
I.J. Intelligent Systems and Applications, 2018, 9, 1-12
Published Online September 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2018.09.01

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 9, 1-12

Context-Aware Recommendation Methods

Tosin Agagu
University of Ottawa, Ottawa, K1N 6N5, Canada

E-mail: tagag045@uottawa.ca

Thomas Tran
University of Ottawa, Ottawa, K1N 6N5, Canada

E-mail: ttran@site.uottawa.ca

Received: 20 November 2017; Accepted: 14 August 2018; Published: 08 September 2018

Abstract—A context-aware recommender system

attempts to generate better recommendations using

contextual information. However, generating

recommendations for specific contexts have been

challenging because of the difficulties in using contextual

information to enhance the capabilities of recommender

systems.

Several methods have been used to incorporate

contextual information into traditional recommendation

algorithms and data modeling techniques. These methods

focus on incorporating contextual information to improve

general recommendations for users rather than

identifying the different context applicable to the user

and providing recommendations geared towards those

specific contexts.

We develop two methods: the first method attaches

user preference across multiple contextual conditions,

assuming that user preference remains the same, but the

suitability of items differs across different contextual

conditions. The second method assumes that item

suitability remains the same across different contextual

conditions but user preference changes.

We perform some experiments on the last.fm dataset to

evaluate our methods. We also compared our work to

other context-aware recommendation approaches. Our

results show that grouping ratings by context and jointly

factorizing with common factors improves prediction

accuracy.

Index Terms—Context-aware, recommender system,

coupled matrix factorization, context, recommendations.

I. INTRODUCTION

In this age of internet of things, big data and cloud

computing, users are constantly overloaded with a large

number of products and services that makes it

challenging for them to choose the best-suited products

and services. Recommender systems help users make

decisions on what to purchase or consume online by

estimating the preference of users and suggesting the

products and services that fit their profile based on some

historical data.

A recommender system takes the ratings of different

users to extract their preferences and provide

recommendations. It is also an information filtering

system that predicts the rating or rank that a user would

give to an item. A recommender system uses a

recommendation algorithm to filter items, by

predetermining how a specific user might rate or rank

them based on historical rating pattern of the user or

other similar users.

The process of recommendation is similar to searching

for relevant items based on a query input and ranking the

results based on user's historical activities. Thus, the

problem of providing recommendations is similar to a

search ranking problem [1].

Psychological research has shown that certain

psychological factors and conditions affect the behaviors

of humans [2]; the author in [2] assumes the same for the

effect of context in generating recommendations.

Traditional recommendation systems use 2-dimensional

data consisting of only users and items, ignoring

additional contextual information during their

recommendation process. In contrast, context-aware

systems incorporate the factors, conditions and the

characteristics of the environment that affect users.

Location, time, weather and activities are few examples

of these factors [3].

Context-aware recommender systems are systems that

incorporate contextual information, e.g., weather,

location, mood, season, etc., alongside the core data

(users and items) to generate better recommendations.

Some research has shown that incorporating seasonality

and weather contexts into recommender system produces

better recommendations [4]. We can relate to how

differently we feel in different seasons and how some

activities are tied to seasons and weather conditions. For

instance, certain products are not available in certain

seasons, and some activities are only available in a

particular kind of weather.

Some examples in [5], presents certain applications

where traditional recommendation systems might fall

short. An example of such scenario is a news application

that recommends different news based on the day of the

week. Here, “the day of the week” is a contextual

information that should be incorporated into the

recommender system. A news recommender application

that suggests news based on the day of the week is a

2 Context-Aware Recommendation Methods

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 9, 1-12

good example of a context-aware recommender system

that filters and segments recommendation based on the

context information that affects the likability of an item

[5]. This shows the tremendous influence that context has

in improving the quality of recommendation.

We aim to develop two context-aware

recommendation approaches that use coupled matrix

factorization and show that it performs better than some

of the existing context-aware methods. Our proposed

methods are contextual-driven, in the sense of making

context front and center of our recommendation

approaches and not just a factor in improving

recommendation.

This paper is organized as follows. Section II discuss

some related works in the area of context-aware matrix

factorization and coupled matrix factorization. Section III

provides a discussion of recommender systems. Section

IV discusses context-aware recommender systems. In

section V, we provide a discussion of our proposed

methods. In section VI, we offer an evaluation of our

proposed methods and discuss extensively the results

obtained. In section VII and VIII, we make some

conclusions and present, future works.

II. RELATED WORKS

In this chapter, we do a review of some works on

recommender systems that used context-aware matrix

factorization in their process of generating

recommendations. After that, we discuss related works

on coupled matrix factorizations.

A. Context-Aware Matrix Factorization Methods

In [6], some context-aware matrix factorization

(CAMF) techniques were developed to capture the

interaction between the ratings and some contextual

factors. The methods proposed by the authors measure

the relevance of the contextual factors on the ratings

based on three different assumptions. Three models were

developed to capture the influence of each contextual

condition on the user ratings.

The first model in [6] is called CAMF-C; it assumes

that each contextual condition has a uniform influence

over all the items. That is, the effect of each contextual

condition over user ratings is the same for all items. A

single parameter represents the effect for all items in a

contextual condition. The total number of parameters is

the sum of all contextual conditions of each contextual

factor. Each parameter measures the deviation from the

standard rating as a result of the contextual condition.

The second model in [6] is called CAMF-CI, it

assumes that each contextual condition influences the

ratings for all items. This means that the effect of each

contextual condition is different for all items. This model

introduces a large number of parameters, for each

contextual condition and item pair, a parameter is used to

model the deviation of the rating. This model provides

better prediction according to the authors in [6].

The third and last model is called CAMF-CC, it groups

items into categories and assumes that the influence of

each contextual condition is the same for each item

category. A parameter is used to model the deviation for

each contextual factor and item category pair [6].

A contextual condition in [6] refers to a value of a

contextual factor; we further explain what it means later

in this section.

The results of the experiments in [6] show that the

CAMF-CC model performs better generally when

compared to the other models in their work and another

baseline context-aware factorization model. The problem

with CAMF-CI is that it is too complex, thereby reducing

prediction accuracy. One limitation of CAMF-CC when

compared to our model is that it can only be used for

items grouped into categories. CAMF-CC assumes that a

domain expert can efficiently group items, this becomes a

problem when items cannot be efficiently grouped. In

contrary, our proposed methods group ratings based on

the contextual conditions they occurred. For example, we

group ratings of music played in the morning; morning

here is a contextual condition of the time contextual

factor. This doesn’t require a domain expert and makes

the grouping and splitting process transparent. Another

limitation of the methods in [6] is they capture only the

influence of the contextual conditions on items. Our

approach captures the influence of contextual conditions

on users and items instead.

In [7], some correlation-based context-aware matrix

factorization methods were developed and claimed to be

an improvement over the models in [6], measuring

correlation rather than rating deviation. The contextual

correlation based CAMF measures the correlation

between two contextual situations, the assumption is that

two similar contextual situations for a user will produce

similar recommendations for that same user.

The work in [8] proposed an “improved context-aware

matrix factorization” that “fully” incorporates contextual

information alongside with user and item biases. The

authors claimed that other approaches do not fully

capture the influence of contextual information on ratings.

The authors developed two methods called ICAMF-I and

ICAMF-II. Both methods compute and incorporate the

user-context interaction and the item-context interaction

into the models created. The first one (ICAMF-I),

incorporates a global rating average, an item and user

bias that aren't affected or influenced by the contextual

factors.

The second method (ICAMF-II) built on the first

method to incorporate item and user biases that changes

over different contextual conditions. The item and user

biases are modeled as the sum of all item and user bias

over each contextual condition. Our methods measure

and incorporate item and user biases for each contextual

condition rather than as a sum. As an improvement to [8],

we learn the item and user biases parameter for each

contextual condition alongside the latent factors during

training; this makes our contextual item and user biases

more accurate and evolving as the rating behavior

changes.

The authors in [9] created a context-aware

recommender system that predicts the utility of items in a

 Context-Aware Recommendation Methods 3

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 9, 1-12

particular context. A tuple of user, items, context, and

utility was used as the data structure to represent the

problem of estimating the utility for a tuple. The utility of

an item in a specified context is a function of its latent

representation which is the column vector of the feature

representation of the items and contextual factors. The

Gaussian process was used to model the utility function.

B. Coupled Matrix Factorization

Coupled matrix factorization is an approach that

performs a joint factorization of two or more matrices.

Several attempts have been made to develop different

variants of coupled matrix factorization methods in [10],

[11] and [12]. However, our methods are the first and

only context-aware coupled matrix factorization as far as

we can tell. The work in [10] defines a coupled matrix

factorization method that serves as the foundation of our

proposed work. In [10] and [11], a coupled matrix

factorization model was developed for factorizing two

matrices by performing a joint matrix factorization of two

matrices at the same time and minimizing using the

gradient-based optimization method.

During the factorization of the two matrices, both

matrices could share a common factor matrix. The idea

for our work came from the common factor in [10].

However, we developed two models with two different

variants of the common factor matrix in [10]. In our

proposed methods, we use the term “common user factor”

in our first model. The idea is that we assume a user’s

taste remains consistent across different contextual

conditions, but the item characteristics change in

different contextual conditions. The second model

assumes the characteristics of items remain the same over

different contextual conditions but the user taste changes.

Another improvement we added to [10] is the addition

of contextual user and item biases. The method in [10]

doesn’t incorporate any bias. The reason for item and

user bias is because, in the rating dataset, the rating

dataset is affected by some users or items that have

extremely high or low ratings. This doesn’t model the

general opinion. We incorporate bias to neutralize these

effects by accounting for the influence of those biases.

Finally, we incorporate contextual information into our

models, making our work the first and only context-

aware coupled matrix factorization.

“Coupling” according to [12] and [11] means the

relationship among attributes of items in a dataset. They

created a coupled similarity method that measures the

similarity between attributes and characteristics of items

to identify the relationship in the dataset. They

incorporated the coupled similarity method into the

matrix factorization method to form a coupled item-based

matrix factorization. We use the term “coupling”

differently in our work; we use “coupling” to describe a

process that jointly combines the factorization of

different contextual matrices. We think our definition

provides a better representation of the term “coupling”

which means to combine or join.

Our proposed models add user and item biases which

were not added in [12] and [11]. We do not compare our

methods to the coupled matrix factorization methods

discussed here because they do not incorporate

contextual information.

III. RECOMMENDER SYSTEMS

Recommender systems are tools that suggest items to

users. They are a special kind of information filtering

system that predicts the rating or rank that a certain user

would give to an item. A recommendation algorithm

specifies how the system should perform the filtering of

items; the algorithm predetermines how a user would rate

or rank items. They typically take in a dataset containing

the activities of users and extract the preferences of users,

based on the historical data available in the system.

A. Collaborative Filtering (CF)

Collaborative filtering assumes that users who prefer

similar items in the past will prefer similar items in the

future. The function of collaborative filtering is to

estimate the rating R over a set of users and items [13]. A

collaborative filtering recommender system attempts to

find users with similar ratings by comparing their

historical behaviors; extracting similar users based on

past behaviors and recommending items from similar

user's catalogs.

CF model users with a matrix containing the ratings of

items for each user. The models are used to extract factor

vectors. These factors have different weights for each

user and item factor models depending on the user’s

profile. A CF system in contrast to a content-based

system makes its recommendation based on the

preference of similar users and not on similar properties

of the items. CF assumes that ratings are directly

proportional to preferences, thereby it places more weight

and emphasis on the ratings given to the item by other

users, rather than the characteristics of the item like

content-based approaches does, even if the characteristics

of the item matches what the user likes. In other words,

CF in its pure form solely rates items based on its

historical rating and completely ignores the

characteristics of the items [14].

In the following sections, we discuss neighborhood-

based and model-based approaches.

B. Neighborhood-based Collaborative Filtering

Neighborhood-based recommender systems automate

the word-of-mouth principle on which people rely

heavily on what other people say, be it people they trust

or people they share common opinions with [15]. The

premise of the neighborhood method is that if users have

preferred similar items in the past, the probability is very

high that they will prefer similar items in the future,

either on a user-to-user level or an item-to-item level.

Some variations of neighborhood-based techniques

compute item similarities and user similarities once and

can make recommendations for users without having to

re-compute similarities again; this makes it very scalable

and fast.

The neighborhood-based methods are intuitive, simple

4 Context-Aware Recommendation Methods

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 9, 1-12

to implement and it is easy to justify the results of their

recommendations. One important thing for a

recommender system is the explanation of how the

recommended items were generated. This is important for

transparency and trust.

C. Model-based Collaborative Filtering

Model-based methods create predictive models by

learning and discovering features from the dataset. The

created models are used to make predictions for the user.

A model-based collaborative filtering method performs

some offline analysis on the rating dataset to extract the

models that represent the latent factors that describe the

relationship and characteristics between the users and

items. This model is loaded instead of the dataset during

the recommendation process. When contrasted with the

neighborhood and content-based recommender systems, a

model-based system finds the distinctive features of users

and items by taking a gander at the rating information. It

builds the user profiles and items profiles with the end

goal of reusing both entities for subsequent analyses.

As shown in Fig. 1, the utility matrix is the dataset

representing users’ preferences. It is the structured

dataset processed to discover the hidden features or

factors for each user in the system.

Fig.1. A framework for model-based recommender systems.

IV. CONTEXT-AWARE RECOMMENDER SYSTEMS

Many other factors could influence the preference of a

user: a user may, for example, lean towards leisurely

activities at the end of the week but goes for more

business-related activities on weekdays. These factors

can affect the preference of users in a great deal. Thus, it

is vital to consider the appropriate context during the

process of recommendation. It is stated in [16] that

“contextual recommender system acknowledges the

effect of context in the recommendation and that the

preference for an item within one context can be different

in another context. “ We use context and contextual

information interchangeably throughout this section; they

mean the same.

To understand the value of context in a recommender

system, we describe the typical traditional recommender

system and how context-aware recommender system

extends it. Typically, a traditional recommender system

uses two-dimensional data space to estimate the rating for

items or users. The rating function R for a traditional

recommender system is calculated for the (user, item)

pairs that haven't been rated by the user and defined as:

R: User x Item → Rating

Contextual recommender system extends the rating

function by including one or more information in the

form of context as shown below:

R: User × Item × Context → Rating

The context used by a context-aware and driven

recommender system could be fully observable, partially-

observable or unobservable contextual information.

Fully observable context means that the recommender

system has full knowledge of the structures and values of

the contextual information relevant to the interaction

between users and items. An example is a movie

recommender system; the contextual factors might be

time or location. The structure of the time context might

be the days of the week, the month of the year, etc., and

the structure of the location might be street, city,

province, state, etc.

In the following sections, we discuss the context in a

recommendation, ways of incorporating contextual

information into recommender systems and some

important components of a context-aware recommender

system.

A. Context in Recommendation

According to [16], contextual information can be in a

static or dynamic form. The static form is when the

contextual information is the same over the lifetime of

the recommender system. Dynamic form is when the

contextual information changes over the lifetime of a

recommender system. A function in the recommender

system constantly detects the relevant contextual

information and updates as required. Dynamic form

conveys a notion of adaptability, the ability to adapt to

changing contextual factors in the environment. The

system detects the relevant context and updates

recommendations during the user’s interaction with the

system. This may occur in real-time where the context

changes over time. Location is an example of a dynamic

context that changes as you move from one point to

another.

Contexts are factors that describe the environment and

situations where the activity occurs. Much like rating

data, we can acquire context data explicitly or implicitly.

In the case of explicit context, the user needs to specify

the context deliberately. For example, a user could

specify additional information in the recommender

system. This may not be dependable since it is easy for

users to overlook some relevant activities, particularly

when it involves a lot of contextual information and it is

over a long period [17]. Implicit data is extracted

automatically without user involvement when a user

interacts with the system. An example is the collection of

information like location coordinates, weather, user

social activities, etc. Mobile phones have features like the

 Context-Aware Recommendation Methods 5

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 9, 1-12

global positioning system (GPS) to collect location

coordinates and obtain weather information from weather

services using the location obtained.

Representation of the contexts obtained follows after

extracting or inferring the context. Using the approach in

[5], we show an example of a contextual data

representation for a location-aware recommender system

below. We represent a context as a set of contextual

dimensions, each dimension in the set is defined by a set

of attributes having a variety of granularities [5].

Given a location recommender system, we represent

the set of contextual dimensions as D containing top-

level contexts. D is defined below as:

D = { Place_Category, Weather}.

We further divide each element of D to a more

granular or finer level such that:

𝐷𝑝𝑙𝑎𝑐𝑒_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = {Food, Educational, Spiritual} and

𝐷𝑤𝑒𝑎𝑡ℎ𝑒𝑟 = {Winter, Summer, Fall}

B. Incorporating Contextual Information into A

Recommender System

Unlike traditional recommender systems that solely

rely on user preferences for some items, context-aware

recommender systems use contextual information about

the activities in addition to the user’s preferences.

Incorporating context into a recommender system can be

done in three ways: contextual pre-filtering, contextual

post-filtering, and contextual modeling. Fig. 2, shows a

general overview of the ways contextual information is

incorporated into the recommendation process. The gray

boxes represent the recommendation process in its pure

form in sequence. The rating data goes into the

predictions box, which represents the engine that

performs the prediction and generates an output, the

recommendations at the end of the process.

Fig.2. Incorporating contextual information in a recommender system.

Contextual Pre-filtering: filters the rating data using

the specified context before the recommender framework

computes the recommendations. Recommendations are

computed by utilizing a subset of the data that are

significant to the context. This approach uses contextual

information to filter the dataset for the most relevant data

(user, item, rating), before the process of

recommendation [5]. A good example is a user that wants

to find activities in a particular season; the recommender

system only uses the preference data of the user and other

users for that particular season.

Item Splitting is another pre-filtering approach. The

concept is to split historical preference data that makes

up the whole dataset profile into smaller segments and

make predictions based a small segment. The major

challenge of this approach is finding an efficient way to

split the user profiles into optimal and appropriate

segments [18]. This item splitting technique is referred to

as micro-profiling. In [18], micro-profiling was applied

on a music dataset to generate recommendations; the

datasets were collected for a two-year period; it consists

of implicit user feedback data, mainly the tracks the users

of last.fm played. Multiple micro-profiles were used to

model user’s profiles based on time cycles. The smaller

profiles represented the user profile for a specific time

context.

Contextual post-filtering: this approach applies the

recommendation process on the whole dataset and after

that uses contextual information to filter the results to get

the contextualized recommendations. Post-filtering

examines the preference of a user in a given context to

understand the item usage pattern for the given context

and applies it to adjust the recommendation list [5]. The

recommendation list can be adjusted by either filtering

out the irrelevant items for that context or by ranking the

list based on relevance in the given context.

Post-filtering allows a traditional recommendation

algorithm to be used in the process of recommendation

before a filter is applied to select relevant

recommendation. For example, in a location

recommender system, if we want to recommend locations

to a user based on a specific category, we filter and return

only the locations in the specific category or rank the

recommended results based on the category context.

Contextual modeling: incorporates context directly

into its recommendation process. Contextual modeling

uses a different approach to allow more than 2-

dimensional data to be utilized to make recommendations.

The 2-dimensional data are the user and item. Contextual

information can be incorporated directly into the

recommendation process alongside the user and item data.

Predictive models like context-aware matrix

factorizations, regression and decision trees are examples

of contextual modeling techniques that incorporate

context into their approach.

The contextual modeling approach is divided into

Heuristics and model-based methods. [19] described a

contextual modeling approach called contextual

neighbors that is based on collaborative user filtering.

Heuristic-based methods extend traditional approaches.

An example is the extension of the neighborhood

approach using a multidimensional similarity method.

The heuristic-based method finds the distance between

users or items with similar context. The distance in

consideration is the difference between the ratings being

compared. To provide a generalized distance

measurement, the dataset is grouped into segments using

the available context, and the distance function is

calculated on segments, this could help reduce sparsity

where there are no adequate data for some contexts.

6 Context-Aware Recommendation Methods

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 9, 1-12

V. THE PROPOSED METHODS

We propose two context-aware coupled factorization

methods in this paper. The coupling part of our method is

founded upon the approach in [10] which we explain in

detail in this section. In section V.A, we provide a

detailed explanation of our proposed context-aware

coupled matrix factorization with common user factors.

Section V.B provides a detailed explanation of our

proposed context-aware coupled matrix factorization

with common item factors. Section V.C details the

addition of contextual user and item bias to our proposed

methods.

A. Context-Aware Coupled Matrix Factorization with

Common User Factors

In this section, we explain our proposed model called

context-aware coupled matrix factorization with common

user factors. We use the term “common user factors”

because we make the contextual condition rating matrices

to have the same user latent factors by compelling the

user factor matrix of each contextual condition rating

matrix to be the same.

The rationale for this approach is based on the

assumption that to incorporate the effect of context, we

assume that during user interaction, the effect of context

on ratings reflects only on items. That is, across different

contextual conditions, the taste of users remain the same

while the suitability of items differs. An item might not

be suitable in a context due to its characteristics. Since a

rating is a weighted product of the user and item latent

factor matrices, the changes in ratings are largely due to

different values of item factors across the contextual

conditions.

In this section, we define the objective function for our

context-aware coupled matrix factorization with common

user factor; this function is what computes the latent

factors. The function generates the latent factors by

minimizing the prediction error as shown later in this

section.

Our method extends the approach in [10] by jointly

factorizing 𝑅11, 𝑅12 and 𝑅13 , and sharing the same user

factor matrix with all contextual condition matrices such

that, 𝑅11 ≈ 𝐴𝐵𝑇, 𝑅12 ≈ 𝐴𝐶𝑇 and 𝑅13 ≈ 𝐴𝐷𝑇 . 𝐴 is the

common user factor shared by the contextual condition

matrices, where 𝐵, 𝐶 and 𝐷 are the latent item factors of

the observed contextual condition rating

matrices 𝑅11, 𝑅12 and 𝑅13 consecutively.

The objective of our method is to generate the latent

factors and compute the mapping of users and items to

factor matrices , 𝐵 , 𝐶 and 𝐷 . Once we have done that,

then we can predict ratings for users and items in a

contextual condition, such that, �̂�11 = 𝐴𝐵𝑇 , �̂�12 = 𝐴𝐶𝑇 ,

and �̂�13 = 𝐴𝐷𝑇 . �̂�11 , �̂�12 and �̂�13 are the predicted

ratings for each contextual condition. We do this by

defining and solving a minimization problem that

minimizes the prediction error to a local minimum. In the

simplest form, the difference between the observed rating

and the predicted rating called the prediction error

denoted by 𝑒 is defined in [20] (2) as:

𝑒 = 𝑅 − �̂�. (1)

Therefore, for each user-item-contextual condition

rating pair, the prediction error in its simplest form is

defined as:

𝑒𝑢𝑖𝑐𝑘 = 𝑅𝑢𝑖𝑐𝑘 − �̂�𝑢𝑖𝑐𝑘 . (2)

Where 𝑅𝑢𝑖𝑐𝑘 represents the observed contextual

conditional rating by user 𝑢 for an item 𝑖 in contextual

condition 𝑐𝑘 . �̂�𝑢𝑖𝑐𝑘 is the corresponding predicted or

computed rating for a contextual condition rating by user

𝑢 for an item 𝑖 in contextual condition 𝑐𝑘.

Building on (2), we define our proposed context-aware

coupled matrix factorization with common user factors

objective function that incorporates joint factorization as

an extension of (1) of [10] as:

𝐿 = ‖𝑅11 – (𝐴 × 𝐵𝑇)‖
2

+ ‖𝑅12 – (𝐴 × 𝐶𝑇)‖
2

+

 ‖𝑅13 – (𝐴 × 𝐷𝑇)‖
2
.

(3)

Where ‖ ‖ denotes the Frobenius norm for matrices

used as a loss function, 𝐴 is the common user factor

matrix that contains the mapping of users to the latent

factors, 𝐵 , 𝐶 and 𝐷 are the latent item factors of

 𝑅11, 𝑅12 and 𝑅13 containing the mapping of items to

latent factors. The coupling can be seen here in the joint

factorization process. The object function is solved as an

optimization problem to minimize the prediction error

while computing and learning the latent factors. This

process generates our low latent factor matrices.

We modify our objective function in (3) by adding

regularization to avoid overfitting during training, this

generalizes the prediction rating model as much as

possible to be able to predict unknown ratings.

Regularization is done to penalize the magnitude of the

low latent factors computed in the objective function.

We apply the constants 𝛼 and 𝛽 as used in [21] and [22]

to regularize the squared error on the set of the observed

contextual condition ratings, this is defined below as:

𝐿 = ‖𝑅11 − (𝐴 × 𝐵𝑇)‖2 + ‖𝑅12 – (𝐴 × 𝐶𝑇)‖2

+ ‖𝑅13 − (𝐴 × 𝐷𝑇)‖2

+ (𝛽‖𝐴‖ 2 + 𝛼‖𝐵‖ 2 + 𝛼 ‖𝐶‖ 2

+ 𝛼 ‖𝐷‖ 2).
(4)

Where 𝛼 controls the extent of regularization for the

matrices 𝐵 , 𝐶 and 𝐷 and 𝛽 controls the extent of

regularization for the matrix 𝐴. 𝛼 and 𝛽 are simply the

penalty parameters.

To learn the latent factors in the low factor matrices,

we optimize our objective function by solving the

minimization problem below:

 Context-Aware Recommendation Methods 7

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 9, 1-12

𝑚𝑖𝑛
𝐴,𝐵,𝐶,𝐷

 ‖𝑅11 − (𝐴 × 𝐵𝑇)‖2 + ‖𝑅12 − (𝐴 ×

 𝐶𝑇)‖2 + ‖𝑅13 − (𝐴 × 𝐷𝑇)‖2 + (𝛽‖𝐴‖ 2 +
 𝛼‖𝐵‖ 2 + 𝛼 ‖𝐶‖ 2 + 𝛼 ‖𝐷‖ 2).

(5)

We use the stochastic gradient descent approach in [21]

and [23] to solve the minimization problem. The purpose

of minimizing using the gradient approach is to achieve

our objective of computing and learning the low latent

factor matrices which contains the mappings to the latent

factors.

The stochastic gradient descent method attempts to

minimize the difference between the observed rating and

the predicted rating iteratively until it finds the local

minimum; then it terminates. Furthermore, we can break

the minimization problem in (5) to:

𝑚𝑖𝑛

𝐴,𝐵,𝐶,𝐷
 ‖𝑅𝑢𝑖11 − (𝐴𝑢 × 𝐵𝑖

𝑇)‖2 + ‖𝑅𝑢𝑖12 – (𝐴𝑢 ×

 𝐶𝑖
𝑇)‖

2
+ ‖𝑅13 – (𝐴𝑢 × 𝐷𝑖

𝑇)‖
2

+ (𝛽‖𝐴𝑢‖ 2 +

 𝛼‖𝐵𝑖‖ 2 + 𝛼 ‖𝐶𝑖‖ 2 + 𝛼 ‖𝐷𝑖‖ 2).
 (6)

Where 𝐴𝑢 is the user vector factor for user 𝑢, 𝐵𝑖 is the

item vector factor for item 𝑖 in contextual condition 11,

𝐶𝑖 is item vector factor for item 𝑖 in contextual condition

12 , 𝐷𝑖 is the item vector factor for item 𝑖 in contextual

condition 13.

Using the gradient descent method, we minimize the

objective function during each iteration until we get to a

local minimum. This process is used to learn our low

factors. After completing this process, we obtain our low

factors , 𝐵, 𝐶 and 𝐷 containing the mappings to the latent

features.

The goals of this model are to generate the latent

factors, compute the common user factors and contextual

condition item factors of the observed rating matrix.

After which we can predict the ratings for any user and

item in any contextual condition. Predicting the rating of

user 𝑢, for item 𝑖 in a contextual condition would be a

weighted sum of the common user factor vector and the

corresponding item factor vector defined as:

�̂�𝑢𝑖𝑐𝑘 = 𝐴𝑢𝑆𝑖
𝑇. (7)

Where �̂�𝑢𝑖𝑐𝑘 is the predicted rating of user 𝑢 for item 𝑖
in a contextual condition 𝑐𝑘 . 𝐴𝑢 is the common user

factor vector for user 𝑢 and 𝑆𝑖
𝑇 is the transpose of the

associated item factor vector for item 𝑖 in contextual

condition 𝑐𝑘, 𝑆 could be 𝐵, 𝐶 or 𝐷.

For two users to have similar ratings across different

contextual condition, they must have similar common

user factors and similar item ratings in a contextual

condition. The core uniqueness of this method is

generating common user factors for all the contextual

condition rating matrices. All factor matrices contain the

interaction/ mapping of users and items to the latent

factors.

B. Context-Aware Coupled Matrix Factorization with

Common Item Factors

In this section, we explain our proposed method called

context-aware coupled matrix factorization with common

item factors. We use the term “common item factors”

because it forces the contextual condition rating matrices

to have the same item latent factors by compelling the

item factor matrix of each contextual condition rating

matrix to be the same.

The rationale behind this approach is based on the

assumption that to incorporate the effect of context; we

assume that during user interaction, the effect of context

on ratings is only reflected on users, the items maintain

the same characteristics across different contextual

conditions. This means, across different contextual

conditions, the taste of users changes while the

characteristics of item remain the same. And since a

rating is a weighted product of the user and item latent

factor matrices, the changes in ratings is largely due to

different values of user factors across the contextual

conditions.

In this section, we show the changes in notation from

section V.A; please refer to section V.A for the full

description of the method. We define the objective

function of our context-aware coupled matrix

factorization with common item factor by building on the

work in section V.A. In our proposed context-aware

coupled matrix factorization with common item factor,

we adjust the work done in section V.A by jointly

factorizing 𝑅11, 𝑅12 and 𝑅13 , while forcing the matrices

to share the same item factor matrix such that, 𝑅11 ≈
𝐵𝐴𝑇 , 𝑅12 ≈ 𝐶𝐴𝑇 and 𝑅13 ≈ 𝐷𝐴𝑇 . 𝐴 is the common

item factor shared by the contextual condition matrices,

where 𝐵 , 𝐶 and 𝐷 are the latent user factors of the

observed contextual condition rating matrices 𝑅11, 𝑅12

and 𝑅13 consecutively. We modify (4) to reflect the

changes and define the objective function for this method

as:

𝐿 = ‖𝑅11 – (𝐵 × 𝐴𝑇)‖2 + ‖𝑅12 – (𝐶 × 𝐴𝑇)‖2

+ ‖𝑅13 – (𝐷 × 𝐴𝑇)‖2

+ (𝛽‖𝐴‖ 2 + 𝛼‖𝐵‖ 2 + 𝛼 ‖𝐶‖ 2

+ 𝛼 ‖𝐷‖ 2).
(8)

Ultimately, we define our minimization task as:

𝑚𝑖𝑛

𝐴,𝐵,𝐶,𝐷
 ‖𝑅𝑢𝑖11 – (𝐵𝑢 × 𝐴𝑖

𝑇)‖
2

+ ‖𝑅𝑢𝑖12 – (𝐶𝑢 ×

 𝐴𝑖
𝑇)‖

2
+ ‖𝑅13 – (𝐷𝑢 × 𝐴𝑖

𝑇)‖
2

+ (𝛽‖𝐴𝑖‖ 2 +

 𝛼‖𝐵𝑢‖ 2 + 𝛼 ‖𝐶𝑢‖ 2 + 𝛼 ‖𝐷𝑢‖ 2).
(9)

Where 𝐴𝑖 is the common item vector factor for item 𝑖,
𝐵𝑢 is the user vector factor for user 𝑢 in contextual

condition 11 , 𝐶𝑢 is the user vector factor for user 𝑢 in

contextual condition 12, 𝐷𝑢 is the user vector factor for

user 𝑢 in contextual condition 13.

8 Context-Aware Recommendation Methods

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 9, 1-12

Predicting the rating of user 𝑢 for item 𝑖 in a

contextual condition would be a weighted sum of the

common item factor vector and the corresponding user

factor vector defined as:

�̂�𝑢𝑖𝑐𝑘 = 𝑆𝑢𝐴𝑖
𝑇 . (10)

Where �̂�𝑢𝑖𝑐𝑘 is the predicted rating for user 𝑢, for item

𝑖 in a contextual condition 𝑐𝑘 . 𝐴𝑖 is the common item

factor vector for item 𝑖 and 𝑆𝑢 is the associated user

factor vector for user 𝑢 in contextual condition 𝑐𝑘 , 𝑆

could be 𝐵, 𝐶 or 𝐷.

For two users to have similar ratings for a contextual

condition, they must share similar user factor values for

each contextual condition. They must also share similar

item ratings within the context. The core uniqueness of

this method is generating common item factors for all the

contextual condition rating matrices.

C. Incorporating User and Item Biases in the Proposed

Methods

To have a better and more accurate prediction of

ratings, we incorporate user and item contextual

condition bias into the objective functions of both our

proposed methods. Biases are the variations in ratings

due to individual effects certain users or items have. In a

recommender system, there is a tendency for certain

users to give higher ratings than others and for some

items to receive higher ratings than others. This could be

because some items or products are widely perceived as

better due to factors like marketing, advertisement, etc.

User bias and item bias captures the individual tendencies

and variations. The item bias explains the tendency for an

item to be rated lower or higher compared to the average

rating and user bias explains the tendency for a user to

rate higher or lower than the average rating.

User and item bias idea is gotten from the works in

[21], [24] and [25]. The baseline estimate for an

unknown rating that factors in item and user bias is

defined in (1) of [21] as:

𝑏𝑢𝑖 = µ + 𝑏𝑖 + 𝑏𝑢. (11)

Where 𝑏𝑢𝑖 is the baseline estimate for an unknown

rating of item 𝑖 by user 𝑢 , µ is the mean, 𝑏𝑖 is the

deviation of item 𝑖 from the mean and 𝑏𝑢 is the deviation

of user 𝑢 from the mean. We propose item and user

contextual factor bias to factor in the individual effects of

users and items on the contextual condition rating

calculation. We incorporate contextual condition item

and user bias into the rating equations of (7) and (10) to

produce:

�̂�𝑢𝑖𝑐𝑘 = 𝐴𝑢𝑆𝑖
𝑇 + µ𝑐𝑘 + 𝑏𝑖𝑐𝑘 + 𝑏𝑢𝑐𝑘. (12)

�̂�𝑢𝑖𝑐𝑘 = 𝑆𝑢𝐴𝑖
𝑇 + µ𝑐𝑘 + 𝑏𝑖𝑐𝑘 + 𝑏𝑢𝑐𝑘. (13)

Where µ𝑐𝑘 represents the mean rating in the contextual

condition 𝑐𝑘 , 𝑏𝑖𝑐𝑘 represents the bias of item 𝑖 in the

contextual condition 𝑐𝑘, 𝑏𝑢𝑐𝑘 represents the bias of user

𝑢 in the contextual condition 𝑐𝑘.

The contextual condition biases for item 𝑖 and user 𝑢

for the three contextual conditions we have in our model

are: 𝑏𝑢11, 𝑏𝑖11, 𝑏𝑢12, 𝑏𝑖12, 𝑏𝑢13, 𝑏𝑖13 . Hence, we extend

both objective functions and learn the biases in the

minimization task and also regularized the biases to

avoid over fitting, the extended functions of formulae (6)

and (9) are

𝑚𝑖𝑛

𝐴,𝐵,𝐶,𝐷,𝑏𝑢11,𝑏𝑖11,𝑏𝑢12,𝑏𝑖12,𝑏𝑢13,𝑏𝑖13
 ‖𝑅𝑢𝑖11 − (𝐴𝑢 × 𝐵𝑖

𝑇) −

 µ11 − 𝑏𝑖11 − 𝑏𝑢11‖2 + ‖𝑅𝑢𝑖12 − (𝐴𝑢 × 𝐶𝑖
𝑇) −

 µ12 − 𝑏𝑖12 − 𝑏𝑢12‖2 + ‖𝑅13 − (𝐴𝑢 × 𝐷𝑖
𝑇) − µ13 −

 𝑏𝑖13 − 𝑏𝑢13‖2 + (𝛽‖𝐴𝑢‖ 2 + 𝛼‖𝐵𝑖‖ 2 + 𝛼 ‖𝐶𝑖‖ 2 +
 𝛼 ‖𝐷𝑖‖ 2 + 𝛼 ‖𝑏𝑖11‖ 2 + 𝛼 ‖𝑏𝑢11‖ 2 + 𝛼 ‖𝑏𝑖12‖ 2 +
 𝛼 ‖𝑏𝑢12‖ 2 + 𝛼 ‖𝑏𝑖13‖ 2 + 𝛼 ‖𝑏𝑢13‖ 2).

 (14)

𝑚𝑖𝑛

𝐴,𝐵,𝐶,𝐷,𝑏𝑢11,𝑏𝑖11,𝑏𝑢12,𝑏𝑖12,𝑏𝑢13,𝑏𝑖13
 ‖𝑅𝑢𝑖11 − (𝐵𝑢 × 𝐴𝑖

𝑇) −

 µ11 − 𝑏𝑖11 − 𝑏𝑢11‖2 + ‖𝑅𝑢𝑖12 − (𝐶𝑢 × 𝐴𝑖
𝑇) −

 µ12 − 𝑏𝑖12 − 𝑏𝑢12‖2 + ‖𝑅13 − (𝐷𝑢 × 𝐴𝑖
𝑇) − µ13 −

 𝑏𝑖13 − 𝑏𝑢13‖2 + (𝛽‖𝐴𝑖‖ 2 + 𝛼‖𝐵𝑢‖ 2 + 𝛼 ‖𝐶𝑢‖ 2 +
 𝛼 ‖𝐷𝑢‖ 2 + 𝛼 ‖𝑏𝑖11‖ 2 + 𝛼 ‖𝑏𝑢11‖ 2 + 𝛼 ‖𝑏𝑖12‖ 2 +
 𝛼 ‖𝑏𝑢12‖ 2 + 𝛼 ‖𝑏𝑖13‖ 2 + 𝛼 ‖𝑏𝑢13‖ 2.

(15)

VI. EVALUATION

We test our recommendation methods by performing

an offline experiment. Offline experiments are

experiments conducted using datasets or data sources

collected from user interaction with a system. We use

implicit data; this means data collected about the

activities of users which doesn’t explicitly show intent.

We explain the characteristics of the last.fm music

dataset used and after that discuss the evaluation criteria

and methods used. Finally, we discuss the results,

analysis and performance of our methods and chosen

baseline methods in the test performed.

A. Dataset

In our experiment, we use the dataset obtained from

the last.fm music website. The dataset contains the music

listening history of users. For each user, the dataset

contains the tracks played by the user and the timestamp

the user listened to each track. Each track is represented

by the track id, the title of the track, the artist id, and

name. The dataset contains 992 users, 176,948 artists and

a total of 19,121,228 listening entries. The last.fm dataset

is an example of an implicit dataset.

The contextual factor in this dataset is time. We split

time into three contextual conditions: morning, afternoon

and evening/night. Morning represents the period

between 12 am and 11:59 am, afternoon represents the

period between 12 pm and 5:59 pm while evening/night

represents the period between 6 pm and 11:59 pm. We

group the dataset into three subsets, each representing the

three contextual conditions. Each subset contains the

listening history within the corresponding period.

 Context-Aware Recommendation Methods 9

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 9, 1-12

We split this dataset into two, a training dataset and a

test dataset. We use the training dataset to train our

proposed methods. In the test dataset, we predict the

artists a given user would like in a given period. We

select artists from a set of new artists not in the user’s

play history. We use the listening history data to get the

play counts for an artist, in a given period. A user with a

high play count for an artist in a given period, suggests

that the user likes listening to that artist during that

period.

B. Evaluation Method

To evaluate the performance of our proposed methods,

we measure the prediction accuracy of our methods on

our test dataset. We randomly select 100 users for testing.

We divide our test dataset into three parts as explained in

the dataset section, each containing user’s listening

history for each time contextual condition, e.g., morning,

evening, etc.

We evaluate the prediction accuracy of our methods on

the test dataset using the Mean Absolute Error (MAE)

and the Root Mean Square Error (RMSE). MAE is a

popular statistical accuracy metric used in a

recommender system to measure the deviation of a

prediction or recommendation from the actual value [11].

MAE, as defined in (4) in [26], is defined below:

 𝑀𝐴𝐸 =
∑ |𝑃𝑢,𝑖 − 𝑟𝑢,𝑖 | 𝑢,𝑖

𝑁
 . (16)

𝑃𝑢,𝑖 is the predicted rating generated by our methods

for user 𝑢 and item 𝑖 , 𝑟𝑢,𝑖 is the actual rating (observed

rating) for user 𝑢 and item 𝑖 in the test dataset. 𝑁 is the

total number of ratings in the test dataset.

RMSE is a popular metric for evaluating the accuracy

of predicted ratings by measuring the deviation of a

predicted rating from the actual value [27]. RMSE,

compared to MAE penalizes large errors and prefers

smaller errors. RMSE ,as defined in (4) in [26], is defined

below:

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ 𝑢,𝑖 (𝑃𝑢,𝑖 − 𝑟𝑢,𝑖)

2. (17)

𝑃𝑢,𝑖 is the predicted rating generated by our methods

for user 𝑢 and item 𝑖 , 𝑟𝑢,𝑖 is the actual rating (observed

rating) for user 𝑢 and item 𝑖 in the test dataset. 𝑁 is the

total number of ratings in the test dataset.

We compare our methods with some baseline methods

that incorporate context into their recommendation

process.

The baseline methods we compare with our methods

are:

a. Independent context similarity (ICS) and latent

content similarity (LCS) methods of the

correlation-based context-aware matrix

factorization (correlation-based CAMF) in [7].

We evaluate both ICS and LCS methods with the

same training and test dataset used for our

methods. The main rationale for choosing ICS and

LCS is because they are both state-of-the-art

context-aware matrix factorization methods, and

they performed better than some existing context-

aware matrix factorization methods according to

the results of the experiment in [7]. Also, we

needed methods that could generate

recommendations for different contextual

conditions instead of making general

recommendations. A lot of the existing context-

aware methods use context to make general

recommendations. Another reason why we choose

to compare our proposed methods with ICS and

LCS is to demonstrate and confirm that

incorporating changes in user behavior and item

characteristics across contextual conditions as

used in our proposed methods is more effective

than generating recommendations based on the

correlation between two contextual conditions

used in ICS and LCS.

b. The context-aware matrix factorization (CAMF)

methods in [6]. We compare our methods with

CAMF-C and CAMF-CI in [6]. These methods

are both state-of-the-art context-aware matrix

factorization methods that can make

recommendations for contextual conditions. We

compare our proposed methods with CAMF-C

and CAMF-CI to demonstrate and verify that our

methods provide a better way to capture the

influence of context on items.

C. Result and Analysis

We train our models using the training dataset to

generate different latent factors with different dimensions

(number of factors). After that, we conduct a series of

experiments to evaluate the ability of our proposed

methods to predict items for users in different contextual

situations. We run different experiments to show the

performance of our methods in comparison with the

chosen baseline methods, using a different number of

factors for each experiment. We provide the analysis of

the results of the experiments conducted.

In running our experiments, we observed that, while

the number of iteration is directly proportional to the

effectiveness of our models, giving it a better MAE and

RMSE scores, the number of iterations is also directly

proportional to the time it takes to learn and generate our

latent factors. The running time complexity of our

methods is linear as a function of the number of iterations

without taking the size of the dataset into consideration.

Therefore, we use 10,000 iterations which took about 40

minutes to run an experiment on a 4 GB RAM machine.

In choosing our parameters 𝛼 and 𝛽, we did some try-

and-error to arrive at the best values because calculating

the appropriate values for these parameters has been

proved to be a difficult research problem [28]. In our

experiment, we measure the sensitivity of our model to

each try-and-error value we set by measuring the MAE

and RMSE at each step of the training. We observed that

our models performed better with small values of both

10 Context-Aware Recommendation Methods

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 9, 1-12

parameters. We settled for 𝛼 = 0.6 and 𝛽 = 0.4.

We run some experiments to measure the prediction

accuracy of our proposed methods and compare them to

the prediction accuracy of our chosen baseline methods

using MAE and RMSE. We set the number of latent

factors to different values for each experiment to test

whether the number of latent factors extracted affects the

prediction accuracy of the proposed methods and to

compare the performance of the baseline methods to our

proposed methods when different dimensions are

extracted. We use 10, 20 and 30 as the dimensions of the

latent factors and run different experiments for each

dimension. We settled for these values after running

different trials and observing that these dimensions

provided the best prediction accuracies. The results are

shown in Table 1. In the table, we will observe that

setting the number of factors to 30 produced the best

prediction accuracy.

We observe from our experiments that, context-aware

coupled matrix factorization with common item factors

shows better prediction accuracy for all dimensions, with

an average improvement of 3.75% regarding MAE and

2.15% regarding RMSE across different dimensions.

Context-aware coupled matrix factorization with

common user factors show an average improvement of

2.75% regarding MAE and 1.43% regarding RMSE

across the three dimensions used. Context-aware coupled

matrix factorization with common item factors show an

average performance of 25% and 20% regarding MAE

and RMSE over context-aware coupled matrix

factorization with common user factors. Therefore, we

conclude that our proposed methods provide good

prediction accuracy, but context-aware coupled matrix

factorization with common item factors perform better

than context-aware coupled matrix factorization with

common user factors.

The characteristics of the music dataset used could be

an explanation for why the coupled matrix factorization

with common item factors performed better in our

experiment. In a music recommender system, most tracks

would normally have the same characteristics and

suitability across different contextual situations. It is the

changes in user’s taste in different conditions that

account for what users consume in certain contexts. In

certain scenarios where the changes in the consumption

of items are largely due to the suitability of items across

different situations, context-aware coupled matrix

factorization with common user factor might perform

better.

We run another set of experiments to compare our

proposed methods to the selected baseline methods.

Context-aware coupled matrix factorization with

common item factors can average a performance

improvement of 20.79%, 25.76%, 34.23%, 45.31%, in

terms of MAE and 22.56%, 25.03%, 37.97%, 45.05% in

terms of RMSE over correlation-based CAMF – ICS,

correlation-based CAMF – LCS, CAMF-CI and CAMF-

C respectively across different dimensions. Context-

aware coupled matrix factorization with user factors also

performs better regarding MAE and RMSE than

correlation-based CAMF – ICS, correlation-based CAMF

– LCS, CAMF-CI, and CAMF-C. We conclude that our

proposed methods perform better than all the chosen

baseline methods. The results are shown in Table 1.

The significance of using different dimensions for the

latent factors is to investigate whether the number of the

latent factors generated, affects the prediction accuracy of

our proposed methods. Also, we wanted to see how the

baseline methods compare to our proposed when we

choose different dimensions for the generated latent

factors.

Table 1. MAE and RMSE results of the experiment conducted

Method

No of latent

factors /

Dimensions

MAE RMSE

Context-aware coupled matrix

factorization with common user factors

10 0.545 0.772

20 0.538 0.766

30 0.530 0.761

Context-aware coupled matrix

factorization with common item factors

10 0.479 0.698

20 0.472 0.691

30 0.461 0.683

Correlation-based CAMF - ICS

10 0.601 0.899

20 0.591 0.890

30 0.582 0.882

Correlation-based CAMF - LCS

10 0.644 0.927

20 0.638 0.922

30 0.621 0.911

CAMF-CI

10 0.752 1.152

20 0.742 1.142

30 0.701 1.101

CAMF-C

10 0.883 1.283

20 0.852 1.252

30 0.843 1.243

 Context-Aware Recommendation Methods 11

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 9, 1-12

We observe that with a small number of dimensions

used, our proposed methods can accurately capture the

low latent factors needed to generate good predictions

and as the number of dimensions increased to a certain

extent (30 in our experiment), our proposed methods

become more effective. From these experiments, the

significance of using a different number of dimensions

for the low factor matrices is to find the range of the

dimensions that can effectively capture the latent factors

that best describes the behaviors of users.

VII. CONCLUSION

In this age of big data and information explosion,

providing recommendations help users to get relevant

data in an online system. We aimed to develop a context-

aware approach to making recommendations that are

context centric; i.e., an approach that provides

recommendations based on contextual rating, the rating

given in a particular context. Therefore, our focus was to

develop methods that provide recommendations for

different contexts and not general recommendations.

After evaluating our methods on the last.fm dataset,

our experimental results showed that both the proposed

context-aware coupled matrix factorization methods

showed a good performance on predicting new artists for

users, but the method with the common item factor

showed better prediction results. Therefore, the taste of

users changes across different contexts, but the

characteristics of items don’t change that much when

compared to user’s behaviors, based on our experiments.

This would make sense for certain items like music or

artist; whether a user likes a song in the morning or

evening is relative to the user for the most part. This

means for two users to share similar artist taste in a

context, they must have similar ratings or taste for the

artist in the context being considered. Our results also

show that other factors like parameters of the methods

and number of iterations the method runs during the

training affects the accuracy of prediction.

We compared our methods with some state-of-the-art

context-aware recommendation methods, and our

proposed methods showed a fairly significant

improvement over all the methods considered. We have

to mention that our method is more suited towards

making predictions for specific contexts, and might be

less effective in applying contextual information to make

general predictions. Also splitting ratings into contextual

groups before performing predictions make our method

more effective towards performing context centric

recommendations.

One limitation of our proposed methods are, they only

incorporate one context. This would be a challenge in a

domain or dataset with multiple contexts. Some scenarios

would require the recommender systems to incorporate

multiple contexts in its recommendation process. An

example is an event recommender system with multiple

contextual factors like time of the event, the location of

the user and event, weather conditions, etc.

VIII. FUTURE WORK

Our proposed methods were formulated and

experimented with only one context. It would be

interesting to extend this work to incorporate more than

one context, find out the challenges in doing that and the

necessary modifications to our methods to accommodate

such extension. Although we believe this would be a

straightforward extension, there might be some

challenges with scalability when each context contains

several contextual conditions.

Another interesting future work to consider would be,

exploring techniques that adequately extract and share

relevant user and item features across different contexts

and contextual condition during prediction. We believe

that although user behavior or item characteristics

changes across different context, separating what changes

from what remains the same across different context is

very important to generate useful recommendations.

Another interesting further research would be how to

make contextual predictions without manually

identifying the contextual factors that affect users’

interaction and grouping the rating data by contextual

conditions. One possible approach is to develop methods

that could automate the process of identification and

extraction of contextual factors. A possible way to do

that is to examine the metadata and additional data that

comes alongside the user-item rating for patterns and

changes that correlate with the user-item rating data.

REFERENCES

[1] Cheng, Heng-Tze, Levent Koc, Jeremiah Harmsen, Tal

Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson.

"Wide & deep learning for recommender systems."

In Proceedings of the 1st Workshop on Deep Learning for

Recommender Systems, pp. 7-10. ACM, 2016.

[2] Dourish, Paul. "What we talk about when we talk about

context." Personal and ubiquitous computing 8.1 (2004):

19-30.

[3] Rendle, Steffen, Zeno Gantner, Christoph Freudenthaler,

and Lars Schmidt-Thieme. "Fast context-aware

recommendations with factorization machines."

In Proceedings of the 34th international ACM SIGIR

Conference on Research and Development in Information

Retrieval, pp. 635-644. ACM, 2011.

[4] Jannach, Dietmar, Markus Zanker, Alexander Felfernig,

and Gerhard Friedrich. "Recommender Systems: An

Introduction–Cambridge University Press." New York,

2010.–352 P (2010).

[5] Adomavicius, Gediminas, and Alexander Tuzhilin.

"Context-aware recommender systems." In Recommender

Systems handbook, pp. 217-253. Springer US, 2011.

[6] Baltrunas, Linas, Bernd Ludwig, and Francesco Ricci.

"Matrix factorization techniques for context aware

recommendation." In Proceedings of the fifth ACM

conference on Recommender systems, pp. 301-304. ACM,

2011.

[7] Zheng, Yong, Bamshad Mobasher, and Robin Burke.

"Incorporating context correlation into context-aware

matrix factorization." In Proceedings of the 2015

International Conference on Constraints and Preferences

for Configuration and Recommendation and Intelligent

Techniques for Web Personalization-Volume 1440, pp.

21-27. CEUR-WS. org, 2015.

12 Context-Aware Recommendation Methods

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 9, 1-12

[8] Li, Jiyun, Pengcheng Feng, and Juntao Lv. "ICAMF:

improved context-aware matrix factorization for

collaborative filtering." In Tools with Artificial

Intelligence (ICTAI), 2013 IEEE 25th International

Conference on, pp. 63-70. IEEE, 2013.

[9] Nguyen, Trung, Alexandros Karatzoglou, and Linas

Baltrunas. "Gaussian process factorization machines for

context-aware recommendations." In Proceedings of the

37th international ACM SIGIR conference on Research &

development in information retrieval, pp. 63-72. ACM,

2014.

[10] Acar, Evrim, Gozde Gurdeniz, Morten A. Rasmussen,

Daniela Rago, Lars O. Dragsted, and Rasmus Bro.

"Coupled matrix factorization with sparse factors to

identify potential biomarkers in metabolomics." In Data

Mining Workshops (ICDMW), 2012 IEEE 12th

International Conference on, pp. 1-8. IEEE, 2012.

[11] Li, Fangfang, Guandong Xu, and Longbing Cao.

"Coupled item-based matrix factorization."

In International Conference on Web Information Systems

Engineering, pp. 1-14. Springer, Cham, 2014.

[12] Li, Fangfang, Guandong Xu, and Longbing Cao.

"Coupled matrix factorization within non-iid context."

In Pacific-Asia Conference on Knowledge Discovery and

Data Mining, pp. 707-719. Springer International

Publishing, 2015.

[13] Burke, Robin. "Recommender Systems: An Introduction,

by Dietmar Jannach, Markus Zanker, Alexander Felfernig,

and Gerhard Friedrich: Cambridge University Press, 2011.

336 pages. ISBN: 978-0-521-49336-9." (2012): 72-73.

[14] Linden, Greg, Brent Smith, and Jeremy York. "Amazon.

com recommendations: Item-to-item collaborative

filtering." IEEE Internet computing 7, no. 1 (2003): 76-80.

[15] Desrosiers, Christian, and George Karypis. "A

comprehensive survey of neighborhood-based

recommendation methods." Recommender systems

handbook (2011): 107-144.

[16] Adomavicius, Gediminas, Jesse Bockstedt, Shawn Curley,

and Jingjing Zhang. "Recommender systems, consumer

preferences, and anchoring effects." In RecSys 2011

Workshop on Human Decision Making in Recommender

Systems, pp. 35-42. 2011.

[17] Boström, Fredrik. "Andromedia-towards a context-aware

mobile music recommender." (2008).

[18] Pagano, Roberto, Paolo Cremonesi, Martha Larson,

Balázs Hidasi, Domonkos Tikk, Alexandros Karatzoglou,

and Massimo Quadrana. "The Contextual Turn: from

Context-Aware to Context-Driven Recommender

Systems." In RecSys, pp. 249-252. 2016.

[19] Adomavicius, Gediminas, Ramesh Sankaranarayanan,

Shahana Sen, and Alexander Tuzhilin. "Incorporating

contextual information in recommender systems using a

multidimensional approach." ACM Transactions on

Information Systems (TOIS) 23, no. 1 (2005): 103-145.

[20] Takács, Gábor, István Pilászy, Bottyán Németh, and

Domonkos Tikk. "Matrix factorization and neighbor

based algorithms for the netflix prize problem."

In Proceedings of the 2008 ACM conference on

Recommender systems, pp. 267-274. ACM, 2008.

[21] Koren, Yehuda. "Factorization meets the neighborhood: a

multifaceted collaborative filtering model."

In Proceedings of the 14th ACM SIGKDD international

conference on Knowledge discovery and data mining, pp.

426-434. ACM, 2008.

[22] Wu, Mingrui. "Collaborative filtering via ensembles of

matrix factorizations." Proceedings of KDD Cup and

Workshop. Vol. 2007. 2007.

[23] Paterek, Arkadiusz. "Improving regularized singular value

decomposition for collaborative filtering." In Proceedings

of KDD cup and workshop, vol. 2007, pp. 5-8. 2007.

[24] Melville, Prem, and Vikas Sindhwani. "Recommender

systems." In Encyclopedia of machine learning, pp. 829-

838. Springer US, 2011.

[25] Bell, Robert M., Yehuda Koren, and Chris Volinsky. "The

bellkor 2008 solution to the netflix prize." Statistics

Research Department at AT&T Research (2008).

[26] Isinkaye, Folajimi, and Ojokoh. "Recommendation

systems: Principles, methods and evaluation." Egyptian

Informatics Journal 16, no. 3 (2015): 261-273.

[27] Shani, Guy, and Asela Gunawardana. "Evaluating

recommendation systems." Recommender systems

handbook (2011): 257-297

[28] Wilderjans, Tom, Eva Ceulemans, and Iven Van

Mechelen. "Simultaneous analysis of coupled data blocks

differing in size: A comparison of two weighting

schemes." Computational Statistics & Data Analysis 53,

no. 4 (2009): 1086-1098.

Authors’ Profiles

Tosin Agagu was born in Nigeria on the

22nd of July, 1991. Agagu received his MCS

in computer science from the university of

Ottawa, Ontario, Canada in 2018. Agagu

has a B.Tech. in information technology

from the Bells university of technology,

Ogun state, Nigeria in 2012.

He works as a Software Engineer at

Shopify, Canada.

Thomas Tran received his PhD in

Computer Science from the University of

Waterloo in June 2004.

He is currently a Full Professor at the

School of Electrical Engineering and

Computer Science, University of Ottawa.

His research interests include Artificial

Intelligence, Electronic Commerce,

Intelligent Agents and Multi-Agent Systems, Trust and

Reputation Modeling, Reinforcement Learning, Recommender

Systems, Knowledge-Based Systems, and Vehicular Ad-hoc

Networks.

How to cite this paper: Tosin Agagu, Thomas Tran, "Context-

Aware Recommendation Methods", International Journal of

Intelligent Systems and Applications(IJISA), Vol.10, No.9,

pp.1-12, 2018. DOI: 10.5815/ijisa.2018.09.01

