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Abstract—The present scenario there is a serious need of 

scalability for efficient analytics of big data. In order to 

achieve this, technology like MapReduce, Pig and HIVE 

came into action but when the question comes to 

scalability; Apache Spark maintains a great position far 

ahead. In this research paper, it has designed and 

developed an improved hybrid distributed collaborative 

model for filtering recommender engine. Execution time, 

scalability and robustness of the engine are the three 

evaluation parameters; has been considered for this 

present study. The present work keeps an eye on 

recommender system built with help of Apache Spark. 

Apart from this, it has been proposed and implemented 

the bisecting KMeans clustering algorithms. It has 

discussed about the comparative analysis between 

KMeans and Bisecting KMeans clustering algorithms on 

Apache Spark environment. 

 

Index Terms—Apache Spark, Recommendation Engine, 

Collaborative Filtering, Machine learning, KMeans, 

Bisecting KMeans, Bigdata. 

 

I.  INTRODUCTION 

In this dynamic era, the technology is ever updating. A 

small add-on counts a lot in the next accomplishment of 

work/project. There are up to ‘n’ parameters that are 

taken care of, but even after that as per the field 

requirements necessary changes are brought up and 

released as new distributions, projects and in some cases 

it’s contributed to the existing model. For consideration 

of big data analytics, the recommendation system has 

been growing tremendous popularity in the field of e-

commercial marketplace. It has been greater benefit for 

the businesses grow by taking accurate business strategies 

and policies by suitable analysis through recommendation 

engine. Initially for recommendation engine, 

Collaborative Filtering (CF) has used as one of the 

efficient technique which depends on the past user 

transaction and feedback data [1-3].  

Latent factor models and neighborhood approaches 

have been used in the recommendation engine for the 

traditional CF algorithms. There are several issues like 

Scalability, Sparsely and Cold start problems have been 

found in the traditional CF. For solving these issues, there 

are different kind of approaches have been implemented. 

Feature based recommendation engine using tagging, 

Clustering and hybrid techniques are the various technical 

approaches being used for the solving out the problems 

associated on the recommendation engine. But these 

approaches are not suitable for massive big dataset. 

Recently, various works have been done with 

parallisation CF algorithm in Hadoop Environment. But it 

has been found that the cost efficient and greater 

computation time in MapReduce of Hadoop framework. 

By keeping this in mind, Apache Spark has been used for 

a new hybrid solution for recommendation engine with 

traditional CF methods by combing both dimension 

reductionality and KMeans clustering methods of 

machine learning [4-5]. 

In the present research paper, it has developed the 

Bisecting KMeans clustering methods of machine 

learning by taking the same dataset which has been 

previously implemented [9]. Comparison analysis 

between KMeans and Bisecting KMeans has been 

illustrated. Thus, the present study has been categorized 

into the number of sections. The section 2 deals with the 

related works which has been done in the field of 

recommendation engine. Section 3 illustrates about the 

objective of the present research and the detail 

description about the data set and proposed model 
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representation. Section 4 describes the parallel 

implementation of Bisecting KMeans clustering on 

Apache Spark. Section 5 contains the comparison 

analysis and observations of KMeans and Bisecting 

KMeans clustering. A final conclusion is drawn in 

Sections 6 with future avenues of research. 

 

II.  RELATED WORKS 

Recommender Systems have developed a lot since 

their evolution. From the period of its origin 

Recommender System are based upon three forms i.e. 

demographic, content based and collaborative filtering, 

but currently they are even utilizing social information 

retrieved from public domain like Facebook, Twitter, etc. 

This paper gives an outline of recommender systems as 

well as collaborative filtering methods and algorithms 

and investigates about its evolution, offers an authentic 

classification, provides area of future works and aware 

about development in specific areas selected from past, 

present or future importance [10]. 

Recommender System have already created an 

important place at everyone's life may be implicitly or 

explicitly. The job of a Recommender System is to 

automatically find and suggest items to a person of 

his/her interest, at times it even identifies his/her needs. 

Here, it also discusses the task of recommender system 

and the typical methods that never utilize the social 

network info. The discussion leads to how social network 

information accepted by recommender system as 

supplementary input for attaining better precision. Here, 

It has been found that the CF-based social recommender 

systems. These social based recommended systems have 

been categories into matrix factorization based social 

recommendation approaches and neighborhood based 

social recommendation approaches.  For each and every 

observance, there are several representative algorithms 

have been taken into consideration [11]. Collaborative 

Filtering has become the most preferred solution while 

designing a recommender system. With the drastic 

enhancement of storage and network technology, the 

quantity of users and items in recommendation system 

has been raised; here an effectual method of user based 

collaborative filtering on MapReduce has been shown. 

This paper works on Bag of Word (BoW) method and 

designs a hierarchical inverted index to upsurge the 

scalability. Interim, a soft assignment tool for the 

hierarchical inverted index has been discussed resulting 

in fixation of decrease in accuracy of recommendation 

caused by the index. The MapReduce are implemented in 

both real data and simulated data, proving the 

implementation has the potential to scale to vast number 

of items and users which has been assured the 

recommendation accuracy [7, 23]. 

Despite knowing the computational complexity of 

Collaborative Filtering is high and inefficiency in large 

scale system, the present study uses it broadly in many 

fields. Over here, it has been taken this issue into 

consideration and performs a user based Collaborative 

Filtering algorithm on Cloud Computing environment, 

specifically Apache Hadoop, for solving the reliability 

and scalability problem of Collaborative Filtering. From 

the experimental observations, it infers a technique that 

divides users into clusters as per two essential principles 

that is orderly arrangement of mapper number to 

overcome the initiation of mapper and divide the task 

uniformly such that all processors has to finish task at the 

identical time, that leads to achieve speedup the processes 

[5]. 

One of the very important steps in developing the 

recommender system for any purpose is to select the 

foundational framework. There are plethoras of 

approaches to it, the framework can be established from 

the ground up, or an existing recommender system can be 

utilize the several code libraries which has been adapted, 

or a framework may be selected and tailored to suit 

(Apache Mahout, MymediaLite, LensKit, etc.). However 

the best approach has to use an existing free and open 

source environment which have active contributors, it has 

numerous libraries and if required functions can be added 

and built [12, 24]. 

Recommendation system is a system used for 

predicting the right preference to the user. Over here it 

has been scrutinized an improved hybrid recommendation 

algorithm and combine MapReduce program on Hadoop 

environment. With the usage of this hypothesis the 

improved algorithm can precisely attaining user 

preferences, offer the required recommendation during 

the period when the user surfs the web page. In the end, 

Hadoop meets the massive data processing and attain 

extremely high performance system by use of the data 

reprocessing method [8]. 

Recommendation provides a feature of automatically 

identifying the taste of the user based on the prior 

patterns, interest shown by him/her. In this paper, it 

proposes a recommendation system to manage huge data 

available at web in form feedback, of complaints, 

remarks, ratings, reviews, opinions and comments about 

any item i.e. event, product,  services and individual  by 

using Apache Hadoop Framework. It has been executed 

interface of Mahout for examining the data supplied by 

the review and the rating site for movies [13]. 

With the enormous amount of facts present on web, the 

analysis of finding the relevant news to a user is a tire 

some job, which cannot accomplished by manually 

picking the News. Therefore in the present study, it has 

been justified the need of recommender system tailor 

made for recommending news articles. The developed 

recommender system continuously analyzes a data-stream 

using Apache Flink framework, and provides real-time 

recommendations. The recommender system understands 

the type of news portals and the categories of the 

audience of it and updates the recommender model 

assuring that only new articles are recommended. The 

architecture of the systems is discussed followed by the 

hurdles of processing continuous streams. The scalability 

and the methods for optimizing the parameter 

configuration are explained [14]. 

Apache Spark is well known for it’s in memory 

computation and has achieved a suitable place in many 
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designs, hypothesis and models. Today many of the 

companies, labs and various units are keenly interested to 

port their existing technology to Apache Spark [26]. With 

the rapid development of the big data in recent years, 

several applications have been extended for processing in 

big data analytics framework in health and geospatial 

area [15, 16, 25]. Apache Spark is an open source 

distributed computing framework which has been based 

on MapReduce of Hadoop algorithms. It has been 

offering a good platform to integrate MapReduce, 

Machine Learning, SQL, Streaming and Graph 

Processing. Apache Spark is much faster than that of 

MapReduce for the executing programs due to the use of 

Resilient Distributed Datasets (RDDs) which are evenly 

distributed collection of objects. These blocks split into 

numerous partitions. These partitions have been again 

computed in parallel on different nodes of the cluster. 

The new Data Frames of API has been introduced in 

Spark 1.6.0. It has been even performing faster than that 

of RDDs and has been provided SQL operations on 

RDDs. Spark 1.6.0 has two types of programs i.e. Driver 

Program which run on Master and Worker Program 

which runs on Slave. Spark Context is responsible for the 

connection to the Cluster Manager which in turn allocates 

the resources on the slave(worker) nodes which has been 

shown in Fig. 1 [17]. 

 

 

Fig.1. Cluster node overview [26] 

Broadcast variables and accumulators are the two 

varieties of shared variables have been used in Spark. 

Broadcast variables have used to sore values in memory 

over all the nodes where as in accumulator; the variables 

can be added to counters and sums. Due to the Lazy 

evaluation process of Spark, the efficiency has been 

improved that means actions have been appraised and the 

alterations have been kept for upcoming implementation 

of tasks. A new RDD has been constructed due to 

transformations process by some previous conditions and 

actions have computed the results based on the RDD 

which has been returned to the driver program or has 

been saved to the external storage system. Collaborative 

Filtering recommender systems utilize information 

regarding user's predilection to provide bespoke 

predictions. In this paper, it has described about an 

algorithmic framework built over Apache Spark for 

parallel computation of the neighborhood based 

Collaborative Filtering problem, where algorithm linearly 

satisfied the cumulative number of users. It has been 

worked on plenty of variation on this methodology 

including correlation and vector-based similarity 

calculations, user and item based recommendation 

approaches, and selective down-sampling of user 

interactions. In the end, it has taken an extensive research 

on comparison of these methods on the Movie Lens 

dataset consisting of 10 million movie ratings [18, 19]. 

Recommending the news article has always been a 

matter of concern as the user always finds a different 

categories of interest in News, may be supporting the 

trending news at one point of time or putting an immense 

interest on business or economy page. Traditional 

Recommender approaches are optimized for analyzing 

static data set. In news recommending strategies 

continuous changes, high volume of messages, and tight 

time constraints, alternative strategies are needed. 

Therefore, it has designed a highly scalable recommender 

system optimized for the processing of streams. It has 

been observed that the model in the CLEF NEWS-REEl 

challenge. The model is built on Apache Spark enabling 

the distributed processing of recommendation requests 

ensuring the scalability of the proposed approach [21]. 

Recommender systems have become an area of active 

research. They are especially important in the ecommerce 

industry because they help increase revenues and improve 

customer experience. A lot of different techniques have 

been explored for different kind of recommender systems 

based on the desired objective and the data that is 

available to base the recommendations on. In the present 

work, it has been proposed and developed a simple 

recommender system based on hybrid solution to the user 

based Collaborative Filtering based on Apache Spark 

platform combining both dimensional reduction and 

clustering techniques. This work also emphasizes on 

fixing of issues like cold start problem by relating users 

to products via features obtained. Here the tags are used 

as features [22]. 

 

III.  AIM OF THE CURRENT RESEARCH AND PROPOSED 

MODEL REPRESENTATION 

The aim of the current research paper is to offer and 

implement the bisecting KMeans clustering algorithms on 

Apache Spark Environment with Movie Lens dataset in 

an existing hybrid distributed collaborative model for 

filtering recommender engine.  It has also compared with 

the existing KMeans clustering algorithm and illustrated 

the different observation with respect to execution time, 

scalability and robustness of the engine. 

The present research, it has been taken the data from 

Movie Lens [20]. It takes 20M dataset that it processes 20 

million ratings rated by users. For scalability aspects, it 

has been used 1M & 10M dataset including 1 million and 

10 million ratings. A user has the right to rate and tag a 

movie rating can be done on a scale of range 1 to 5 

considering 1 as lowest and 5 as highest. Collaborative 

filtering is used to identify different users which are 

similar to a particular user. Then these similar users are 

used to recommend products that were popular with them. 

In the problem, it has been worked on; the notion of users 

is very weak because, it has no additional information 

about the users except for the ratings they have rated. 
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Also the number of tags per user is very low.  

Hence, it has decided to use collaborative filtering 

replacing the notion of user by search queries and try to 

identify similar queries to each query in the training set. It 

has also used the notion of finding similar items to what 

was searched for using the new query and recommend 

popular items among similar items. Firstly data loaded to 

hive and pertinent features are taken out. User ratings 

with less than 30 counts in rating movies are driven out, 

movies possessing less than 3 are deleted and all tags are 

lower cased and stop words are detached. The fresh 

dataset framed is represented in Table 1. 

Table 1. Pre-processing dataset [20] 

List of  
Attributes 

Users Tags Movies 

Before  138493 465000 24744 

After 110615 441252 16409 

 

After obtaining the pre-processed data, the model has 

been built and stored to HIVE5 in parquet format. All 

these computation jobs have done in offline environment. 

In real scenario, it has been loaded the models rear from 

Hive which has again used to create top N 

recommendations. Hence, it has been increased the 

throughput of the developed recommender system. The 

existing model is divided into two parts namely 

prevailing user module and fresh user module. The block 

diagram of the existing user recommendation module has 

been defined in Fig. 2. 

 

 

Fig.2. Block Diagram: Existing-User Recommender Module 

In the new user recommender model which has been 

illustrated in Figure 3, it has been found that the cluster of 

the user which has belong to the inputs given by the user. 

Subsequently, it has been suggested that the top N highly 

rated movies of that cluster has not seen by relevant users; 

has been returning as the recommendation. Users can 

easily list down the tags which they are concerned in and 

accordingly the proposed model; it finds the ideal 

recommendation for the users for avoiding coldstart 

problem. 

 

 

Fig.3. Block Diagram: New-User Recommender Module 

With the usage of K Means clustering algorithm 

similar users are grouped as per set built by Alternating 

Least Square (ALS) model. In ALS model, it has been 

implemented the bisecting K Means till, it has obtained a 

minimal squared error function which has been derived 

from equation 1. 
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In Equation 1, “||xj – ci|| ” is defined as the Euclidean 

distance between xj and ci, ‘xj’ is equivalent to the 

number of data points in jth cluster, where ‘c’ has been 

shown the number of cluster centers. Where users most 

have closest to their respective cluster center. The desired 

users are those who act as representatives of the cluster. 

These users have been defined as the most effective and 

desired relevant users on the top of the sysetm. Initially, it 

has been retrieved the top k most relevant and effective 

users of each cluster and has been stored it into the 

desired Hive table. 

The fresh new users have assimilated the labels easily 

and labels can be served as bridge gap helping desired 

users for better distinguish an unidentifiedassociation 

between an element and themselves. Initially, Tag Score 

(TS) for each tag has been calculated. TS(t,m) has been 

defined for a Tag (t) and Movie (m) in equation 2. 

 

( , )
Number of times t has been applied to I

TS t m
Number of times any tag applied to i




  (2) 

 

The fresh new user has the responsiblility to pick the 

labels from which they has been identified the list and as 

per the preference, the most pertinent top N items which 

has related to the favourite tags have been returning as 

recommendation to the identified user.  

 

IV.  IMPLEMENTATION OF BISECTING KMEANS 

CLUSTERING 

Here, it has been described the execution of the 

projected effort on Apache Spark. The projected 

procedures have been written in Scala programming 

language. Initially, it has been introduced the two files as 

rating and tag files. These rating file(rating_file.csv) and 

tag file(tag_file.csv) are stored into the HDFS file system 

of Hadoop Framework. The execution of Apache Spark 

has been started by generating a sparkContext object. As 

data would be frequently accessed, it has been cached it 

in memory. Initially, it has been proposed the dimensiton 

reduction algorithm which has been illustrated in 

Algorithm 1. 

 

Algorithm 1 Algorithm for Dimensionality Reduction 

______________________________________________ 

 

Input: Rating File (rating_file.csv)       [User_ID, 

Movie_ID, User_Rating]    

 

Output : User_Feature<User_ID, 

Feature_Vector> 

Product_Feature<Movie_ID, 

Feature_Vector> 

Begin :           

On each of the worker node is doing in 

parallel process: 

1. Load_Data: the data from rating_file.csv file 

into an RDD.      

data load(rating_file.csv) 

2. Parse_Rating: It is known as user defined 

function which has been splitting the desired 

data based upon comma (‘,’) and has been 

returned as an RDD of Rating class object.    

Parse_Ratingmap(Parse_Rating)      

Emit_Data<Rating(User_ID, Movie_ID, 

User_Rating)> 

3. Store_Data: the Parse_Rating data into the 

memory by using cache()  function        

4. Random_Split() the RDD into training_RDD 

and test_RDD where 80% split in training_RDD 

and 20% split in test_RDD. 

5. Do_map on test_RDD and store the first two 

fields into another RDD. 

 testmap(User_ID, Movie_ID, User_Rating) 

6. Emit_Data <User_ID, Movie_ID> 

7. While a= 1 to i             [i presents the 

number of iterations] 

8. While b = Array (1 to j)  [which is containing  

different values of ‘’] 

9. While c = Array (1 to k)  [which is containing 

different values of Rank] 

10. modelALS.train(train_RDD) 

11. predictmodel.predict(test) 

12. Errormap(calculate_RMSE) 

13. Emit_Data<Error> 

end while 

end while 

end while 

14. While the values of b and c, which has given the 

Least Error (RMSE), do again step 10.  

15. Emit_Data<User_Feature, Product_Feature> 

16. Store the results in Hive tables 

model.saveAsParaquetFile(“ALSmodel.Paraquet”) 

____________________________________________ 

 

The output of the above ALS algorithm has been 

passed as the input to next KMeans clustering and 

Bisecting KMeans clustering algorithm.  The following 

Algorithm 2 and Algorithm 3 have been derived the 

existing K Means clustering and proposed Bisecting 

Kmeans algorithms. 

 

Algorithm 2 Algorithm for  KMeans Clustering  

______________________________________________ 
 

Input    : User_Feature<User_Id, Feature_Vector> 

Output : Top N Recommendation         

Begin   :   

1. Master broadcasts the User_feature to all of the 

worker nodes.    

On each of the worker node has doing in parallel           

process:  Normalise the Feature_Vector for all  

users.        

2. NormaliseFeatureVector.ComputeColumnSu

mmaryStatistics() 

3. Emit_Data <mean, variance> 

4. While a = 1 to i, i = Number of iterations   

5. While b = 1 to j,    j = Number of clusters 

6. cluster = kmeans.train(User_Feature_Vector)                
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     end while    

    end whle 

7. While each User_Feature:             

8. Cluster_IDmodel.predict(User_Feature)   

9. Cluster_Centermodel.clusterCenters(cluster_

ID) 

10. distancecomputeDistance(User_Feature,clust

er_Center)      

11. Join the Movie_IDs has been keyed on User_IDs 

from       

Parse_Rating data RDD. [Step 3 of ALS]                                                                                                                                                                                                                           

12. Emit_Data<(Cluster_ID),Array(User_ID,Movie

_ID)>.take_Ordered(N) 

13. While any active user AU 

[AU<(Cluster_ID),(User_ID,Movie_ID)>] 

14. AUmap(Top N Recommendations) 

Where top N is the user defined function 

 which  will return the  top N recommendations  

14.1 filter() the common Movie_IDs between 

AU and relevant  

user set emitted from step 11. 

14.2 Emit_Data <Array(Movie_ID)>.top N  

where Movie_ID are the 

top N highest rated movie by relevance 

end while 
____________________________________________ 

 

Algorithm 3 Algorithm for  Bisecting KMeans 

Clustering  

______________________________________________ 
 

Input: C: Number of clusters presents 

           D: Top N documents obtained by vector space 

similarity  

Output: C clusters put all the N documents in a single 

cluster  

Begin: put all the N documents in a single cluster K 

1. While a=1 to C-1 do for b=1 to ITER do 

2. While b=1 to C-1 do for b=1 to ITER do  

3. Use KMeans to split K into two sub clusters, K1 

and K2 

4. if ( intra cluster similarity (K1) > intra cluster 

similarity(K2) ) 

5. make cluster K1 as permanent 

6. K= K2 

7. else 

8. make cluster K2 as permanent 

9. K = K1 

10. end if 

11. end while 

12. end while 

13. end Bisecting KMeans 
 

_______________________________________________________ 

 

Intially, User_Feature vector has been disseminated to 

each slave node. The user feature_vector normalized with 

Compute_Column_Summary_Statistics function. It has 

been computed in column wise summary statistics. It has 

been used MLLib of Spark 1.6.0 both KMeans and 

Biseting KMeans algorithm to train the proposed model. 

The compute_Distance() has been computed the distance 

of user_Feature vector to its cluster_Center. After 

KMeans and Bisection KMeans Clustering computation, 

it finally computes the Tag Score (TS). In new user, the 

user chooses the labels at once, most pertinent objects are 

returned as reference based on the TS, which has been 

described in Algorithm 4. 

 

Algorithm 4 Algorithm for Computing Tag Score. 

______________________________________________ 
 

Input : tag_file.csv [User_ID, Movie_ID, Tag] 

Output : <User_ID, Movie_ID, Tag, 

Tag_Score> 

Begin : 

1. Each worker node has been done in parallel 

process: 

Repeat step 1 to 3 of ALS algorithm as input. 

2. Data_FrameParseTag.DF() 

3. Data_Frame.registerTempTable(“Tag”) 

4. Val_ordered_ID = sqlContext.sql(“SELECT 

Movie_ID AS ID, TAG FROM TAG 

ORDER BY Movie_ID”) 

5. Val_eachTag_Count = 

ordered_ID.groupBy(“ID,TAG”).count() 

6. Val_final_result = sqlContext.sql(“SELECT 

Movie_ID, TAG_NAME, occurrence AS 

eachTag_Count, count AS total_Count 

FROM result ORDER BY Movie_ID”) 

7. Val_Tag_Score = sqlContext.sql(“SELECT 

Movie_ID, 

TAG_NAME(eachTag_Count/total_Count) 

AS TagScore FROM final_result”)) 
 

____________________________________________ 

 

V.  COMPARISON ANALYSIS AND OBSERVATIONS 

The observations have been taken on operating system-

Ubuntu 14.04 environment which has specifications such 

as 2.50 GHz processors with 4 processing cores. 4GB 

RAM has been allocated to master node of 

clusterwhere4GB RAM allocated to each slave node. The 

recent technologies such as Apache Hadoop 2.7.2, Scala 

2.11.7, Apache Hive 2.0, Apache Spark 1.6.0 and SBT 

0.13.9 has been used for implementation. The mentioned 

model has been executed and tested for various 

parameters, among the considered parameters the most 

effective parameter observed as the different execution 

time across various datasets 1M, 10M, and 20M. Table 2 

shows the execution time with KMeans and Bisecting 

KMeans Algorithm with various datasets with 6 numbers 

of clusters. 
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Table 2. Comparison of execution time 

Data Set KMeans Bisecting KMeans 

1M 40ms 38ms 

10M 45ms 40ms 

20M 50ms 44ms 

 

Figure 4 shows the bar chart of the above execution 

times as compared to KMeans and Bisecting KMeans. 

 

 

Fig.4. Comparative Analysis of KMeans and Bisecting KMeans 
Clustering Algorithm with various dataset and execution times 

From the above analysis it has been concluded that 

Bisecting KMeans is a better approach for the problem 

being discussed. It has also observed that there is a 

significant difference of executing the model comes into 

action if the data is more and more voluminous. 

Therefore, it will be appropriate if it can use the discussed 

model for real world data analytics. 

 

VI.  CONCLUSION AND FUTURE WORK 

The discussed and projected model has been verified 

with several datasets of 1 million, 10 million & 20 

million; also found as more effectual than prevailing 

models. The experimental result shows that the running 

time of algorithm is boosted with every new node 

addition into the Spark Cluster. Our model is generating 

best output as compared to standard algorithms in terms 

of throughput. Further we also have an inclusion of 

widespread review of merits and demerits of all 

Collaborative Filtering algorithms and found that our 

model performs the superlative among all. Few 

challenges identified can be higher needs of RAM size by 

Spark memory computation which is costly. In order to 

speed computational time, we select Scala (Spark’s native 

language). Scala is initially perplexing but their 

functional programming feature makes it substantial. To 

get enhanced estimate, we update the ALS model and 

Clusters in manual mode. Subsequently, it has been 

strategize to devise this model expending Mahout (A 

Machine Learning Library of Hadoop) to perceive the 

scalability and efficiency of model. 
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