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Abstract—A context-aware recommender system 

attempts to generate better recommendations using 

contextual information. However, generating 

recommendations for specific contexts have been 

challenging because of the difficulties in using contextual 

information to enhance the capabilities of recommender 

systems.  

Several methods have been used to incorporate 

contextual information into traditional recommendation 

algorithms and data modeling techniques. These methods 

focus on incorporating contextual information to improve 

general recommendations for users rather than 

identifying the different context applicable to the user 

and providing recommendations geared towards those 

specific contexts. 

We develop two methods: the first method attaches 

user preference across multiple contextual conditions, 

assuming that user preference remains the same, but the 

suitability of items differs across different contextual 

conditions. The second method assumes that item 

suitability remains the same across different contextual 

conditions but user preference changes.  

We perform some experiments on the last.fm dataset to 

evaluate our methods. We also compared our work to 

other context-aware recommendation approaches. Our 

results show that grouping ratings by context and jointly 

factorizing with common factors improves prediction 

accuracy. 

 

Index Terms—Context-aware, recommender system, 

coupled matrix factorization, context, recommendations. 

 

I.  INTRODUCTION 

In this age of internet of things, big data and cloud 

computing, users are constantly overloaded with a large 

number of products and services that makes it 

challenging for them to choose the best-suited products 

and services. Recommender systems help users make 

decisions on what to purchase or consume online by 

estimating the preference of users and suggesting the 

products and services that fit their profile based on some 

historical data. 

A recommender system takes the ratings of different 

users to extract their preferences and provide 

recommendations. It is also an information filtering 

system that predicts the rating or rank that a user would 

give to an item. A recommender system uses a 

recommendation algorithm to filter items, by 

predetermining how a specific user might rate or rank 

them based on historical rating pattern of the user or 

other similar users. 

The process of recommendation is similar to searching 

for relevant items based on a query input and ranking the 

results based on user's historical activities. Thus, the 

problem of providing recommendations is similar to a 

search ranking problem [1]. 

Psychological research has shown that certain 

psychological factors and conditions affect the behaviors 

of humans [2]; the author in [2] assumes the same for the 

effect of context in generating recommendations. 

Traditional recommendation systems use 2-dimensional 

data consisting of only users and items, ignoring 

additional contextual information during their 

recommendation process. In contrast, context-aware 

systems incorporate the factors, conditions and the 

characteristics of the environment that affect users. 

Location, time, weather and activities are few examples 

of these factors [3]. 

Context-aware recommender systems are systems that 

incorporate contextual information, e.g., weather, 

location, mood, season, etc., alongside the core data 

(users and items) to generate better recommendations. 

Some research has shown that incorporating seasonality 

and weather contexts into recommender system produces 

better recommendations [4]. We can relate to how 

differently we feel in different seasons and how some 

activities are tied to seasons and weather conditions. For 

instance, certain products are not available in certain 

seasons, and some activities are only available in a 

particular kind of weather. 

Some examples in [5], presents certain applications 

where traditional recommendation systems might fall 

short. An example of such scenario is a news application 

that recommends different news based on the day of the 

week. Here, “the day of the week” is a contextual 

information that should be incorporated into the 

recommender system. A news recommender application 

that suggests news based on the day of the week is a 
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good example of a context-aware recommender system 

that filters and segments recommendation based on the 

context information that affects the likability of an item 

[5]. This shows the tremendous influence that context has 

in improving the quality of recommendation. 

We aim to develop two context-aware 

recommendation approaches that use coupled matrix 

factorization and show that it performs better than some 

of the existing context-aware methods.  Our proposed 

methods are contextual-driven, in the sense of making 

context front and center of our recommendation 

approaches and not just a factor in improving 

recommendation. 

This paper is organized as follows. Section II discuss 

some related works in the area of context-aware matrix 

factorization and coupled matrix factorization. Section III 

provides a discussion of recommender systems. Section 

IV discusses context-aware recommender systems. In 

section V, we provide a discussion of our proposed 

methods. In section VI, we offer an evaluation of our 

proposed methods and discuss extensively the results 

obtained. In section VII and VIII, we make some 

conclusions and present, future works. 

 

II.  RELATED WORKS 

In this chapter, we do a review of some works on 

recommender systems that used context-aware matrix 

factorization in their process of generating 

recommendations. After that, we discuss related works 

on coupled matrix factorizations. 

A.  Context-Aware Matrix Factorization Methods 

In [6], some context-aware matrix factorization 

(CAMF) techniques were developed to capture the 

interaction between the ratings and some contextual 

factors. The methods proposed by the authors measure 

the relevance of the contextual factors on the ratings 

based on three different assumptions. Three models were 

developed to capture the influence of each contextual 

condition on the user ratings.  

The first model in [6] is called CAMF-C; it assumes 

that each contextual condition has a uniform influence 

over all the items. That is, the effect of each contextual 

condition over user ratings is the same for all items. A 

single parameter represents the effect for all items in a 

contextual condition. The total number of parameters is 

the sum of all contextual conditions of each contextual 

factor. Each parameter measures the deviation from the 

standard rating as a result of the contextual condition. 

The second model in [6] is called CAMF-CI, it 

assumes that each contextual condition influences the 

ratings for all items. This means that the effect of each 

contextual condition is different for all items. This model 

introduces a large number of parameters, for each 

contextual condition and item pair, a parameter is used to 

model the deviation of the rating. This model provides 

better prediction according to the authors in [6].  

The third and last model is called CAMF-CC, it groups 

items into categories and assumes that the influence of 

each contextual condition is the same for each item 

category. A parameter is used to model the deviation for 

each contextual factor and item category pair [6].  

A contextual condition in [6] refers to a value of a 

contextual factor; we further explain what it means later 

in this section.  

The results of the experiments in [6] show that the 

CAMF-CC model performs better generally when 

compared to the other models in their work and another 

baseline context-aware factorization model. The problem 

with CAMF-CI is that it is too complex, thereby reducing 

prediction accuracy. One limitation of CAMF-CC when 

compared to our model is that it can only be used for 

items grouped into categories. CAMF-CC assumes that a 

domain expert can efficiently group items, this becomes a 

problem when items cannot be efficiently grouped. In 

contrary, our proposed methods group ratings based on 

the contextual conditions they occurred. For example, we 

group ratings of music played in the morning; morning 

here is a contextual condition of the time contextual 

factor. This doesn’t require a domain expert and makes 

the grouping and splitting process transparent. Another 

limitation of the methods in [6] is they capture only the 

influence of the contextual conditions on items. Our 

approach captures the influence of contextual conditions 

on users and items instead. 

In [7], some correlation-based context-aware matrix 

factorization methods were developed and claimed to be 

an improvement over the models in [6], measuring 

correlation rather than rating deviation. The contextual 

correlation based CAMF measures the correlation 

between two contextual situations, the assumption is that 

two similar contextual situations for a user will produce 

similar recommendations for that same user. 

The work in [8] proposed an “improved context-aware 

matrix factorization” that “fully” incorporates contextual 

information alongside with user and item biases. The 

authors claimed that other approaches do not fully 

capture the influence of contextual information on ratings. 

The authors developed two methods called ICAMF-I and 

ICAMF-II. Both methods compute and incorporate the 

user-context interaction and the item-context interaction 

into the models created. The first one (ICAMF-I), 

incorporates a global rating average, an item and user 

bias that aren't affected or influenced by the contextual 

factors. 

The second method (ICAMF-II) built on the first 

method to incorporate item and user biases that changes 

over different contextual conditions. The item and user 

biases are modeled as the sum of all item and user bias 

over each contextual condition. Our methods measure 

and incorporate item and user biases for each contextual 

condition rather than as a sum. As an improvement to [8], 

we learn the item and user biases parameter for each 

contextual condition alongside the latent factors during 

training; this makes our contextual item and user biases 

more accurate and evolving as the rating behavior 

changes. 

The authors in [9] created a context-aware 

recommender system that predicts the utility of items in a 
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particular context. A tuple of user, items, context, and 

utility was used as the data structure to represent the 

problem of estimating the utility for a tuple. The utility of 

an item in a specified context is a function of its latent 

representation which is the column vector of the feature 

representation of the items and contextual factors. The 

Gaussian process was used to model the utility function. 

B.  Coupled Matrix Factorization 

Coupled matrix factorization is an approach that 

performs a joint factorization of two or more matrices. 

Several attempts have been made to develop different 

variants of coupled matrix factorization methods in [10], 

[11] and [12]. However, our methods are the first and 

only context-aware coupled matrix factorization as far as 

we can tell. The work in [10] defines a coupled matrix 

factorization method that serves as the foundation of our 

proposed work. In [10] and [11], a coupled matrix 

factorization model was developed for factorizing two 

matrices by performing a joint matrix factorization of two 

matrices at the same time and minimizing using the 

gradient-based optimization method.  

During the factorization of the two matrices, both 

matrices could share a common factor matrix. The idea 

for our work came from the common factor in [10]. 

However, we developed two models with two different 

variants of the common factor matrix in [10]. In our 

proposed methods, we use the term “common user factor” 

in our first model. The idea is that we assume a user’s 

taste remains consistent across different contextual 

conditions, but the item characteristics change in 

different contextual conditions. The second model 

assumes the characteristics of items remain the same over 

different contextual conditions but the user taste changes.  

Another improvement we added to [10] is the addition 

of contextual user and item biases. The method in [10] 

doesn’t incorporate any bias. The reason for item and 

user bias is because, in the rating dataset, the rating 

dataset is affected by some users or items that have 

extremely high or low ratings. This doesn’t model the 

general opinion. We incorporate bias to neutralize these 

effects by accounting for the influence of those biases. 

Finally, we incorporate contextual information into our 

models, making our work the first and only context-

aware coupled matrix factorization. 

“Coupling” according to [12] and [11] means the 

relationship among attributes of items in a dataset. They 

created a coupled similarity method that measures the 

similarity between attributes and characteristics of items 

to identify the relationship in the dataset. They 

incorporated the coupled similarity method into the 

matrix factorization method to form a coupled item-based 

matrix factorization. We use the term “coupling” 

differently in our work; we use “coupling” to describe a 

process that jointly combines the factorization of 

different contextual matrices. We think our definition 

provides a better representation of the term “coupling” 

which means to combine or join.  

Our proposed models add user and item biases which 

were not added in [12] and [11]. We do not compare our 

methods to the coupled matrix factorization methods 

discussed here because they do not incorporate 

contextual information. 

 

III.  RECOMMENDER SYSTEMS 

Recommender systems are tools that suggest items to 

users. They are a special kind of information filtering 

system that predicts the rating or rank that a certain user 

would give to an item.  A recommendation algorithm 

specifies how the system should perform the filtering of 

items; the algorithm predetermines how a user would rate 

or rank items. They typically take in a dataset containing 

the activities of users and extract the preferences of users, 

based on the historical data available in the system. 

A.  Collaborative Filtering (CF) 

Collaborative filtering assumes that users who prefer 

similar items in the past will prefer similar items in the 

future. The function of collaborative filtering is to 

estimate the rating R over a set of users and items [13]. A 

collaborative filtering recommender system attempts to 

find users with similar ratings by comparing their 

historical behaviors; extracting similar users based on 

past behaviors and recommending items from similar 

user's catalogs. 

CF model users with a matrix containing the ratings of 

items for each user. The models are used to extract factor 

vectors. These factors have different weights for each 

user and item factor models depending on the user’s 

profile. A CF system in contrast to a content-based 

system makes its recommendation based on the 

preference of similar users and not on similar properties 

of the items. CF assumes that ratings are directly 

proportional to preferences, thereby it places more weight 

and emphasis on the ratings given to the item by other 

users, rather than the characteristics of the item like 

content-based approaches does, even if the characteristics 

of the item matches what the user likes. In other words, 

CF in its pure form solely rates items based on its 

historical rating and completely ignores the 

characteristics of the items [14]. 

In the following sections, we discuss neighborhood-

based and model-based approaches. 

B.  Neighborhood-based Collaborative Filtering 

Neighborhood-based recommender systems automate 

the word-of-mouth principle on which people rely 

heavily on what other people say, be it people they trust 

or people they share common opinions with [15]. The 

premise of the neighborhood method is that if users have 

preferred similar items in the past, the probability is very 

high that they will prefer similar items in the future, 

either on a user-to-user level or an item-to-item level. 

Some variations of neighborhood-based techniques 

compute item similarities and user similarities once and 

can make recommendations for users without having to 

re-compute similarities again; this makes it very scalable 

and fast. 

The neighborhood-based methods are intuitive, simple 
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to implement and it is easy to justify the results of their 

recommendations. One important thing for a 

recommender system is the explanation of how the 

recommended items were generated. This is important for 

transparency and trust. 

C.  Model-based Collaborative Filtering 

Model-based methods create predictive models by 

learning and discovering features from the dataset. The 

created models are used to make predictions for the user. 

A model-based collaborative filtering method performs 

some offline analysis on the rating dataset to extract the 

models that represent the latent factors that describe the 

relationship and characteristics between the users and 

items. This model is loaded instead of the dataset during 

the recommendation process. When contrasted with the 

neighborhood and content-based recommender systems, a 

model-based system finds the distinctive features of users 

and items by taking a gander at the rating information. It 

builds the user profiles and items profiles with the end 

goal of reusing both entities for subsequent analyses.  

As shown in Fig. 1, the utility matrix is the dataset 

representing users’ preferences. It is the structured 

dataset processed to discover the hidden features or 

factors for each user in the system. 

 

 

Fig.1. A framework for model-based recommender systems. 

 

IV.  CONTEXT-AWARE RECOMMENDER SYSTEMS 

Many other factors could influence the preference of a 

user: a user may, for example, lean towards leisurely 

activities at the end of the week but goes for more 

business-related activities on weekdays. These factors 

can affect the preference of users in a great deal. Thus, it 

is vital to consider the appropriate context during the 

process of recommendation. It is stated in [16] that 

“contextual recommender system acknowledges the 

effect of context in the recommendation and that the 

preference for an item within one context can be different 

in another context. “ We use context and contextual 

information interchangeably throughout this section; they 

mean the same. 

To understand the value of context in a recommender 

system, we describe the typical traditional recommender 

system and how context-aware recommender system 

extends it. Typically, a traditional recommender system 

uses two-dimensional data space to estimate the rating for 

items or users. The rating function R for a traditional 

recommender system is calculated for the (user, item) 

pairs that haven't been rated by the user and defined as: 

R: User x Item → Rating 

Contextual recommender system extends the rating 

function by including one or more information in the 

form of context as shown below: 

R: User × Item × Context → Rating 

The context used by a context-aware and driven 

recommender system could be fully observable, partially-

observable or unobservable contextual information.  

Fully observable context means that the recommender 

system has full knowledge of the structures and values of 

the contextual information relevant to the interaction 

between users and items. An example is a movie 

recommender system; the contextual factors might be 

time or location. The structure of the time context might 

be the days of the week, the month of the year, etc., and 

the structure of the location might be street, city, 

province, state, etc.  

In the following sections, we discuss the context in a 

recommendation, ways of incorporating contextual 

information into recommender systems and some 

important components of a context-aware recommender 

system. 

A.  Context in Recommendation 

According to [16], contextual information can be in a 

static or dynamic form. The static form is when the 

contextual information is the same over the lifetime of 

the recommender system. Dynamic form is when the 

contextual information changes over the lifetime of a 

recommender system. A function in the recommender 

system constantly detects the relevant contextual 

information and updates as required. Dynamic form 

conveys a notion of adaptability, the ability to adapt to 

changing contextual factors in the environment. The 

system detects the relevant context and updates 

recommendations during the user’s interaction with the 

system. This may occur in real-time where the context 

changes over time. Location is an example of a dynamic 

context that changes as you move from one point to 

another.  

Contexts are factors that describe the environment and 

situations where the activity occurs. Much like rating 

data, we can acquire context data explicitly or implicitly. 

In the case of explicit context, the user needs to specify 

the context deliberately. For example, a user could 

specify additional information in the recommender 

system. This may not be dependable since it is easy for 

users to overlook some relevant activities, particularly 

when it involves a lot of contextual information and it is 

over a long period [17]. Implicit data is extracted 

automatically without user involvement when a user 

interacts with the system. An example is the collection of 

information like location coordinates, weather, user 

social activities, etc. Mobile phones have features like the 
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global positioning system (GPS) to collect location 

coordinates and obtain weather information from weather 

services using the location obtained. 

Representation of the contexts obtained follows after 

extracting or inferring the context. Using the approach in 

[5], we show an example of a contextual data 

representation for a location-aware recommender system 

below. We represent a context as a set of contextual 

dimensions, each dimension in the set is defined by a set 

of attributes having a variety of granularities [5]. 

Given a location recommender system, we represent 

the set of contextual dimensions as D containing top-

level contexts. D is defined below as: 

D = { Place_Category, Weather}.  

We further divide each element of D to a more 

granular or finer level such that: 

𝐷𝑝𝑙𝑎𝑐𝑒_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = {Food, Educational, Spiritual}  and 

𝐷𝑤𝑒𝑎𝑡ℎ𝑒𝑟 = {Winter, Summer, Fall} 

B.  Incorporating Contextual Information into A 

Recommender System 

Unlike traditional recommender systems that solely 

rely on user preferences for some items, context-aware 

recommender systems use contextual information about 

the activities in addition to the user’s preferences. 

Incorporating context into a recommender system can be 

done in three ways: contextual pre-filtering, contextual 

post-filtering, and contextual modeling. Fig. 2, shows a 

general overview of the ways contextual information is 

incorporated into the recommendation process. The gray 

boxes represent the recommendation process in its pure 

form in sequence. The rating data goes into the 

predictions box, which represents the engine that 

performs the prediction and generates an output, the 

recommendations at the end of the process. 

 

 

Fig.2. Incorporating contextual information in a recommender system. 

Contextual Pre-filtering: filters the rating data using 

the specified context before the recommender framework 

computes the recommendations. Recommendations are 

computed by utilizing a subset of the data that are 

significant to the context. This approach uses contextual 

information to filter the dataset for the most relevant data 

(user, item, rating), before the process of 

recommendation [5]. A good example is a user that wants 

to find activities in a particular season; the recommender 

system only uses the preference data of the user and other 

users for that particular season. 

Item Splitting is another pre-filtering approach. The 

concept is to split historical preference data that makes 

up the whole dataset profile into smaller segments and 

make predictions based a small segment. The major 

challenge of this approach is finding an efficient way to 

split the user profiles into optimal and appropriate 

segments [18]. This item splitting technique is referred to 

as micro-profiling. In [18], micro-profiling was applied 

on a music dataset to generate recommendations; the 

datasets were collected for a two-year period; it consists 

of implicit user feedback data, mainly the tracks the users 

of last.fm played. Multiple micro-profiles were used to 

model user’s profiles based on time cycles. The smaller 

profiles represented the user profile for a specific time 

context.  

Contextual post-filtering: this approach applies the 

recommendation process on the whole dataset and after 

that uses contextual information to filter the results to get 

the contextualized recommendations. Post-filtering 

examines the preference of a user in a given context to 

understand the item usage pattern for the given context 

and applies it to adjust the recommendation list [5]. The 

recommendation list can be adjusted by either filtering 

out the irrelevant items for that context or by ranking the 

list based on relevance in the given context. 

Post-filtering allows a traditional recommendation 

algorithm to be used in the process of recommendation 

before a filter is applied to select relevant 

recommendation. For example, in a location 

recommender system, if we want to recommend locations 

to a user based on a specific category, we filter and return 

only the locations in the specific category or rank the 

recommended results based on the category context. 

Contextual modeling: incorporates context directly 

into its recommendation process. Contextual modeling 

uses a different approach to allow more than 2-

dimensional data to be utilized to make recommendations. 

The 2-dimensional data are the user and item. Contextual 

information can be incorporated directly into the 

recommendation process alongside the user and item data. 

Predictive models like context-aware matrix 

factorizations, regression and decision trees are examples 

of contextual modeling techniques that incorporate 

context into their approach. 

The contextual modeling approach is divided into 

Heuristics and model-based methods. [19] described a 

contextual modeling approach called contextual 

neighbors that is based on collaborative user filtering. 

Heuristic-based methods extend traditional approaches. 

An example is the extension of the neighborhood 

approach using a multidimensional similarity method. 

The heuristic-based method finds the distance between 

users or items with similar context. The distance in 

consideration is the difference between the ratings being 

compared. To provide a generalized distance 

measurement, the dataset is grouped into segments using 

the available context, and the distance function is 

calculated on segments, this could help reduce sparsity 

where there are no adequate data for some contexts.  
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V.  THE PROPOSED METHODS 

We propose two context-aware coupled factorization 

methods in this paper. The coupling part of our method is 

founded upon the approach in [10] which we explain in 

detail in this section. In section V.A, we provide a 

detailed explanation of our proposed context-aware 

coupled matrix factorization with common user factors. 

Section V.B provides a detailed explanation of our 

proposed context-aware coupled matrix factorization 

with common item factors. Section V.C details the 

addition of contextual user and item bias to our proposed 

methods. 

A.  Context-Aware Coupled Matrix Factorization with 

Common User Factors 

In this section, we explain our proposed model called 

context-aware coupled matrix factorization with common 

user factors. We use the term “common user factors” 

because we make the contextual condition rating matrices 

to have the same user latent factors by compelling the 

user factor matrix of each contextual condition rating 

matrix to be the same. 

The rationale for this approach is based on the 

assumption that to incorporate the effect of context, we 

assume that during user interaction, the effect of context 

on ratings reflects only on items. That is, across different 

contextual conditions, the taste of users remain the same 

while the suitability of items differs. An item might not 

be suitable in a context due to its characteristics. Since a 

rating is a weighted product of the user and item latent 

factor matrices, the changes in ratings are largely due to 

different values of item factors across the contextual 

conditions. 

In this section, we define the objective function for our 

context-aware coupled matrix factorization with common 

user factor; this function is what computes the latent 

factors. The function generates the latent factors by 

minimizing the prediction error as shown later in this 

section. 

Our method extends the approach in [10] by jointly 

factorizing  𝑅11,  𝑅12 and 𝑅13 , and sharing the same user 

factor matrix with all contextual condition matrices such 

that,  𝑅11  ≈ 𝐴𝐵𝑇, 𝑅12  ≈ 𝐴𝐶𝑇 and  𝑅13  ≈ 𝐴𝐷𝑇 .  𝐴 is the 

common user factor shared by the contextual condition 

matrices, where  𝐵, 𝐶 and 𝐷 are the latent item factors of 

the observed contextual condition rating 

matrices 𝑅11,  𝑅12 and 𝑅13 consecutively. 

The objective of our method is to generate the latent 

factors and compute the mapping of users and items to 

factor matrices , 𝐵 , 𝐶  and 𝐷 . Once we have done that, 

then we can predict ratings for users and items in a 

contextual condition, such that, �̂�11 = 𝐴𝐵𝑇 , �̂�12 = 𝐴𝐶𝑇 , 

and �̂�13 = 𝐴𝐷𝑇 . �̂�11 , �̂�12  and �̂�13  are the predicted 

ratings for each contextual condition. We do this by 

defining and solving a minimization problem that 

minimizes the prediction error to a local minimum. In the 

simplest form, the difference between the observed rating 

and the predicted rating called the prediction error 

denoted by 𝑒 is defined in [20] (2) as: 

𝑒 =  𝑅 −  �̂�.                                (1) 

 

Therefore, for each user-item-contextual condition 

rating pair, the prediction error in its simplest form is 

defined as: 

 

𝑒𝑢𝑖𝑐𝑘 =  𝑅𝑢𝑖𝑐𝑘 −  �̂�𝑢𝑖𝑐𝑘 .                    (2) 

 

Where 𝑅𝑢𝑖𝑐𝑘  represents the observed contextual 

conditional rating by user 𝑢  for an item 𝑖  in contextual 

condition 𝑐𝑘 . �̂�𝑢𝑖𝑐𝑘  is the corresponding predicted or 

computed rating for a contextual condition rating by user 

𝑢 for an item 𝑖 in contextual condition 𝑐𝑘. 

Building on (2), we define our proposed context-aware 

coupled matrix factorization with common user factors 

objective function that incorporates joint factorization as 

an extension of (1) of [10] as: 

 

𝐿 =  ‖𝑅11 – (𝐴 ×  𝐵𝑇)‖
2

+  ‖𝑅12 – (𝐴 ×  𝐶𝑇)‖
2

+

 ‖𝑅13 – (𝐴 ×  𝐷𝑇)‖
2
. 

(3) 

 

Where ‖ ‖  denotes the Frobenius norm for matrices 

used as a loss function, 𝐴  is the common user factor 

matrix that contains the mapping of users to the latent 

factors, 𝐵 , 𝐶  and 𝐷  are the latent item factors of 

 𝑅11,  𝑅12  and 𝑅13  containing the mapping of items to 

latent factors. The coupling can be seen here in the joint 

factorization process. The object function is solved as an 

optimization problem to minimize the prediction error 

while computing and learning the latent factors. This 

process generates our low latent factor matrices. 

We modify our objective function in (3) by adding 

regularization to avoid overfitting during training, this 

generalizes the prediction rating model as much as 

possible to be able to predict unknown ratings. 

Regularization is done to penalize the magnitude of the 

low latent factors computed in the objective function. 

We apply the constants 𝛼 and 𝛽 as used in [21] and [22] 

to regularize the squared error on the set of the observed 

contextual condition ratings, this is defined below as: 

 

𝐿 =  ‖𝑅11  − ( 𝐴 × 𝐵𝑇)‖2 +  ‖𝑅12 – (𝐴 ×  𝐶𝑇)‖2

+  ‖𝑅13  − (𝐴 × 𝐷𝑇)‖2

+  ( 𝛽‖𝐴‖ 2 +  𝛼‖𝐵‖ 2 +  𝛼 ‖𝐶‖ 2

+  𝛼 ‖𝐷‖ 2). 
(4) 

 

Where 𝛼 controls the extent of regularization for the 

matrices 𝐵 , 𝐶  and 𝐷  and 𝛽  controls the extent of 

regularization for the matrix 𝐴. 𝛼 and 𝛽  are simply the 

penalty parameters. 

To learn the latent factors in the low factor matrices, 

we optimize our objective function by solving the 

minimization problem below: 
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𝑚𝑖𝑛
𝐴,𝐵,𝐶,𝐷

 ‖𝑅11  − (𝐴 × 𝐵𝑇)‖2 +  ‖𝑅12  − (𝐴 ×

 𝐶𝑇)‖2 + ‖𝑅13  − (𝐴 × 𝐷𝑇)‖2 + ( 𝛽‖𝐴‖ 2 +
  𝛼‖𝐵‖ 2 +  𝛼 ‖𝐶‖ 2 +  𝛼 ‖𝐷‖ 2).   

(5) 

 

We use the stochastic gradient descent approach in [21] 

and [23] to solve the minimization problem. The purpose 

of minimizing using the gradient approach is to achieve 

our objective of computing and learning the low latent 

factor matrices which contains the mappings to the latent 

factors. 

The stochastic gradient descent method attempts to 

minimize the difference between the observed rating and 

the predicted rating iteratively until it finds the local 

minimum; then it terminates. Furthermore, we can break 

the minimization problem in (5) to: 

 
𝑚𝑖𝑛

𝐴,𝐵,𝐶,𝐷
 ‖𝑅𝑢𝑖11  − (𝐴𝑢  ×   𝐵𝑖

𝑇)‖2 +  ‖𝑅𝑢𝑖12 – (𝐴𝑢  ×

 𝐶𝑖
𝑇)‖

2
+  ‖𝑅13 – (𝐴𝑢  ×  𝐷𝑖

𝑇)‖
2

+  ( 𝛽‖𝐴𝑢‖ 2 +

  𝛼‖𝐵𝑖‖ 2 +  𝛼 ‖𝐶𝑖‖ 2 +  𝛼 ‖𝐷𝑖‖ 2).  
 (6) 

 

Where 𝐴𝑢 is the user vector factor for user 𝑢, 𝐵𝑖  is the 

item vector factor for item 𝑖 in contextual condition 11, 

𝐶𝑖 is item vector factor for item 𝑖 in contextual condition 

12 , 𝐷𝑖  is the item vector factor for item 𝑖 in contextual 

condition 13. 

Using the gradient descent method, we minimize the 

objective function during each iteration until we get to a 

local minimum. This process is used to learn our low 

factors. After completing this process, we obtain our low 

factors , 𝐵, 𝐶 and 𝐷 containing the mappings to the latent 

features. 

The goals of this model are to generate the latent 

factors, compute the common user factors and contextual 

condition item factors of the observed rating matrix. 

After which we can predict the ratings for any user and 

item in any contextual condition. Predicting the rating of 

user 𝑢, for item 𝑖 in a contextual condition would be a 

weighted sum of the common user factor vector and the 

corresponding item factor vector defined as: 

 

�̂�𝑢𝑖𝑐𝑘 = 𝐴𝑢𝑆𝑖
𝑇.                              (7) 

 

Where �̂�𝑢𝑖𝑐𝑘 is the predicted rating of user 𝑢 for item 𝑖 
in a contextual condition 𝑐𝑘 . 𝐴𝑢  is the common user 

factor vector for user 𝑢  and 𝑆𝑖
𝑇  is the transpose of the 

associated item factor vector for item 𝑖  in contextual 

condition 𝑐𝑘, 𝑆 could be 𝐵, 𝐶 or 𝐷. 

For two users to have similar ratings across different 

contextual condition, they must have similar common 

user factors and similar item ratings in a contextual 

condition. The core uniqueness of this method is 

generating common user factors for all the contextual 

condition rating matrices. All factor matrices contain the 

interaction/ mapping of users and items to the latent 

factors. 

 

B.  Context-Aware Coupled Matrix Factorization with 

Common Item Factors 

In this section, we explain our proposed method called 

context-aware coupled matrix factorization with common 

item factors. We use the term “common item factors” 

because it forces the contextual condition rating matrices 

to have the same item latent factors by compelling the 

item factor matrix of each contextual condition rating 

matrix to be the same. 

The rationale behind this approach is based on the 

assumption that to incorporate the effect of context; we 

assume that during user interaction, the effect of context 

on ratings is only reflected on users, the items maintain 

the same characteristics across different contextual 

conditions. This means, across different contextual 

conditions, the taste of users changes while the 

characteristics of item remain the same. And since a 

rating is a weighted product of the user and item latent 

factor matrices, the changes in ratings is largely due to 

different values of user factors across the contextual 

conditions. 

In this section, we show the changes in notation from 

section V.A; please refer to section V.A for the full 

description of the method. We define the objective 

function of our context-aware coupled matrix 

factorization with common item factor by building on the 

work in section V.A. In our proposed context-aware 

coupled matrix factorization with common item factor, 

we adjust the work done in section V.A by jointly 

factorizing  𝑅11,  𝑅12 and 𝑅13 , while forcing the matrices 

to share the same item factor matrix such that,  𝑅11  ≈
𝐵𝐴𝑇 , 𝑅12  ≈ 𝐶𝐴𝑇  and  𝑅13  ≈ 𝐷𝐴𝑇 .  𝐴  is the common 

item factor shared by the contextual condition matrices, 

where  𝐵 , 𝐶  and 𝐷  are the latent user factors of the 

observed contextual condition rating matrices  𝑅11,  𝑅12 

and 𝑅13  consecutively. We modify (4) to reflect the 

changes and define the objective function for this method 

as: 

 

𝐿 =  ‖𝑅11 – (𝐵 × 𝐴𝑇)‖2 +  ‖𝑅12 – (𝐶 ×  𝐴𝑇)‖2

+  ‖𝑅13 – (𝐷 ×  𝐴𝑇)‖2

+  ( 𝛽‖𝐴‖ 2 +   𝛼‖𝐵‖ 2 +  𝛼 ‖𝐶‖ 2

+  𝛼 ‖𝐷‖ 2). 
(8) 

 

Ultimately, we define our minimization task as: 

 
𝑚𝑖𝑛

𝐴,𝐵,𝐶,𝐷
 ‖𝑅𝑢𝑖11 – (𝐵𝑢  ×   𝐴𝑖

𝑇)‖
2

+ ‖𝑅𝑢𝑖12 – (𝐶𝑢  ×

 𝐴𝑖
𝑇)‖

2
+ ‖𝑅13 – (𝐷𝑢  ×  𝐴𝑖

𝑇)‖
2

+  ( 𝛽‖𝐴𝑖‖ 2 +

  𝛼‖𝐵𝑢‖ 2 +  𝛼 ‖𝐶𝑢‖ 2 +  𝛼 ‖𝐷𝑢‖ 2).  
(9) 

 

Where 𝐴𝑖 is the common item vector factor for item 𝑖, 
𝐵𝑢  is the user vector factor for user 𝑢  in contextual 

condition 11 , 𝐶𝑢  is the user vector factor for user 𝑢  in 

contextual condition 12, 𝐷𝑢 is the user vector factor for 

user 𝑢 in contextual condition 13. 
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Predicting the rating of user 𝑢  for item 𝑖  in a 

contextual condition would be a weighted sum of the 

common item factor vector and the corresponding user 

factor vector defined as: 

 

�̂�𝑢𝑖𝑐𝑘 = 𝑆𝑢𝐴𝑖
𝑇 .                           (10) 

 

Where �̂�𝑢𝑖𝑐𝑘 is the predicted rating for user 𝑢, for item 

𝑖  in a contextual condition 𝑐𝑘 . 𝐴𝑖  is the common item 

factor vector for item 𝑖  and 𝑆𝑢  is the associated user 

factor vector for user 𝑢  in contextual condition 𝑐𝑘 , 𝑆 

could be 𝐵, 𝐶 or 𝐷. 

For two users to have similar ratings for a contextual 

condition, they must share similar user factor values for 

each contextual condition. They must also share similar 

item ratings within the context. The core uniqueness of 

this method is generating common item factors for all the 

contextual condition rating matrices. 

C.  Incorporating User and Item Biases in the Proposed 

Methods 

To have a better and more accurate prediction of 

ratings, we incorporate user and item contextual 

condition bias into the objective functions of both our 

proposed methods. Biases are the variations in ratings 

due to individual effects certain users or items have. In a 

recommender system, there is a tendency for certain 

users to give higher ratings than others and for some 

items to receive higher ratings than others. This could be 

because some items or products are widely perceived as 

better due to factors like marketing, advertisement, etc. 

User bias and item bias captures the individual tendencies 

and variations. The item bias explains the tendency for an 

item to be rated lower or higher compared to the average 

rating and user bias explains the tendency for a user to 

rate higher or lower than the average rating. 

User and item bias idea is gotten from the works in 

[21], [24] and [25]. The baseline estimate for an 

unknown rating that factors in item and user bias is 

defined in (1) of [21] as: 

 

𝑏𝑢𝑖 = µ + 𝑏𝑖 +  𝑏𝑢.                       (11) 

 

Where 𝑏𝑢𝑖  is the baseline estimate for an unknown 

rating of item 𝑖  by user 𝑢 , µ  is the mean, 𝑏𝑖  is the 

deviation of item 𝑖 from the mean and 𝑏𝑢 is the deviation 

of user 𝑢  from the mean. We propose item and user 

contextual factor bias to factor in the individual effects of 

users and items on the contextual condition rating 

calculation. We incorporate contextual condition item 

and user bias into the rating equations of (7) and (10) to 

produce: 

 

�̂�𝑢𝑖𝑐𝑘 = 𝐴𝑢𝑆𝑖
𝑇 +  µ𝑐𝑘 +  𝑏𝑖𝑐𝑘 +  𝑏𝑢𝑐𝑘.             (12) 

 

�̂�𝑢𝑖𝑐𝑘 = 𝑆𝑢𝐴𝑖
𝑇 + µ𝑐𝑘 + 𝑏𝑖𝑐𝑘 +  𝑏𝑢𝑐𝑘.             (13) 

 

Where µ𝑐𝑘 represents the mean rating in the contextual 

condition 𝑐𝑘 , 𝑏𝑖𝑐𝑘  represents the bias of item 𝑖  in the 

contextual condition 𝑐𝑘, 𝑏𝑢𝑐𝑘 represents the bias of user 

𝑢 in the contextual condition 𝑐𝑘. 

The contextual condition biases for item 𝑖 and user 𝑢 

for the three contextual conditions we have in our model 

are: 𝑏𝑢11, 𝑏𝑖11, 𝑏𝑢12, 𝑏𝑖12, 𝑏𝑢13, 𝑏𝑖13 . Hence, we extend 

both objective functions and learn the biases in the 

minimization task and also regularized the biases to 

avoid over fitting, the extended functions of formulae (6) 

and (9) are 

 
𝑚𝑖𝑛

𝐴,𝐵,𝐶,𝐷,𝑏𝑢11,𝑏𝑖11,𝑏𝑢12,𝑏𝑖12,𝑏𝑢13,𝑏𝑖13 
 ‖𝑅𝑢𝑖11  − (𝐴𝑢  ×   𝐵𝑖

𝑇) −

 µ11 −  𝑏𝑖11 −   𝑏𝑢11‖2 + ‖𝑅𝑢𝑖12  − (𝐴𝑢  ×  𝐶𝑖
𝑇) −

 µ12 −  𝑏𝑖12 −   𝑏𝑢12‖2 + ‖𝑅13  − (𝐴𝑢  ×  𝐷𝑖
𝑇) −  µ13 −

 𝑏𝑖13 −   𝑏𝑢13‖2 +  ( 𝛽‖𝐴𝑢‖ 2 +  𝛼‖𝐵𝑖‖ 2 +  𝛼 ‖𝐶𝑖‖ 2 +
 𝛼 ‖𝐷𝑖‖ 2 +  𝛼 ‖𝑏𝑖11‖ 2 +  𝛼 ‖𝑏𝑢11‖ 2 +   𝛼 ‖𝑏𝑖12‖ 2 +
 𝛼 ‖𝑏𝑢12‖ 2 +   𝛼 ‖𝑏𝑖13‖ 2 +  𝛼 ‖𝑏𝑢13‖ 2).  

 (14) 

 
𝑚𝑖𝑛

𝐴,𝐵,𝐶,𝐷,𝑏𝑢11,𝑏𝑖11,𝑏𝑢12,𝑏𝑖12,𝑏𝑢13,𝑏𝑖13
 ‖𝑅𝑢𝑖11  − (𝐵𝑢  ×   𝐴𝑖

𝑇) −

 µ11 −  𝑏𝑖11 −   𝑏𝑢11‖2 + ‖𝑅𝑢𝑖12  − (𝐶𝑢  ×  𝐴𝑖
𝑇) −

  µ12 −  𝑏𝑖12 −   𝑏𝑢12‖2 + ‖𝑅13  − (𝐷𝑢  ×  𝐴𝑖
𝑇) − µ13 −

 𝑏𝑖13 −   𝑏𝑢13‖2 +  ( 𝛽‖𝐴𝑖‖ 2 +   𝛼‖𝐵𝑢‖ 2 +  𝛼 ‖𝐶𝑢‖ 2 +
 𝛼 ‖𝐷𝑢‖ 2 +   𝛼 ‖𝑏𝑖11‖ 2 +  𝛼 ‖𝑏𝑢11‖ 2 +   𝛼 ‖𝑏𝑖12‖ 2 +
 𝛼 ‖𝑏𝑢12‖ 2 +   𝛼 ‖𝑏𝑖13‖ 2 +  𝛼 ‖𝑏𝑢13‖ 2. 

(15) 

 

VI.  EVALUATION 

We test our recommendation methods by performing 

an offline experiment. Offline experiments are 

experiments conducted using datasets or data sources 

collected from user interaction with a system. We use 

implicit data; this means data collected about the 

activities of users which doesn’t explicitly show intent. 

We explain the characteristics of the last.fm music 

dataset used and after that discuss the evaluation criteria 

and methods used. Finally, we discuss the results, 

analysis and performance of our methods and chosen 

baseline methods in the test performed. 

A.  Dataset 

In our experiment, we use the dataset obtained from 

the last.fm music website. The dataset contains the music 

listening history of users. For each user, the dataset 

contains the tracks played by the user and the timestamp 

the user listened to each track. Each track is represented 

by the track id, the title of the track, the artist id, and 

name. The dataset contains 992 users, 176,948 artists and 

a total of 19,121,228 listening entries. The last.fm dataset 

is an example of an implicit dataset. 

The contextual factor in this dataset is time. We split 

time into three contextual conditions: morning, afternoon 

and evening/night. Morning represents the period 

between 12 am and 11:59 am, afternoon represents the 

period between 12 pm and 5:59 pm while evening/night 

represents the period between 6 pm and 11:59 pm. We 

group the dataset into three subsets, each representing the 

three contextual conditions. Each subset contains the 

listening history within the corresponding period. 
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We split this dataset into two, a training dataset and a 

test dataset. We use the training dataset to train our 

proposed methods. In the test dataset, we predict the 

artists a given user would like in a given period. We 

select artists from a set of new artists not in the user’s 

play history. We use the listening history data to get the 

play counts for an artist, in a given period. A user with a 

high play count for an artist in a given period, suggests 

that the user likes listening to that artist during that 

period. 

B.  Evaluation Method 

To evaluate the performance of our proposed methods, 

we measure the prediction accuracy of our methods on 

our test dataset. We randomly select 100 users for testing. 

We divide our test dataset into three parts as explained in 

the dataset section, each containing user’s listening 

history for each time contextual condition, e.g., morning, 

evening, etc. 

We evaluate the prediction accuracy of our methods on 

the test dataset using the Mean Absolute Error (MAE) 

and the Root Mean Square Error (RMSE). MAE is a 

popular statistical accuracy metric used in a 

recommender system to measure the deviation of a 

prediction or recommendation from the actual value [11]. 

MAE, as defined in (4) in [26], is defined below: 

 

  𝑀𝐴𝐸 =  
∑ |𝑃𝑢,𝑖 − 𝑟𝑢,𝑖 | 𝑢,𝑖

𝑁
 .                    (16) 

 

𝑃𝑢,𝑖  is the predicted rating generated by our methods 

for user 𝑢 and item 𝑖 , 𝑟𝑢,𝑖 is the actual rating (observed 

rating) for user 𝑢 and item 𝑖 in the test dataset. 𝑁 is the 

total number of ratings in the test dataset. 

RMSE is a popular metric for evaluating the accuracy 

of predicted ratings by measuring the deviation of a 

predicted rating from the actual value [27]. RMSE, 

compared to MAE penalizes large errors and prefers 

smaller errors. RMSE ,as defined in (4) in [26], is defined 

below: 

 

  𝑅𝑀𝑆𝐸 = √
1

𝑁
∑  𝑢,𝑖 (𝑃𝑢,𝑖 −  𝑟𝑢,𝑖 )

2.                 (17) 

 

𝑃𝑢,𝑖  is the predicted rating generated by our methods 

for user 𝑢 and item 𝑖 , 𝑟𝑢,𝑖 is the actual rating (observed 

rating) for user 𝑢 and item 𝑖 in the test dataset. 𝑁 is the 

total number of ratings in the test dataset. 

We compare our methods with some baseline methods 

that incorporate context into their recommendation 

process.  

The baseline methods we compare with our methods 

are:  

 

a. Independent context similarity (ICS) and latent 

content similarity (LCS) methods of the 

correlation-based context-aware matrix 

factorization (correlation-based CAMF) in [7]. 

We evaluate both ICS and LCS methods with the 

same training and test dataset used for our 

methods. The main rationale for choosing ICS and 

LCS is because they are both state-of-the-art 

context-aware matrix factorization methods, and 

they performed better than some existing context-

aware matrix factorization methods according to 

the results of the experiment in [7]. Also, we 

needed methods that could generate 

recommendations for different contextual 

conditions instead of making general 

recommendations. A lot of the existing context-

aware methods use context to make general 

recommendations. Another reason why we choose 

to compare our proposed methods with ICS and 

LCS is to demonstrate and confirm that 

incorporating changes in user behavior and item 

characteristics across contextual conditions as 

used in our proposed methods is more effective 

than generating recommendations based on the 

correlation between two contextual conditions 

used in ICS and LCS. 

b. The context-aware matrix factorization (CAMF) 

methods in [6]. We compare our methods with 

CAMF-C and CAMF-CI in [6]. These methods 

are both state-of-the-art context-aware matrix 

factorization methods that can make 

recommendations for contextual conditions. We 

compare our proposed methods with CAMF-C 

and CAMF-CI to demonstrate and verify that our 

methods provide a better way to capture the 

influence of context on items. 

C.  Result and Analysis 

We train our models using the training dataset to 

generate different latent factors with different dimensions 

(number of factors). After that, we conduct a series of 

experiments to evaluate the ability of our proposed 

methods to predict items for users in different contextual 

situations. We run different experiments to show the 

performance of our methods in comparison with the 

chosen baseline methods, using a different number of 

factors for each experiment. We provide the analysis of 

the results of the experiments conducted. 

In running our experiments, we observed that, while 

the number of iteration is directly proportional to the 

effectiveness of our models, giving it a better MAE and 

RMSE scores, the number of iterations is also directly 

proportional to the time it takes to learn and generate our 

latent factors. The running time complexity of our 

methods is linear as a function of the number of iterations 

without taking the size of the dataset into consideration. 

Therefore, we use 10,000 iterations which took about 40 

minutes to run an experiment on a 4 GB RAM machine. 

In choosing our parameters 𝛼 and 𝛽, we did some try-

and-error to arrive at the best values because calculating 

the appropriate values for these parameters has been 

proved to be a difficult research problem [28]. In our 

experiment, we measure the sensitivity of our model to 

each try-and-error value we set by measuring the MAE 

and RMSE at each step of the training. We observed that 

our models performed better with small values of both 
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parameters.  We settled for 𝛼 = 0.6 and 𝛽 = 0.4. 

We run some experiments to measure the prediction 

accuracy of our proposed methods and compare them to 

the prediction accuracy of our chosen baseline methods 

using MAE and RMSE. We set the number of latent 

factors to different values for each experiment to test 

whether the number of latent factors extracted affects the 

prediction accuracy of the proposed methods and to 

compare the performance of the baseline methods to our 

proposed methods when different dimensions are 

extracted. We use 10, 20 and 30 as the dimensions of the 

latent factors and run different experiments for each 

dimension. We settled for these values after running 

different trials and observing that these dimensions 

provided the best prediction accuracies. The results are 

shown in Table 1. In the table, we will observe that 

setting the number of factors to 30 produced the best 

prediction accuracy.  

We observe from our experiments that, context-aware 

coupled matrix factorization with common item factors 

shows better prediction accuracy for all dimensions, with 

an average improvement of 3.75% regarding MAE and 

2.15% regarding RMSE across different dimensions. 

Context-aware coupled matrix factorization with 

common user factors show an average improvement of 

2.75% regarding MAE and 1.43% regarding RMSE 

across the three dimensions used. Context-aware coupled 

matrix factorization with common item factors show an 

average performance of 25% and 20% regarding MAE 

and RMSE over context-aware coupled matrix 

factorization with common user factors. Therefore, we 

conclude that our proposed methods provide good 

prediction accuracy, but context-aware coupled matrix 

factorization with common item factors perform better 

than context-aware coupled matrix factorization with 

common user factors.  

The characteristics of the music dataset used could be 

an explanation for why the coupled matrix factorization 

with common item factors performed better in our 

experiment. In a music recommender system, most tracks 

would normally have the same characteristics and 

suitability across different contextual situations. It is the 

changes in user’s taste in different conditions that 

account for what users consume in certain contexts. In 

certain scenarios where the changes in the consumption 

of items are largely due to the suitability of items across 

different situations, context-aware coupled matrix 

factorization with common user factor might perform 

better. 

We run another set of experiments to compare our 

proposed methods to the selected baseline methods. 

Context-aware coupled matrix factorization with 

common item factors can average a performance 

improvement of 20.79%, 25.76%, 34.23%, 45.31%, in 

terms of MAE and 22.56%, 25.03%, 37.97%, 45.05% in 

terms of RMSE over correlation-based CAMF – ICS, 

correlation-based CAMF – LCS, CAMF-CI and CAMF-

C respectively across different dimensions. Context-

aware coupled matrix factorization with user factors also 

performs better regarding MAE and RMSE than 

correlation-based CAMF – ICS, correlation-based CAMF 

– LCS, CAMF-CI, and CAMF-C. We conclude that our 

proposed methods perform better than all the chosen 

baseline methods. The results are shown in Table 1. 

The significance of using different dimensions for the 

latent factors is to investigate whether the number of the 

latent factors generated, affects the prediction accuracy of 

our proposed methods. Also, we wanted to see how the 

baseline methods compare to our proposed when we 

choose different dimensions for the generated latent 

factors. 

Table 1. MAE and RMSE results of the experiment conducted 

Method 

No of latent 

factors / 

Dimensions 

MAE RMSE 

Context-aware coupled matrix 

factorization with common user factors 

10 0.545 0.772 

20 0.538 0.766 

30 0.530 0.761 

Context-aware coupled matrix 

factorization with common item factors 

10 0.479 0.698 

20 0.472 0.691 

30 0.461 0.683 

Correlation-based CAMF - ICS 

10 0.601 0.899 

20 0.591 0.890 

30 0.582 0.882 

Correlation-based CAMF - LCS 

10 0.644 0.927 

20 0.638 0.922 

30 0.621 0.911 

CAMF-CI 

10 0.752 1.152 

20 0.742 1.142 

30 0.701 1.101 

CAMF-C 

10 0.883 1.283 

20 0.852 1.252 

30 0.843 1.243 

 



 Context-Aware Recommendation Methods 11 

Copyright © 2018 MECS                                                               I.J. Intelligent Systems and Applications, 2018, 9, 1-12 

We observe that with a small number of dimensions 

used, our proposed methods can accurately capture the 

low latent factors needed to generate good predictions 

and as the number of dimensions increased to a certain 

extent (30 in our experiment), our proposed methods 

become more effective. From these experiments, the 

significance of using a different number of dimensions 

for the low factor matrices is to find the range of the 

dimensions that can effectively capture the latent factors 

that best describes the behaviors of users. 

 

VII.  CONCLUSION 

In this age of big data and information explosion, 

providing recommendations help users to get relevant 

data in an online system. We aimed to develop a context-

aware approach to making recommendations that are 

context centric; i.e., an approach that provides 

recommendations based on contextual rating, the rating 

given in a particular context. Therefore, our focus was to 

develop methods that provide recommendations for 

different contexts and not general recommendations. 

After evaluating our methods on the last.fm dataset, 

our experimental results showed that both the proposed 

context-aware coupled matrix factorization methods 

showed a good performance on predicting new artists for 

users, but the method with the common item factor 

showed better prediction results. Therefore, the taste of 

users changes across different contexts, but the 

characteristics of items don’t change that much when 

compared to user’s behaviors, based on our experiments. 

This would make sense for certain items like music or 

artist; whether a user likes a song in the morning or 

evening is relative to the user for the most part. This 

means for two users to share similar artist taste in a 

context, they must have similar ratings or taste for the 

artist in the context being considered. Our results also 

show that other factors like parameters of the methods 

and number of iterations the method runs during the 

training affects the accuracy of prediction. 

We compared our methods with some state-of-the-art 

context-aware recommendation methods, and our 

proposed methods showed a fairly significant 

improvement over all the methods considered. We have 

to mention that our method is more suited towards 

making predictions for specific contexts, and might be 

less effective in applying contextual information to make 

general predictions. Also splitting ratings into contextual 

groups before performing predictions make our method 

more effective towards performing context centric 

recommendations. 

One limitation of our proposed methods are, they only 

incorporate one context. This would be a challenge in a 

domain or dataset with multiple contexts. Some scenarios 

would require the recommender systems to incorporate 

multiple contexts in its recommendation process. An 

example is an event recommender system with multiple 

contextual factors like time of the event, the location of 

the user and event, weather conditions, etc. 

VIII.  FUTURE WORK 

Our proposed methods were formulated and 

experimented with only one context. It would be 

interesting to extend this work to incorporate more than 

one context, find out the challenges in doing that and the 

necessary modifications to our methods to accommodate 

such extension. Although we believe this would be a 

straightforward extension, there might be some 

challenges with scalability when each context contains 

several contextual conditions. 

Another interesting future work to consider would be, 

exploring techniques that adequately extract and share 

relevant user and item features across different contexts 

and contextual condition during prediction. We believe 

that although user behavior or item characteristics 

changes across different context, separating what changes 

from what remains the same across different context is 

very important to generate useful recommendations. 

Another interesting further research would be how to 

make contextual predictions without manually 

identifying the contextual factors that affect users’ 

interaction and grouping the rating data by contextual 

conditions.  One possible approach is to develop methods 

that could automate the process of identification and 

extraction of contextual factors. A possible way to do 

that is to examine the metadata and additional data that 

comes alongside the user-item rating for patterns and 

changes that correlate with the user-item rating data. 

REFERENCES 

[1] Cheng, Heng-Tze, Levent Koc, Jeremiah Harmsen, Tal 

Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson. 

"Wide & deep learning for recommender systems." 

In Proceedings of the 1st Workshop on Deep Learning for 

Recommender Systems, pp. 7-10. ACM, 2016. 

[2] Dourish, Paul. "What we talk about when we talk about 

context." Personal and ubiquitous computing 8.1 (2004): 

19-30. 

[3] Rendle, Steffen, Zeno Gantner, Christoph Freudenthaler, 

and Lars Schmidt-Thieme. "Fast context-aware 

recommendations with factorization machines." 

In Proceedings of the 34th international ACM SIGIR 

Conference on Research and Development in Information 

Retrieval, pp. 635-644. ACM, 2011. 

[4] Jannach, Dietmar, Markus Zanker, Alexander Felfernig, 

and Gerhard Friedrich. "Recommender Systems: An 

Introduction–Cambridge University Press." New York, 

2010.–352 P (2010).  

[5] Adomavicius, Gediminas, and Alexander Tuzhilin. 

"Context-aware recommender systems." In Recommender 

Systems handbook, pp. 217-253. Springer US, 2011. 

[6] Baltrunas, Linas, Bernd Ludwig, and Francesco Ricci. 

"Matrix factorization techniques for context aware 

recommendation." In Proceedings of the fifth ACM 

conference on Recommender systems, pp. 301-304. ACM, 

2011. 

[7] Zheng, Yong, Bamshad Mobasher, and Robin Burke. 

"Incorporating context correlation into context-aware 

matrix factorization." In Proceedings of the 2015 

International Conference on Constraints and Preferences 

for Configuration and Recommendation and Intelligent 

Techniques for Web Personalization-Volume 1440, pp. 

21-27. CEUR-WS. org, 2015.  



12 Context-Aware Recommendation Methods  

Copyright © 2018 MECS                                                               I.J. Intelligent Systems and Applications, 2018, 9, 1-12 

[8] Li, Jiyun, Pengcheng Feng, and Juntao Lv. "ICAMF: 

improved context-aware matrix factorization for 

collaborative filtering." In Tools with Artificial 

Intelligence (ICTAI), 2013 IEEE 25th International 

Conference on, pp. 63-70. IEEE, 2013. 

[9] Nguyen, Trung, Alexandros Karatzoglou, and Linas 

Baltrunas. "Gaussian process factorization machines for 

context-aware recommendations." In Proceedings of the 

37th international ACM SIGIR conference on Research & 

development in information retrieval, pp. 63-72. ACM, 

2014. 

[10] Acar, Evrim, Gozde Gurdeniz, Morten A. Rasmussen, 

Daniela Rago, Lars O. Dragsted, and Rasmus Bro. 

"Coupled matrix factorization with sparse factors to 

identify potential biomarkers in metabolomics." In Data 

Mining Workshops (ICDMW), 2012 IEEE 12th 

International Conference on, pp. 1-8. IEEE, 2012. 

[11] Li, Fangfang, Guandong Xu, and Longbing Cao. 

"Coupled item-based matrix factorization." 

In International Conference on Web Information Systems 

Engineering, pp. 1-14. Springer, Cham, 2014. 

[12] Li, Fangfang, Guandong Xu, and Longbing Cao. 

"Coupled matrix factorization within non-iid context." 

In Pacific-Asia Conference on Knowledge Discovery and 

Data Mining, pp. 707-719. Springer International 

Publishing, 2015. 

[13] Burke, Robin. "Recommender Systems: An Introduction, 

by Dietmar Jannach, Markus Zanker, Alexander Felfernig, 

and Gerhard Friedrich: Cambridge University Press, 2011. 

336 pages. ISBN: 978-0-521-49336-9." (2012): 72-73. 

[14] Linden, Greg, Brent Smith, and Jeremy York. "Amazon. 

com recommendations: Item-to-item collaborative 

filtering." IEEE Internet computing 7, no. 1 (2003): 76-80. 

[15] Desrosiers, Christian, and George Karypis. "A 

comprehensive survey of neighborhood-based 

recommendation methods." Recommender systems 

handbook (2011): 107-144.  

[16] Adomavicius, Gediminas, Jesse Bockstedt, Shawn Curley, 

and Jingjing Zhang. "Recommender systems, consumer 

preferences, and anchoring effects." In RecSys 2011 

Workshop on Human Decision Making in Recommender 

Systems, pp. 35-42. 2011.  

[17] Boström, Fredrik. "Andromedia-towards a context-aware 

mobile music recommender." (2008). 

[18] Pagano, Roberto, Paolo Cremonesi, Martha Larson, 

Balázs Hidasi, Domonkos Tikk, Alexandros Karatzoglou, 

and Massimo Quadrana. "The Contextual Turn: from 

Context-Aware to Context-Driven Recommender 

Systems." In RecSys, pp. 249-252. 2016. 

[19] Adomavicius, Gediminas, Ramesh Sankaranarayanan, 

Shahana Sen, and Alexander Tuzhilin. "Incorporating 

contextual information in recommender systems using a 

multidimensional approach." ACM Transactions on 

Information Systems (TOIS) 23, no. 1 (2005): 103-145. 

[20] Takács, Gábor, István Pilászy, Bottyán Németh, and 

Domonkos Tikk. "Matrix factorization and neighbor 

based algorithms for the netflix prize problem." 

In Proceedings of the 2008 ACM conference on 

Recommender systems, pp. 267-274. ACM, 2008. 

[21] Koren, Yehuda. "Factorization meets the neighborhood: a 

multifaceted collaborative filtering model." 

In Proceedings of the 14th ACM SIGKDD international 

conference on Knowledge discovery and data mining, pp. 

426-434. ACM, 2008. 

[22] Wu, Mingrui. "Collaborative filtering via ensembles of 

matrix factorizations." Proceedings of KDD Cup and 

Workshop. Vol. 2007. 2007.  

[23] Paterek, Arkadiusz. "Improving regularized singular value 

decomposition for collaborative filtering." In Proceedings 

of KDD cup and workshop, vol. 2007, pp. 5-8. 2007. 

[24] Melville, Prem, and Vikas Sindhwani. "Recommender 

systems." In Encyclopedia of machine learning, pp. 829-

838. Springer US, 2011. 

[25] Bell, Robert M., Yehuda Koren, and Chris Volinsky. "The 

bellkor 2008 solution to the netflix prize." Statistics 

Research Department at AT&T Research (2008). 

[26] Isinkaye, Folajimi, and Ojokoh. "Recommendation 

systems: Principles, methods and evaluation." Egyptian 

Informatics Journal 16, no. 3 (2015): 261-273. 

[27] Shani, Guy, and Asela Gunawardana. "Evaluating 

recommendation systems." Recommender systems 

handbook (2011): 257-297 

[28] Wilderjans, Tom, Eva Ceulemans, and Iven Van 

Mechelen. "Simultaneous analysis of coupled data blocks 

differing in size: A comparison of two weighting 

schemes." Computational Statistics & Data Analysis 53, 

no. 4 (2009): 1086-1098. 

 

 

 

Authors’ Profiles 

 
Tosin Agagu was born in Nigeria on the 

22nd of July, 1991. Agagu received his MCS 

in computer science from the university of 

Ottawa, Ontario, Canada in 2018. Agagu 

has a B.Tech. in information technology 

from the Bells university of technology, 

Ogun state, Nigeria in 2012.  

He works as a Software Engineer at 

Shopify, Canada. 

 

 

Thomas Tran received his PhD in 

Computer Science from the University of 

Waterloo in June 2004.  

He is currently a Full Professor at the 

School of Electrical Engineering and 

Computer Science, University of Ottawa. 

His research interests include Artificial 

Intelligence, Electronic Commerce, 

Intelligent Agents and Multi-Agent Systems, Trust and 

Reputation Modeling, Reinforcement Learning, Recommender 

Systems, Knowledge-Based Systems, and Vehicular Ad-hoc 

Networks. 

 

 

 

How to cite this paper: Tosin Agagu, Thomas Tran, "Context-

Aware Recommendation Methods", International Journal of 

Intelligent Systems and Applications(IJISA), Vol.10, No.9, 

pp.1-12, 2018. DOI: 10.5815/ijisa.2018.09.01 

 


