizing social information

retrieved from public domain like Facebook, Twitter, etc.

This paper gives an outline of recommender systems as

well as collaborative filtering methods and algorithms

and investigates about its evolution, offers an authentic

classification, provides area of future works and aware

about development in specific areas selected from past,

present or future importance [10].

Recommender System have already created an

important place at everyone's life may be implicitly or

explicitly. The job of a Recommender System is to

automatically find and suggest items to a person of

his/her interest, at times it even identifies his/her needs.

Here, it also discusses the task of recommender system

and the typical methods that never utilize the social

network info. The discussion leads to how social network

information accepted by recommender system as

supplementary input for attaining better precision. Here,

It has been found that the CF-based social recommender

systems. These social based recommended systems have

been categories into matrix factorization based social

recommendation approaches and neighborhood based

social recommendation approaches. For each and every

observance, there are several representative algorithms

have been taken into consideration [11]. Collaborative

Filtering has become the most preferred solution while

designing a recommender system. With the drastic

enhancement of storage and network technology, the

quantity of users and items in recommendation system

has been raised; here an effectual method of user based

collaborative filtering on MapReduce has been shown.

This paper works on Bag of Word (BoW) method and

designs a hierarchical inverted index to upsurge the

scalability. Interim, a soft assignment tool for the

hierarchical inverted index has been discussed resulting

in fixation of decrease in accuracy of recommendation

caused by the index. The MapReduce are implemented in

both real data and simulated data, proving the

implementation has the potential to scale to vast number

of items and users which has been assured the

recommendation accuracy [7, 23].

Despite knowing the computational complexity of

Collaborative Filtering is high and inefficiency in large

scale system, the present study uses it broadly in many

fields. Over here, it has been taken this issue into

consideration and performs a user based Collaborative

Filtering algorithm on Cloud Computing environment,

specifically Apache Hadoop, for solving the reliability

and scalability problem of Collaborative Filtering. From

the experimental observations, it infers a technique that

divides users into clusters as per two essential principles

that is orderly arrangement of mapper number to

overcome the initiation of mapper and divide the task

uniformly such that all processors has to finish task at the

identical time, that leads to achieve speedup the processes

[5].

One of the very important steps in developing the

recommender system for any purpose is to select the

foundational framework. There are plethoras of

approaches to it, the framework can be established from

the ground up, or an existing recommender system can be

utilize the several code libraries which has been adapted,

or a framework may be selected and tailored to suit

(Apache Mahout, MymediaLite, LensKit, etc.). However

the best approach has to use an existing free and open

source environment which have active contributors, it has

numerous libraries and if required functions can be added

and built [12, 24].

Recommendation system is a system used for

predicting the right preference to the user. Over here it

has been scrutinized an improved hybrid recommendation

algorithm and combine MapReduce program on Hadoop

environment. With the usage of this hypothesis the

improved algorithm can precisely attaining user

preferences, offer the required recommendation during

the period when the user surfs the web page. In the end,

Hadoop meets the massive data processing and attain

extremely high performance system by use of the data

reprocessing method [8].

Recommendation provides a feature of automatically

identifying the taste of the user based on the prior

patterns, interest shown by him/her. In this paper, it

proposes a recommendation system to manage huge data

available at web in form feedback, of complaints,

remarks, ratings, reviews, opinions and comments about

any item i.e. event, product, services and individual by

using Apache Hadoop Framework. It has been executed

interface of Mahout for examining the data supplied by

the review and the rating site for movies [13].

With the enormous amount of facts present on web, the

analysis of finding the relevant news to a user is a tire

some job, which cannot accomplished by manually

picking the News. Therefore in the present study, it has

been justified the need of recommender system tailor

made for recommending news articles. The developed

recommender system continuously analyzes a data-stream

using Apache Flink framework, and provides real-time

recommendations. The recommender system understands

the type of news portals and the categories of the

audience of it and updates the recommender model

assuring that only new articles are recommended. The

architecture of the systems is discussed followed by the

hurdles of processing continuous streams. The scalability

and the methods for optimizing the parameter

configuration are explained [14].

Apache Spark is well known for it’s in memory

computation and has achieved a suitable place in many

76 An Improved Hybrid Distributed Collaborative Filtering Model for Recommender Engine using Apache Spark

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 7, 74-81

designs, hypothesis and models. Today many of the

companies, labs and various units are keenly interested to

port their existing technology to Apache Spark [26]. With

the rapid development of the big data in recent years,

several applications have been extended for processing in

big data analytics framework in health and geospatial

area [15, 16, 25]. Apache Spark is an open source

distributed computing framework which has been based

on MapReduce of Hadoop algorithms. It has been

offering a good platform to integrate MapReduce,

Machine Learning, SQL, Streaming and Graph

Processing. Apache Spark is much faster than that of

MapReduce for the executing programs due to the use of

Resilient Distributed Datasets (RDDs) which are evenly

distributed collection of objects. These blocks split into

numerous partitions. These partitions have been again

computed in parallel on different nodes of the cluster.

The new Data Frames of API has been introduced in

Spark 1.6.0. It has been even performing faster than that

of RDDs and has been provided SQL operations on

RDDs. Spark 1.6.0 has two types of programs i.e. Driver

Program which run on Master and Worker Program

which runs on Slave. Spark Context is responsible for the

connection to the Cluster Manager which in turn allocates

the resources on the slave(worker) nodes which has been

shown in Fig. 1 [17].

Fig.1. Cluster node overview [26]

Broadcast variables and accumulators are the two

varieties of shared variables have been used in Spark.

Broadcast variables have used to sore values in memory

over all the nodes where as in accumulator; the variables

can be added to counters and sums. Due to the Lazy

evaluation process of Spark, the efficiency has been

improved that means actions have been appraised and the

alterations have been kept for upcoming implementation

of tasks. A new RDD has been constructed due to

transformations process by some previous conditions and

actions have computed the results based on the RDD

which has been returned to the driver program or has

been saved to the external storage system. Collaborative

Filtering recommender systems utilize information

regarding user's predilection to provide bespoke

predictions. In this paper, it has described about an

algorithmic framework built over Apache Spark for

parallel computation of the neighborhood based

Collaborative Filtering problem, where algorithm linearly

satisfied the cumulative number of users. It has been

worked on plenty of variation on this methodology

including correlation and vector-based similarity

calculations, user and item based recommendation

approaches, and selective down-sampling of user

interactions. In the end, it has taken an extensive research

on comparison of these methods on the Movie Lens

dataset consisting of 10 million movie ratings [18, 19].

Recommending the news article has always been a

matter of concern as the user always finds a different

categories of interest in News, may be supporting the

trending news at one point of time or putting an immense

interest on business or economy page. Traditional

Recommender approaches are optimized for analyzing

static data set. In news recommending strategies

continuous changes, high volume of messages, and tight

time constraints, alternative strategies are needed.

Therefore, it has designed a highly scalable recommender

system optimized for the processing of streams. It has

been observed that the model in the CLEF NEWS-REEl

challenge. The model is built on Apache Spark enabling

the distributed processing of recommendation requests

ensuring the scalability of the proposed approach [21].

Recommender systems have become an area of active

research. They are especially important in the ecommerce

industry because they help increase revenues and improve

customer experience. A lot of different techniques have

been explored for different kind of recommender systems

based on the desired objective and the data that is

available to base the recommendations on. In the present

work, it has been proposed and developed a simple

recommender system based on hybrid solution to the user

based Collaborative Filtering based on Apache Spark

platform combining both dimensional reduction and

clustering techniques. This work also emphasizes on

fixing of issues like cold start problem by relating users

to products via features obtained. Here the tags are used

as features [22].

III. AIM OF THE CURRENT RESEARCH AND PROPOSED

MODEL REPRESENTATION

The aim of the current research paper is to offer and

implement the bisecting KMeans clustering algorithms on

Apache Spark Environment with Movie Lens dataset in

an existing hybrid distributed collaborative model for

filtering recommender engine. It has also compared with

the existing KMeans clustering algorithm and illustrated

the different observation with respect to execution time,

scalability and robustness of the engine.

The present research, it has been taken the data from

Movie Lens [20]. It takes 20M dataset that it processes 20

million ratings rated by users. For scalability aspects, it

has been used 1M & 10M dataset including 1 million and

10 million ratings. A user has the right to rate and tag a

movie rating can be done on a scale of range 1 to 5

considering 1 as lowest and 5 as highest. Collaborative

filtering is used to identify different users which are

similar to a particular user. Then these similar users are

used to recommend products that were popular with them.

In the problem, it has been worked on; the notion of users

is very weak because, it has no additional information

about the users except for the ratings they have rated.

 An Improved Hybrid Distributed Collaborative Filtering Model for Recommender Engine using Apache Spark 77

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 7, 74-81

Also the number of tags per user is very low.

Hence, it has decided to use collaborative filtering

replacing the notion of user by search queries and try to

identify similar queries to each query in the training set. It

has also used the notion of finding similar items to what

was searched for using the new query and recommend

popular items among similar items. Firstly data loaded to

hive and pertinent features are taken out. User ratings

with less than 30 counts in rating movies are driven out,

movies possessing less than 3 are deleted and all tags are

lower cased and stop words are detached. The fresh

dataset framed is represented in Table 1.

Table 1. Pre-processing dataset [20]

List of
Attributes

Users Tags Movies

Before 138493 465000 24744

After 110615 441252 16409

After obtaining the pre-processed data, the model has

been built and stored to HIVE5 in parquet format. All

these computation jobs have done in offline environment.

In real scenario, it has been loaded the models rear from

Hive which has again used to create top N

recommendations. Hence, it has been increased the

throughput of the developed recommender system. The

existing model is divided into two parts namely

prevailing user module and fresh user module. The block

diagram of the existing user recommendation module has

been defined in Fig. 2.

Fig.2. Block Diagram: Existing-User Recommender Module

In the new user recommender model which has been

illustrated in Figure 3, it has been found that the cluster of

the user which has belong to the inputs given by the user.

Subsequently, it has been suggested that the top N highly

rated movies of that cluster has not seen by relevant users;

has been returning as the recommendation. Users can

easily list down the tags which they are concerned in and

accordingly the proposed model; it finds the ideal

recommendation for the users for avoiding coldstart

problem.

Fig.3. Block Diagram: New-User Recommender Module

With the usage of K Means clustering algorithm

similar users are grouped as per set built by Alternating

Least Square (ALS) model. In ALS model, it has been

implemented the bisecting K Means till, it has obtained a

minimal squared error function which has been derived

from equation 1.

F=
 

k

i

n

j1 1

||xj
(i)

 – ci||² (1)

Dimensionality

Reduction

I. KMeans Clustering

II.Bisecting KMeans

Clustering

Data from

User

User

Profile

Creation

Feature

Extraction

Recommendation

Algorithm

User

Relevant

Profile

Top N
Recommenda

tions

Profile

Matching

N

most
rated

item

of

tag2

Cloud of Popular Tags

Tag

Score

User

T

a

g

1

T

a

g
2

T

a
g

n

N
most

rated

items
of

tag1

N
most

rated

item
of

tagn

N Recommendations

78 An Improved Hybrid Distributed Collaborative Filtering Model for Recommender Engine using Apache Spark

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 7, 74-81

In Equation 1, “||xj – ci|| ” is defined as the Euclidean

distance between xj and ci, ‘xj’ is equivalent to the

number of data points in jth cluster, where ‘c’ has been

shown the number of cluster centers. Where users most

have closest to their respective cluster center. The desired

users are those who act as representatives of the cluster.

These users have been defined as the most effective and

desired relevant users on the top of the sysetm. Initially, it

has been retrieved the top k most relevant and effective

users of each cluster and has been stored it into the

desired Hive table.

The fresh new users have assimilated the labels easily

and labels can be served as bridge gap helping desired

users for better distinguish an unidentifiedassociation

between an element and themselves. Initially, Tag Score

(TS) for each tag has been calculated. TS(t,m) has been

defined for a Tag (t) and Movie (m) in equation 2.

(,)
Number of times t has been applied to I

TS t m
Number of times any tag applied to i




 (2)

The fresh new user has the responsiblility to pick the

labels from which they has been identified the list and as

per the preference, the most pertinent top N items which

has related to the favourite tags have been returning as

recommendation to the identified user.

IV. IMPLEMENTATION OF BISECTING KMEANS

CLUSTERING

Here, it has been described the execution of the

projected effort on Apache Spark. The projected

procedures have been written in Scala programming

language. Initially, it has been introduced the two files as

rating and tag files. These rating file(rating_file.csv) and

tag file(tag_file.csv) are stored into the HDFS file system

of Hadoop Framework. The execution of Apache Spark

has been started by generating a sparkContext object. As

data would be frequently accessed, it has been cached it

in memory. Initially, it has been proposed the dimensiton

reduction algorithm which has been illustrated in

Algorithm 1.

Algorithm 1 Algorithm for Dimensionality Reduction

__

Input: Rating File (rating_file.csv) [User_ID,

Movie_ID, User_Rating]

Output : User_Feature<User_ID,

Feature_Vector>

Product_Feature<Movie_ID,

Feature_Vector>

Begin :

On each of the worker node is doing in

parallel process:

1. Load_Data: the data from rating_file.csv file

into an RDD.

data load(rating_file.csv)

2. Parse_Rating: It is known as user defined

function which has been splitting the desired

data based upon comma (‘,’) and has been

returned as an RDD of Rating class object.

Parse_Ratingmap(Parse_Rating)

Emit_Data<Rating(User_ID, Movie_ID,

User_Rating)>

3. Store_Data: the Parse_Rating data into the

memory by using cache() function

4. Random_Split() the RDD into training_RDD

and test_RDD where 80% split in training_RDD

and 20% split in test_RDD.

5. Do_map on test_RDD and store the first two

fields into another RDD.

 testmap(User_ID, Movie_ID, User_Rating)

6. Emit_Data <User_ID, Movie_ID>

7. While a= 1 to i [i presents the

number of iterations]

8. While b = Array (1 to j) [which is containing

different values of ‘’]

9. While c = Array (1 to k) [which is containing

different values of Rank]

10. modelALS.train(train_RDD)

11. predictmodel.predict(test)

12. Errormap(calculate_RMSE)

13. Emit_Data<Error>

end while

end while

end while

14. While the values of b and c, which has given the

Least Error (RMSE), do again step 10.

15. Emit_Data<User_Feature, Product_Feature>

16. Store the results in Hive tables

model.saveAsParaquetFile(“ALSmodel.Paraquet”)

__

The output of the above ALS algorithm has been

passed as the input to next KMeans clustering and

Bisecting KMeans clustering algorithm. The following

Algorithm 2 and Algorithm 3 have been derived the

existing K Means clustering and proposed Bisecting

Kmeans algorithms.

Algorithm 2 Algorithm for KMeans Clustering

__

Input : User_Feature<User_Id, Feature_Vector>

Output : Top N Recommendation

Begin :

1. Master broadcasts the User_feature to all of the

worker nodes.

On each of the worker node has doing in parallel

process: Normalise the Feature_Vector for all

users.

2. NormaliseFeatureVector.ComputeColumnSu

mmaryStatistics()

3. Emit_Data <mean, variance>

4. While a = 1 to i, i = Number of iterations

5. While b = 1 to j, j = Number of clusters

6. cluster = kmeans.train(User_Feature_Vector)

 An Improved Hybrid Distributed Collaborative Filtering Model for Recommender Engine using Apache Spark 79

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 7, 74-81

 end while

 end whle

7. While each User_Feature:

8. Cluster_IDmodel.predict(User_Feature)

9. Cluster_Centermodel.clusterCenters(cluster_

ID)

10. distancecomputeDistance(User_Feature,clust

er_Center)

11. Join the Movie_IDs has been keyed on User_IDs

from

Parse_Rating data RDD. [Step 3 of ALS]

12. Emit_Data<(Cluster_ID),Array(User_ID,Movie

_ID)>.take_Ordered(N)

13. While any active user AU

[AU<(Cluster_ID),(User_ID,Movie_ID)>]

14. AUmap(Top N Recommendations)

Where top N is the user defined function

 which will return the top N recommendations

14.1 filter() the common Movie_IDs between

AU and relevant

user set emitted from step 11.

14.2 Emit_Data <Array(Movie_ID)>.top N

where Movie_ID are the

top N highest rated movie by relevance

end while
__

Algorithm 3 Algorithm for Bisecting KMeans

Clustering

__

Input: C: Number of clusters presents

 D: Top N documents obtained by vector space

similarity

Output: C clusters put all the N documents in a single

cluster

Begin: put all the N documents in a single cluster K

1. While a=1 to C-1 do for b=1 to ITER do

2. While b=1 to C-1 do for b=1 to ITER do

3. Use KMeans to split K into two sub clusters, K1

and K2

4. if (intra cluster similarity (K1) > intra cluster

similarity(K2))

5. make cluster K1 as permanent

6. K= K2

7. else

8. make cluster K2 as permanent

9. K = K1

10. end if

11. end while

12. end while

13. end Bisecting KMeans

Intially, User_Feature vector has been disseminated to

each slave node. The user feature_vector normalized with

Compute_Column_Summary_Statistics function. It has

been computed in column wise summary statistics. It has

been used MLLib of Spark 1.6.0 both KMeans and

Biseting KMeans algorithm to train the proposed model.

The compute_Distance() has been computed the distance

of user_Feature vector to its cluster_Center. After

KMeans and Bisection KMeans Clustering computation,

it finally computes the Tag Score (TS). In new user, the

user chooses the labels at once, most pertinent objects are

returned as reference based on the TS, which has been

described in Algorithm 4.

Algorithm 4 Algorithm for Computing Tag Score.

__

Input : tag_file.csv [User_ID, Movie_ID, Tag]

Output : <User_ID, Movie_ID, Tag,

Tag_Score>

Begin :

1. Each worker node has been done in parallel

process:

Repeat step 1 to 3 of ALS algorithm as input.

2. Data_FrameParseTag.DF()

3. Data_Frame.registerTempTable(“Tag”)

4. Val_ordered_ID = sqlContext.sql(“SELECT

Movie_ID AS ID, TAG FROM TAG

ORDER BY Movie_ID”)

5. Val_eachTag_Count =

ordered_ID.groupBy(“ID,TAG”).count()

6. Val_final_result = sqlContext.sql(“SELECT

Movie_ID, TAG_NAME, occurrence AS

eachTag_Count, count AS total_Count

FROM result ORDER BY Movie_ID”)

7. Val_Tag_Score = sqlContext.sql(“SELECT

Movie_ID,

TAG_NAME(eachTag_Count/total_Count)

AS TagScore FROM final_result”))

__

V. COMPARISON ANALYSIS AND OBSERVATIONS

The observations have been taken on operating system-

Ubuntu 14.04 environment which has specifications such

as 2.50 GHz processors with 4 processing cores. 4GB

RAM has been allocated to master node of

clusterwhere4GB RAM allocated to each slave node. The

recent technologies such as Apache Hadoop 2.7.2, Scala

2.11.7, Apache Hive 2.0, Apache Spark 1.6.0 and SBT

0.13.9 has been used for implementation. The mentioned

model has been executed and tested for various

parameters, among the considered parameters the most

effective parameter observed as the different execution

time across various datasets 1M, 10M, and 20M. Table 2

shows the execution time with KMeans and Bisecting

KMeans Algorithm with various datasets with 6 numbers

of clusters.

80 An Improved Hybrid Distributed Collaborative Filtering Model for Recommender Engine using Apache Spark

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 7, 74-81

Table 2. Comparison of execution time

Data Set KMeans Bisecting KMeans

1M 40ms 38ms

10M 45ms 40ms

20M 50ms 44ms

Figure 4 shows the bar chart of the above execution

times as compared to KMeans and Bisecting KMeans.

Fig.4. Comparative Analysis of KMeans and Bisecting KMeans
Clustering Algorithm with various dataset and execution times

From the above analysis it has been concluded that

Bisecting KMeans is a better approach for the problem

being discussed. It has also observed that there is a

significant difference of executing the model comes into

action if the data is more and more voluminous.

Therefore, it will be appropriate if it can use the discussed

model for real world data analytics.

VI. CONCLUSION AND FUTURE WORK

The discussed and projected model has been verified

with several datasets of 1 million, 10 million & 20

million; also found as more effectual than prevailing

models. The experimental result shows that the running

time of algorithm is boosted with every new node

addition into the Spark Cluster. Our model is generating

best output as compared to standard algorithms in terms

of throughput. Further we also have an inclusion of

widespread review of merits and demerits of all

Collaborative Filtering algorithms and found that our

model performs the superlative among all. Few

challenges identified can be higher needs of RAM size by

Spark memory computation which is costly. In order to

speed computational time, we select Scala (Spark’s native

language). Scala is initially perplexing but their

functional programming feature makes it substantial. To

get enhanced estimate, we update the ALS model and

Clusters in manual mode. Subsequently, it has been

strategize to devise this model expending Mahout (A

Machine Learning Library of Hadoop) to perceive the

scalability and efficiency of model.

REFERENCES

[1] Shapira, Bracha, Francesco Ricci, Paul B. Kantor, and

LiorRokach. "Recommender Systems Handbook", 2011.

[2] Ricci, Francesco, LiorRokach, and Bracha Shapira.

Introduction to recommender systems handbook. Springer

US, 2011.

[3] Casey, Walker Evan. "Scalable Collaborative Filtering

Recommendation Algorithms on Apache Spark", 2014.

[4] Hashem, Ibrahim Abaker Targio, Ibrar Yaqoob, Nor

Badrul Anuar, Salimah Mokhtar, Abdullah Gani, and

Samee Ullah Khan. "The rise of “big data” on cloud

computing: Review and open research issues."

Information Systems, Vol. 47 pp. 98-115, 2015.

[5] Zhao, Zhi-Dan, and Ming-Sheng Shang. "User-based

collaborative-filtering recommendation algorithms on

hadoop." In Knowledge Discovery and Data Mining,

2010.WKDD'10. Third International Conference on, pp.

478-481. IEEE, 2010.

[6] Mo, Yijun, Jianwen Chen, Xia Xie, Changqing Luo, and

Laurence Tianruo Yang. "Cloud-based mobile multimedia

recommendation system with user behavior information."

IEEE Systems Journal 8, no. 1, pp. 184-193, 2014.

[7] Shang, Yang, Zhiyang Li, WenyuQu, YujieXu, Zining

Song, and Xuefei Zhou. "Scalable collaborative filtering

recommendation algorithm with MapReduce." In

Dependable, Autonomic and Secure Computing (DASC),

2014 IEEE 12th International Conference on, pp. 103-108.

IEEE, 2014.

[8] Wang, Chunzhi, Zhou Zheng, and Zhuang Yang. "The

research of recommendation system based on Hadoop

cloud platform." In Computer Science & Education

(ICCSE), 2014 9th International Conference on, pp. 193-

196. IEEE, 2014.

[9] Panigrahi, Sasmita, Rakesh Ku Lenka, and Ananya

Stitipragyan. "A Hybrid Distributed Collaborative

Filtering Recommender Engine Using Apache Spark."

Procedia Computer Science, Vol. 83, pp. 1000-1006,

2016.

[10] Bobadilla, Jesús, Fernando Ortega, Antonio Hernando,

and Abraham Gutiérrez. "Recommender systems survey."

Knowledge-Based Systems, Vol. 46, pp.109-132, 2013.

[11] Yang, Xiwang, Yang Guo, Yong Liu, and Harald Steck.

"A survey of collaborative filtering based social

recommender systems." Computer Communications, Vol.

41, pp. 1-10, 2014.

[12] Walunj, Sachin Gulabrao, and Kishor Sadafale. "An

online recommendation system for e-commerce based on

apache mahout framework." In Proceedings of the 2013

annual conference on Computers and people research, pp.

153-158. ACM, 2013.

[13] Verma, Jai Prakash, Bankim Patel, and Atul Patel. "Big

data analysis: recommendation system with Hadoop

framework." In Computational Intelligence &

Communication Technology (CICT), 2015 IEEE

International Conference on, pp. 92-97. IEEE, 2015.

[14] Ciobanu, Alexandru, and Andreas Lommatzsch.

"Development of a News Recommender System based on

Apache Flink." In Working Notes of the 7th International

Conference of the CLEF Initiative, Evora, Portugal. 2016.

[15] Barik, Rabindra K., Harishchandra Dubey, Arun B.

Samaddar, Rajan D. Gupta, and Prakash K. Ray. "FogGIS:

Fog Computing for Geospatial Big Data Analytics." arXiv

preprint arXiv:1701.02601 (2016).

 An Improved Hybrid Distributed Collaborative Filtering Model for Recommender Engine using Apache Spark 81

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 7, 74-81

[16] H. Dubey, J. Yang, N. Constant, A. M. Amiri, Q. Yang,

andK. Mankodiya, “Fog data: enhancing telehealth big

data through fog computing,” in Proceedings of the ASE

BigData & SocialInformatics2015. ACM, , pp. 14, 2015.

[17] Han, Zhijie, and Yujie Zhang. "Spark: A Big Data

Processing Platform Based on Memory Computing." In

Parallel Architectures, Algorithms and Programming

(PAAP), 2015 Seventh International Symposium on, pp.

172-176. IEEE, 2015.

[18] Ding, Dongliang, Dongyue Wu, and Fuli Yu. "An

overview on cloud computing platform spark for Human

Genome mining." In Mechatronics and Automation

(ICMA), 2016 IEEE International Conference on, pp.

2605-2610. IEEE, 2016.

[19] Maarala, AlttiIlari, Mika Rautiainen, MiikkaSalmi,

Susanna Pirttikangas, and JukkaRiekki. "Low latency

analytics for streaming traffic data with Apache Spark." In

Big Data (Big Data), 2015 IEEE International Conference

on, pp. 2855-2858. IEEE, 2015.

[20] Harper, F. Maxwell, and Joseph A. Konstan. "The

movielens datasets: History and context." ACM

Transactions on Interactive Intelligent Systems (TiiS), Vol.

5, no. 4, pp.19, 2016.

[21] Domann, Jaschar, Jens Meiners, Lea Helmers, and

Andreas Lommatzsch. "Real-Time News

Recommendations Using Apache Spark." In Working

Notes of the 7th International Conference of the CLEF

Initiative, Evora, Portugal. 2016.

[22] Zhao, Zhi-Dan, and Ming-Sheng Shang. "User-based

collaborative-filtering recommendation algorithms on

hadoop." In Knowledge Discovery and Data Mining,

2010.WKDD'10. Third International Conference on, pp.

478-481. IEEE, 2010.

[23] Wang, Chunzhi, Zhou Zheng, and Zhuang Yang. "The

research of recommendation system based on Hadoop

cloud platform." In Computer Science & Education

(ICCSE), 2014 9th International Conference on, pp. 193-

196. IEEE, 2014.

[24] Ciobanu, Alexandru, and Andreas Lommatzsch.

"Development of a News Recommender System based on

Apache Flink." In Working Notes of the 7th International

Conference of the CLEF Initiative, Evora, Portugal. 2016.

[25] Gupta, N., Lenka, R. K., Barik, R. K., & Dubey, H.

"FAIR: A Hadoop-based Hybrid Model for Faculty

Information Retrieval System." arXiv preprint

arXiv:1706.08018 (2017).

[26] Lenka, R. K., Barik, R. K., Gupta, N., Ali, S. M., Rath, A.,

& Dubey, H. "Comparative analysis of SpatialHadoop and

GeoSpark for geospatial big data analytics."

Contemporary Computing and Informatics (IC3I), 2016

2nd International Conference on. IEEE, 2016.

Authors’ Profiles

Rakesh K. Lenka Rakesh K. Lenka has

completed his M.Tech in Computer Science

& Engineering from Motilal Nehru National

Institute of Technology, Allahabad.

Currently he is working as an Assistant

Professor in the department of Computer

Science and Engineering of IIIT

Bhubaneswar and pursuing Ph.D. in VSSUT, Burla. His

research areas of interest include Machine Learning,

Computational Intelligence, Data Mining and Cloud Computing.

He is a member of IEEE and CSI.

Dr. Rabindra K Barik is currently working

as an Assistant Professor in the School of

Computer Applications, KIIT University,

Bhubaneswar, India. He has received his

both M.Tech and Ph.D. in Geoinformatics

from Motilal Nehru National Institute of

Technology, Allahabad, India. His research

area includes Geospatial Database, SOA, Cloud Computing,

IPR and Geoinformatics. He is a member of IEEE and IAENG.

Sasmita Panigrahi has completed his

M.Tech in Computer Science &

Engineering from IIIT Bhubaneswar. Her

research areas of interest include Machine

Learning, Big data. Computational

Intelligence and Data Mining.

Sai Siddhant panda is an enthusiast in the

field of Machine Learning and is an

undergraduate from IIIT Bhubaneswar. He

holds a Bachelors of Technology Degree in

computer science engineering. He

completed his degree in the year 2017. He

successfully completed a couple of months

internship at a media channel start-up as a

blog developer in a company “OdishaLive”, situated at

Bhubaneswar, currently he is working as a Research Intern at

CloudThat Technologies PVT LTD. He can be reached by

saipsiddhant@gmail.com.

How to cite this paper: Rakesh K. Lenka, Rabindra K. Barik,

Sasmita Panigrahi, Sai S. Panda, "An Improved Hybrid

Distributed Collaborative Filtering Model for Recommender

Engine using Apache Spark", International Journal of Intelligent

Systems and Applications(IJISA), Vol.10, No.7, pp.74-81, 2018.

DOI: 10.5815/ijisa.2018.07.08

