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Abstract—This paper presents reduced integer order 

models of fractional differentiators. A two step procedure 

is followed. Using the Carlson method of approximation, 

approximated second iteration models of fractional 

differentiators are obtained. This method yields transfer 

function of high orders, which increase the complexity of 

the system and pose difficulty in realization. Hence, three 

reduction techniques, Balanced Truncation method, 

Matched DC gain method and Pade Approximation 

method are applied and reduced order models developed. 

With these models, fractional Proportional-Derivative and 

fractional Proportional-Integral-Derivative controllers are 

implemented on a fractional order plant and closed loop 

responses obtained. The authors have tried to reflect that 

the Carlson method in combination with reduction 

techniques can be used for development of good lower 

order models of fractional differentiators. The frequency 

responses of the models obtained using the different 

reduction techniques are compared with the original 

model and with each other. Three illustrative examples 

have been considered and their performance compared 

with existing systems. 

 

Index Terms—Carlson method, Fractional differentiators, 

Reduction techniques, Lower order models, PD and PID 

controller. 

 

I.  INTRODUCTION 

The fractional order differentiation and integration in 

mathematics is an old topic, dated back to seventeenth 

century, but could not be used in many applications 

because of the complexity associated with it. In recent 

years researches have been able to explore many potential 

applications of fractional calculus in science, engineering 

and management / business administration particularly in 

physical chemistry [1, 2], biomedical engineering [3], 

control system [4-7], signal processing [8] and inventory 

management [9]. Fractional differentiators and integrators 

are an integral part of fractional filter based signal 

processing and fractional feedback control of complex 

systems and chaotic systems [10]. A fractional order 

system is an infinite dimensional filter having irrational 

continuous time transfer function in the s-domain. The 

need to study the rational approximation of fractional 

order systems is mainly because the hardware realization 

of fractional order systems is a difficult task. The 

fractional order systems are usually approximated by a 

finite order rational transfer function. There are a few 

well known approaches viz. Carlson method [11], 

Matsuda method [12], Charef method [13], Oustaloup 

method [14] and method proposed by Xue et al. [15] to 

obtain the rational approximation. Out of these, some 

methods yield very high order integer order models for 

attaining desired accuracy. However, the realization, 

implementation and simulation of higher order models is 

often not feasible. This necessitates reducing the order of 

the model, either by simplifying the model or computing 

a lower order model, while preserving the necessary 

properties and characteristics of the original integer order 

model obtained. This requires treating the original model 

mathematically with numerical linear algebra and also 

using iterative solution techniques for linear systems. 

There are some model reduction methods viz. Pade 

approximation method, Pade-via-Lancoz (PVL) method 

[16], truncation methods [17], sub-optimum H2 pseudo-

rational method [18], Asymptotic Waveform Evaluation 

[19], etc to name a few. Another method for model 

reduction is Proper Orthogonal Decomposition. This 

method can also be applied for solving non-linear partial 

differential equations. All the model order reduction 

methods available in literature aim to have a balance 

between solution accuracy and computational effort. As 

such, simplified models are a replacement of original 

complex models resulting in reduced computational 

complexity. 

In this paper, Carlson method has been used to develop 

integer order models of fractional differentiators. Since 

this method is based on the Newton Iterative process, the 
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order of the approximation obtained depends only on the 

fractional order α, and cannot be chosen a priori. 

Moreover, the orders obtained are very high and are 

unrealizable in their original form. A generalized 

procedure adopted in such cases, is to reduce the order of 

the approximation obtained using order reduction 

techniques. We have used three order reduction 

techniques, namely, Balanced truncation method, 

Matched DC gain method and Pade approximation 

method and have derived lower order models of 

fractional differentiators, making them easily realizable. 

Simulations are performed and a comparison of the 

responses of these models with the original response is 

presented. In order to accentuate the validity of the 

proposed work, fractional order plant has been controlled 

using fractional PD and fractional PID controller, and 

results investigated. The responses of these closed loop 

systems are observed to outperform the results shown in 

[15]. In [20] the authors used self-tuning PID controller 

for Permanent Magnet Synchronous Motor (PMSM) 

vector control and in [21] and [22], PI and PID 

controllers are discussed as control strategies for 

Permanent Magnet Synchronous Generator (PMSG) 

based wind energy conversion system and 3Φ Induction 

Motor (3ΦIM) speed control system respectively. In a 

similar manner, the fractional PD and fractional PID 

controller presented in this paper can be used as control 

strategies for the speed control of these machines. 

The paper is organized as follows: Carlson method of 

approximation, the basis of various model order reduction 

techniques and the reduction methods used in this paper 

are discussed in Section 2. The performances of the 

proposed models of fractional differentiators are 

presented in Section 3. To show the effectiveness of the 

proposed models and that of the technique used for order 

reduction, illustrative examples with detailed analysis are 

presented in Section 4. Section 5 concludes the paper. 

 

II.  REALATED WORKS 

This section starts with describing the Carlson method 

of approximation and continues to discuss the application 

of model order reduction to the integer order models of 

fractional order systems. A brief description of three 

order reduction techniques are also presented. 

A.  Carlson Method 

The fractional order system, F(s) in the s-domain is in 

the form 

 

( ) ;F s s R                              (1) 

 

where α is the fractional order. 

The integer order approximation, Fi(s) of fractional 

order system using Carlson method is 
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In the first iteration i.e. for i=1, F0(s) is chosen as 1. 

Also, (1/α) can take only integer values [11, 23], that is 

1/α = ±2, ±3, ±4, ..…. . 

In second iteration i=2, and substituting α = 0.1, the 

approximated integer order transfer function of one-tenth 

differentiator is 

 
0.1

12 11 10 9 8 7

6 5 4 3 2

12 11 10 9 8 7

6 5 4 3 2

1.494 28.58 197.2 744.3 1790 2944
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(3) 

 

Similarly, for α = 0.2 in (2), the approximated integer 

order transfer function of one-fifth differentiator becomes 

 
0.2

7 6 5 4 3 2

7 6 5 4 3 2

2.25 29.77 107.4 185.6 175.1 88.8 20.39 1

20.39 88.8 175.1 185.6 107.4 29.77 2.25

s

s s s s s s s
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
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(4) 

 

Similar approach can be applied to all values of α (0 < 

α < 1) to obtain the approximated order integer transfer 

function of fractional differentiator [11, 23]. 

B.  Model Order Reduction 

The transfer function of a finite dimensional dynamical 

system in the Laplace domain is represented in the form  

 
1

1 0
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( ) ....

m m
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b s b s bY s
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The state representation of such a system in the matrix 

form is 

 

  

  

x A B x

y C D u

 
              
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                           (6) 

 

and in the equation form is 

 

x Ax Bu

y Cx Du

 

 
                               (7) 

 

where u is the input, y is the output, and x is the state 

variable. 
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The system equations in the Laplace domain are 

 

( ) ( ) ( )

( ) ( ) ( )

sX s AX s BU s

Y s CX s DU s

 

 
                     (8) 

 

The state equations in the transfer function form may 

be written as 

 

 
1( )

( )
( )

Y s
F s C sI A B D

U s


                  (9) 

 

Some of the model order reduction methods available 

in literature are based on transfer function models and 

others on state space models [24, 25]. Model order 

reduction based on transfer function is equivalent to 

approximating the original model of order N to 

approximated model of order r, where r < N and for state 

space model, it is reducing the matrix A but B and C 

unchanged. 

A good approximant should have small approximation 

error while preserving the necessary properties and 

characteristics of the original system and the reduction 

procedure should be cost effective and computationally 

efficient. 

Most of the methods form their basis via one or more 

of the following mathematical processes. These 

mathematical processes are discussed below. 

1)  Moments 

Applying Taylor series expansion [16] to (5) about      s 

= 0 the resulting expression is 

 
2

0 1 2( )F s m m s m s                    (10) 

 

where m0, m1, m2 … are the moments of the transfer 

function. The i
th

 moment of the transfer function is 
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where f(t) is the time domain expression of F(s). 

Similarly the i
th

 moment of  (9) at 0s s  is 
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After calculating the moments, a model reduction 

technique, like the Pade approximation or Pade-via-

Lancoz (PVL) method is applied to obtain a lower order 

approximation. 

2)  Singular Value Decomposition 

Singular Value Decomposition [26] is a decomposition 

of matrix A into matrices X, Y and S, where X and Y are 

unitary matrices and S = diag (σ1, … σn) and A=XSY
*
. 

The σi are the singular values of A, which are the square 

roots of the largest n eigen values of A
*
A or AA

*
. Hankel 

Singular Values are to model order what singular values 

are to matrix rank. Hankel Singular Values define the 

energy of each state in the system where as eigen values 

define a system stability. To obtain a simplified model, 

smaller energy states are discarded. By keeping large 

Hankel Singular Values most of the necessary system 

characteristics like stability and magnitude and phase 

responses are preserved. 

For a stable state space model 

 

( )h i PQ                           (13) 

 

where σh is the Hankel Singular Values, P and Q are 

controllability and observability grammians satisfying the 

two Lyapunov equations. 
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The error is measured in terms of peak gain across 

frequency (H∞ norm) and the error bounds are a function 

of the discarded Hankel Singular Values.  

The additive error bound is 
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The multiplicative (relative) error bound 

 

    1 2

1

1 2 1 1
N

red h h h
r

F F F   

 

              (16) 

 

where F is the original model and Fred is the reduced 

order model and σh are the h
th

 Hankel Singular Value of 

the original model F. The model order reduction 

technique like Optimal Hankel Norm Reduction method 

is based on this mathematical process. 

3)  Krylov subspaces 

For a linear system Ax = B having n equations and n 

variables, a subspace spanned by a sequence of column 

vectors is known as Krylov subspaces [27].  

For a symmetric matrix A and starting vector b, Right 

Krylov subspace is defined as  

 

   2 1, , , , , nA b span b Ab A b A b              (17) 

 

For a non-symmetric matrix A and starting vector b, 

Left Krylov subspace is defined as 
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2 1

, , , , ,
n
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
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Model order reduction techniques relying on Krylov 

subspaces involve some preconditioning for fast 

convergence of the iterative method and some 

orthogonalization schemes, such as Lancozs iteration for 

Hermitian matrices or Arnoldi iteration for more general 

matrices. 
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The model order reduction technique like Arnoldi and 

PRIMA method, Laguerre method is based on this 

mathematical process. 

C.  Reduction Methods 

The three order reduction methods used in this paper 

are briefly discussed here. These are: 

1)  Balanced truncation method (method 1) 

In this method for continuous state space model, first 

the Hankel singular values is found, as such respective 

energy of each state is known and the states to be 

eliminated are directly determined. The controllability 

and observability grammians are found. Then Schur 

balance truncation algorithm [28] is applied to obtain the 

reduced order model based on the states chosen to be 

eliminated. The additive error bound on the H∞ norm is 

taken as a measure of the transfer matrix and is a function 

of the discarded Hankel Singular Values. 

2)  Matched DC gain method (method 2) 

This method is based on Hankel Singular Value 

decomposition. For the state space model the state vector 

is divided as x = [x1 ; x2], where x1, are the larger energy 

states, to be kept and x2, with smaller energy states, to be 

discarded. 

 

 
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2 21 22 2 2

1 2

  

  

  

x A A x B
u
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2x  is made equal to zero and a reduced order model is 

obtained by solving for x1, given by 

 

1 1

1 11 12 22 21 1 1 12 22 2

1 1

1 2 22 21 2 22 2

x A A A A x B A A B u

y C C A A x D C A B u

 

 

         
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The limitation of this method is that in continuous time 

A22 should be invertible. 

3)  Pade approximation method (method 3) 

In this method, first the moments are calculated for the 

transfer function of the original higher order model. Then 

Pade approximation method is applied to obtain the 

reduced order model by matching the moments with the 

desired lower order model. The coefficient of each power 

of s is equated for the two sides to match. 

 

III.  PERFORMANCE AND DISCUSSIONS 

We have developed reduced order models of fractional 

differentiator s
α
 (0 < α < 1) using the three methods of 

order reduction discussed in section 2. The reduced 

models are all of order 3. All the models are listed in 

Table 1. 

Figs. 1, 2 show the frequency responses of the original 

and reduced order models of fractional differentiator for  

α = 0.1, 0.2 respectively. In Fig.1 the response of one-

tenth differentiator using Carlson method (3) is compared 

with the response of the reduced 3
rd

 order models using 

the three methods. It is observed that the response of the 

model obtained using methods 1 and 2 match exactly 

with the response of the original model in the entire 

frequency range [10
-2

, 10
2
] rad/sec for both magnitude 

and phase plots, where as the response of the model 

obtained using method 3 slightly deviates from the 

response of the original model in the frequency range    [3, 

40] rad/sec for the magnitude plot and in the frequency 

range [10
0
, 10

2
] rad/sec for the phase plot. 

 

 

Fig.1. Frequency response of original and reduced 3rd order models of 
one-tenth differentiator 

The frequency response of one-fifth differentiator 

using Carlson method (4) is compared with the response 

of the reduced 3
rd

 order model obtained using the three 

methods in Fig. 2. It can be seen that the response of the 

model obtained using the three methods matches exactly 

with the frequency response of the original model in the 

entire frequency range [10
-2

, 10
2
] rad/sec for both 

magnitude and phase plots, except a small range [10
0
, 10

1
] 

rad/sec in the phase plot. 

 

 

Fig.2. Frequency response of original and reduced 3rd order models of 
one-fifth differentiator. 
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The authors have also obtained reduced 2
nd

 order 

models (Table 2) of the approximated integer order 

transfer functions of one-tenth and one-fifth 

differentiators. The simulations were performed and the 

results when compared with the original model did not 

show better performance.  

 

 

Fig.3. Frequency response of original and reduced 3rd and 2nd order 

models of one-tenth differentiator. 

Fig. 3 shows the frequency response of one-tenth 

differentiator obtained using Carlson method and the 

response of reduced 2
nd

 and 3
rd

 order models using 

method 1. It is observed that the reduced 3
rd

 order model 

shows better performance than the reduced 2
nd

 order 

model as the former matches exactly with the response of 

the original model both in terms of magnitude and phase.  

Similar analysis has been performed for all the 

approximate models listed in Table 1 and results 

compiled. Observations show that  

 

(i) The performance of the reduced 3
rd

 order models 

using the three methods is superior to that of the reduced 

2
nd

 order models. In our opinion this is due to the fact that 

the reduction up to 2
nd

 order affects a pair of dominant 

pole and zero, so the necessary characteristics and 

properties of original model are not preserved.  

(ii) The Matched DC gain based reduced order models 

yield better results as compare to the models based on the 

other two methods. 

Table 1. Reduced 3rd order models of fractional differentiator sα (0 < α < 1)  

s  Balanced truncation method Matched DC gain method Pade approximation method 

0.1s  

3 2

3 2

1.494 16.1 16.97 1.455

14.19 18.69 2.153

s s s

s s s

  

    

3 2

3 2

1.487 13.92 11.24 0.8046

12.54 12.71 1.202

s s s

s s s

  

    

3 2

3 2

1.494 9.301 6.057 0.4168

8.69 6.925 0.6227

s s s

s s s

  

    

0.2s  

3 2

3 2

2.25 21.96 21.74 1.66

16.92 26.07 3.622

s s s

s s s

  

    

3 2

3 2

2.236 19.01 14.07 0.8572

15.3 17.95 1.929

s s s

s s s

  

    

3 2

3 2

2.25 17.56 10.95 0.6421

14.73 14.29 1.445

s s s

s s s

  

    

0.3s  
3 2

3 2

3.361 26.29 20.47 1.226

18.43 27.88 4.043

s s s

s s s

  

  
 

3 2

3 2

3.355 25.22 17.82 0.981

18.02 25.07 3.297

s s s

s s s

  

  
 

3 2

3 2

3.361 4.077 0.508 0.01678

5.291 1.111 0.05639

s s s

s s s

  

  
 

0.4s  
3 2

3 2

5.063 29.71 13.85 0.4578

20.28 25.2 2.626

s s s

s s s

  

  
 

3 2

3 2

5.086 33.61 22.01 1.053

21.33 34.1 5.333

s s s

s s s

  

  
 

3 2

3 2

5.063 5.162 0.6023 0.01879

7.311 1.687 0.09513

s s s

s s s

  

  
 

0.5s  

3 2

3 2

9 76.54 72.29 4.117

35.17 98.2 27.46

s s s

s s s

  

  
 

3 2

3 2

8.961 64.51 38.29 1.201

33.38 67.91 10.81

s s s

s s s

  

  
 

3 2

3 2

9 25.38 8.203 0.2308

21 18.44 2.077

s s s

s s s

  

  
 

0.6s  
3 2

3 2

13.45 56.36 9.465 0.003083

34.35 42.75 1.335

s s s

s s s

  

  
 

3 2

3 2

13.52 74.39 39.08 1.105

36.26 76.02 14.85

s s s

s s s

  

  
 

3 2

3 2

13.45 8.818 0.8156 0.01725

15.9 3.995 0.2319

s s s

s s s

  

  
 

0.7s  

3 2

3 2

20.25 340.3 1280 218.5

50.63 632.3 1172

s s s

s s s

  

  
 

3 2

3 2

20.11 1127 2884 96.94

88.28 2084 1963

s s s

s s s

  

  
 

3 2

3 2

20.25 11.04 0.9144 0.01837

22.65 5.934 0.372

s s s

s s s

  

  
 

0.8s  
3 2

3 2

30.26 438 1657 204.7

51.72 681.2 1590

s s s

s s s

  

  
 

3 2

3 2

30.17 574.5 1374 36.66

55.73 858.7 1109

s s s

s s s

  

  
 

3 2

3 2

30.26 11.79 0.8993 0.01748

31.09 7.513 0.5289

s s s

s s s

  

  
 

0.9s  
3 2

3 2

45.56 617.9 2590 175.6

54.55 802 2558

s s s

s s s

  

  
 

3 2

3 2

45.52 621.3 1974 40.51

54.46 797.7 1846

s s s

s s s

  

  
 

3 2

3 2

45.56 12.07 0.7939 0.01439

44.84 9.301 0.6556

s s s

s s s

  

  
 

Table 2. Reduced 2nd order models of one-tenth and one-fifth differentiator 

s  Balanced truncation method Matched DC gain method Pade approximation method 

0.1s  

21.494 12.78 3.759

2 11.86 5.065

s s

s s

 

   

21.421 5.261 0.5224

2 5.481 0.7805

s s

s s

 

   

21.494 2.43 0.1811

2 2.707 0.2705

s s

s s

 

   

0.2s  

22.25 17.99 5.589

2 15.05 9.579

s s

s s

 

   

22.112 8 0.7218

2 8.339 1.624

s s

s s

 

   

22.25 2.851 0.1773

2 3.558 0.399

s s

s s

 

   
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Table 3. Reduced integer order models of FFOP1(s)  

order Balanced truncation method Matched DC gain method Pade approximation method 

3

 

1_ _

2

3 2

( )

0.0425 0.9587 1.236

1.085 1.607 1.26

FOP RED BTF s

s s

s s s



  

    

1_ _

3 2

3 2

( )

0.0077633 0.06249 0.9878 1.288

1.907 1.624 1.241

FOP RED MDGF s

s s s

s s s



  

    

1_ _

2

3 2

( )

1.489 2.86 0.3713

0.1195 3.088 0.3754

FOP RED PADEF s

s s

s s s



  

    

 

IV.  ILLUSTRATIVE EXAMPLES 

In this section we have picked up a fractional order 

plant [29] for simulation purposes. Each fractional term is 

substituted by second iteration Carlson approximated 

models and closed loop frequency and time responses of 

the plant is obtained for two different types of controllers.  

A.  Example 1a: Fractional order plant (F1) 

A fractional order plant [29] is considered 

 

1 2.2 0.9

1
( )

0.8 0.5 1
FF s

s s


 
                  (21) 

 

Each single term s
α
 of (21) is replaced by its 

corresponding Matched DC gain based reduced 3
rd

 order 

model from Table 1, and the integer order approximation 

FFOP1(s) is obtained as 

 
6 5 4 3

2

1 8 7 6 5 4

3 2

69.76.4 1649 1.503 4

4.267 4 3.467 4 3561
( )

112.6 2290 1.678 4 4.489 4

5.71 4 6.256 4 3.694 4 3600

FOP

s s s e s

e s e s
F s

s s s e s e s

e s e s e s

   
 

   

    
 
     

   (22) 

 

The order of this transfer function is 8. Being of high 

order, it is further reduced using the three methods 

discussed in this paper and the final reduced model has 

order 3. The reduced integer order models obtained are 

given in Table 3. 

The step response of the higher order integer 

approximation (FFOP1(s)) and its reduced 3
rd

 order models 

(FFOP1_RED_BT(s), FFOP1_RED_MDG(s), FFOP1_RED_PADE(s)) are 

compared as shown in Fig 4. It can be seen that the 

reduced 3
rd

 order model obtained using Balanced 

truncation method and Matched DC gain method show 

very close match with the higher order integer 

approximation, however Pade approximation method 

show very poor results. 

The integer approximation of (21) obtained using 

another technique is given in [29, 30]. The step response 

of this approximation (shown as dashed line, FXUE(s) in 

Fig 4) is compared with the results obtained in this paper. 

It can be seen that the integer order approximation 

proposed in this paper matches very closely with the step 

response of the real system FF1(s) (shown as ideal plot in 

Fig 4). This shows that the models developed in this 

paper are more close to reality. 

B.  Example 1b: Fractional order PD controller  

A fractional order PD controller [29-31] to control the 

plant is chosen as 

1.15

1_ ( ) 20.5 3.7343F PDF s s                   (23) 

 

The closed loop fractional transfer function of the 

system is  

 

1 1_

1_ 1

1 1_

( ) ( )
( )

1 ( ) ( )

F F PD

F SYS

F F PD

F s F s
F s

F s F s



               (24) 

 

 

Fig.4. Comparison of step responses of higher and lower integer order 

models of FF1(s). 

While analyzing the transfer function FF1_SYS1(s), we 

encountered three fractional term s
0.2

, s
0.9

 and s
0.15

.  For 

the term s
0.15

, α is 0.15. This results in 1/α being 

1/ 0.15 100 /15 , which is not an integer. Therefore, 

Carlson method of approximation cannot be used directly. 

As such, s
0.15

 is decomposed as  

 
1 1

0.15 0.1 0.05 10 20 = * = *s s s s s . 

 

The reduced integer approximation of s
0.05

 (obtained by 

using Carlson method and then reducing the order by 

Matched DC Gain reduction technique) used in the paper 

is  

 
3 2

0.05

3 2

1.218 11.98 10.08 0.7762

11.38 10.72 0.9482

s s s
s

s s s

  


  
      (25) 

 

The fractional terms s
0.2

, s
0.9

 and s
0.1

 are substituted by 

its Matched DC gain reduced order model from Table 1, 

and the integer order approximation (FSYS1(s), not 

mentioned in this paper) of (21) is obtained. The order of 
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this approximation comes out to be 20. Therefore it is 

further reduced using Balanced Truncation and Matched 

DC gain methods and the lower order models are given in 

Table 4. 

The frequency and step responses of the higher order 

model (FSYS1(s)), reduced order models (FSYS1_RED_BT(s), 

FSYS1_RED_MDG(s)) and the actual response (FF1_SYS1(s) 

(ideal)) are shown in Figs. 5a & b respectively. It can be 

seen that the performance of the lower order models are 

just the same as the higher order model. On comparison 

of the higher order model with the actual response there 

is no difference seen in the frequency response but some 

deviations are observed in the step response.  

 

 

Fig.5a. Bode plots for comparison of the closed loop fractional order 
system model with fractional order PD controller 

 

Fig.5b. Step responses for comparison of the closed loop fractional 
order system model with fractional order PD controller. 

C.  Example 1c: Fractional order PID controller  

A fractional order PID controller [15, 30] to control the 

plant is 

 

1.15

1_ 0.1

22.3972
( ) 233.4234 18.5724F PIDF s s

s
        (26) 

 

The closed loop transfer function becomes 

 

1 1_

1_ 2

1 1_

( ) ( )
( )

1 ( ) ( )

F F PID

F SYS

F F PID

F s F s
F s

F s F s



             (27) 

 

To obtain the integer order approximation of the 

expression (27), the fractional terms s
0.2

, s
0.9

 and s
0.1

 are 

replaced by its approximate Matched DC gain method 

based reduced order model available in Table 1 and the 

term s
0.05

 is substituted from (25). The integer order 

transfer function (FSYS2(s)) obtained has order of 26 (not 

mentioned in the paper). The higher order model is now 

reduced to models of order 3 using Balanced truncation 

and Matched DC gain methods which are mentioned in 

Table 5, and their frequency and step responses are 

shown in Figs. 6a & b.  

In [15], Xue et al. have simulated the same problem 

using different approximation and reduction technique. 

We have compared the response of [15] with the 

responses of the models proposed in the paper and also 

with the ideal response of the closed loop fractional order 

system FF1_SYS2(s). 

The comparison is performed in two steps 

 

(i) The lower order model of [15] (shown as “lower 

order model of ** [15]” in Figs. 6a & b) is compared 

with the lower order models of Table 5.  

(ii) The higher order integer approximation of [15] 

(shown as “ ** [15]” in Figs. 6a & b) is reduced 

using Balanced truncation method (shown as 

“FXUE_RED_BT(s)” in Figs. 6a & b) and Matched DC 

gain method (shown as “FXUE_RED_MDG(s)” in Figs. 6a 

& b) and again these results are compared with the 

lower order model of [15]. 

(iii) From the observations shown in Figs. 6a & b it is 

evident that all the lower order models developed in 

this paper show very good results in terms of their 

closeness to the higher order model as well as to the 

ideal model (shown as “FF1_SYS2(s) (ideal)” in Figs. 

6a & b). Whereas, a noticeable difference is observed 

in the frequency and step responses of the lower 

order model of [15] in both the Figs. 6a & b. 

Table 4. Reduced integer order models of FF1_SYS1 using the two methods. 

Order of the model Balanced truncation method Matched DC gain method 

3

 

2

1_ _ 3 2

3.825 29.27 73.73
( )

7.029 31.25 77.7
SYS RED BT

s s
F s

s s s

 


  
 

3 2

1_ _ 3 2

0.004067 3.744 25.6 51.02
( )

5.849 27.56 53.53
SYS RED MDG

s s s
F s

s s s

  


  
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Table 5. Reduced integer order models of FF1_SYS2 using the two methods. 

Order of the model Balanced truncation method Matched DC gain method 

3

 

2

2_ _ 3 2

18.81 268 1337
( )

23.28 270.9 1342
SYS RED BT

s s
F s

s s s

 


  
 

3 2

2_ _ 3 2

0.0009 18.87 279 1467
( )

23.99 281.5 1473
SYS RED MDG

s s s
F s

s s s

   


  
 

 

 

Fig.6a. Bode plots for comparison of the closed loop fractional system 
model with fractional order PID controller. 

 

Fig.6b. Step responses for comparison of the closed loop fractional 
system model with fractional order PID controller. 

From these results, it can be inferred that – the Carlson 

method of approximation along with the reduction 

techniques viz. Balanced Truncation and Matched DC 

gain methods, yield responses which closely match the 

ideal response. Also, the reduction techniques used in this 

paper are better than the technique used in [15]. 

 

V.  CONCLUSION 

In this paper we have developed reduced 3
rd

 order 

integer-order models of Carlson method based fractional 

differentiators. For this, three model order reduction 

techniques are used viz. Balanced truncation method, 

Matched DC gain method and Pade approximation 

method. The performance of these models is verified by 

plotting their frequency responses. Through examples it 

is demonstrated that the technique used for order 

reduction is simple and effective. The simulation results 

show that the frequency response and step responses of 

the reduced order model matches very closely with the 

original models. Since even 3
rd

 order is a very good 

approximation of a fractional order system, these models 

can be directly used for hardware realization. Further, the 

approximate models presented in the paper can also be 

used for designing fractional PID controllers, such as for 

speed control of PMSM and 3ΦIM which enhance the 

system performance. 
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