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Abstract—The disturbance cancellation techniques are 

investigated in this paper for Passive Bistatic Radars. The 

conventional procedure is to compute a clean signal by 

iteratively constructing an error vector from the residual 

of the surveillance samples after subtraction of a linear 

combination of clutters samples. A weight vector is 

eventually extracted in pure block algorithms, while a 

weight matrix is computed in iterative schemes. It is 

illustrated in this paper that the computed weight matrix 

in the latter case contains valuable information describing 

the clutters properties. The weight matrix-based 

disturbance attenuation technique is then innovated and 

its effectiveness is compared to the conventional error-

based procedure in the test bed of several available 

iterative algorithms. Moreover, a revision of the FBLMS 

algorithm is presented to cover the case of complex input 

signals. 

 

Index Terms—Passive radar, Weight matrix, Clutter 

attenuation, Computational complexity. 

 

I.  INTRODUCTION 

Passive Bistatic Radars (PBR) have received further 

attention in recent years [1]. Their crucial challenge is the 

utilization of an existing source of illumination in the 

environment. One of the most applicable waveforms 

available in environment are FM commercial radio 

signals which provide a rational compromise between 

performance and cost [2]. As a result of the low power of 

the transmitted signal, a long staring time is typically 

required to provide a reasonable signal to noise ratio.  

A dedicated receiver is required to collect the directly 

received signal (reference signal) as a result of exploiting 

an illumination source of opportunity. The reference 

signal is then employed as a matched filter to discover the 

target coordinates. A cross-correlation function between 

the surveillance and reference signal reveals the 

coordinates of the target. However, target peaks are 

masked under the side lobe effects of more powerful 

signals (direct signal and clutter echoes).  

There is an intensive competition in the literature to 

address low cost, high-performance clutter attenuation 

schemes. Almost all algorithms provide some solutions to 

a convex minimization problem. The cost function is 

typically norm of the residual of surveillance signal after 

subtraction of a linear combination of reconstructed 

clutters (which are bases of a clutter space matrix). 

Solving the optimization problem in LS sense (Wiener-

Hopf method) results in a pure block algorithm which is 

of high complexity order. However, the pure block 

schemes can be pipelined and parallelized effectively. 

Yet this method is inadmissible for moving clutters 

cancellation. The extensive cancellation algorithm (ECA) 

is an extension of the LS scheme, presented in [3], to 

cover moving clutter cancellation scenarios. In this 

method, limited pre-known Doppler shifts are considered 

in the clutter space matrix. The more computational 

complexity of the method is a result of augmenting the 

clutter space matrix with its Doppler shifted replicas. 

Moreover, its most important drawback is the irrational 

assumption of having a pre-knowledge of clutter Doppler 

shifts. A recursive cancellation algorithm (SCA) is 

presented as well in [3], to simplify the inverse matrix 

computation step in ECA. The ECA and SCA batches 

versions are suggested in [4,5] to save the required 

operational memory. Also, the capability of ECA-B 

technique for moving targets detection is investigated in 

[6] where diverse sources of illuminators are examined. 

An advantage of batches algorithms is to consider 

partially the non-stationary effects of environmental 

conditions in computing the weight coefficients. In non-

pure block algorithms like least mean square (LMS) and 

recursive least square (RLS), a minimization problem is 

considered in each step. Consequently, the weights are 

updated as well in each step. Therefore, the iterative 

schemes are capable of handling the moving clutter 

cancellation scenarios. Different sub-optimum filters like 

LMS, RLS and fast block LMS (FBLMS) are elaborated 

in details in [7]. In FBLMS algorithm, signals are divided 

into some batches and fast Fourier transform (FFT) is 

used to reduce computations. Similar to ECA-B and 

SCA-B, weights are updated in each batch. Apparently, 

increasing the number of blocks decreases the moving 
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clutter cancellation performance of the method. 

Considering a DVT television signal, different clutter 

cancellation metrics are compared for ECA, NLMS, 

FBLMS, and RLS in [8,9]. The FBLMS algorithm is 

introduced as a scheme with high suppression 

performance and minimal computational complexity. 

Also, Wiener-Hopf, RLS, and LMS are compared in [10] 

while a terrestrial TV transmitter is utilized as the 

illuminator. Numerical optimization of the Wiener-Hopf 

equations are found to achieve near-optimal performance 

with a fraction of the computational cost. Comparing the 

LMS, RLS, NLMS, ECA, and ECA-B, [11] declares that 

the first three algorithms have their worst detection 

performance if targets are located in the same interval of 

clutters range. Also, the ECA-B algorithm is introduced 

as a high-performance method with less computational 

complexity than ECA. Furthermore, [12] shows that 

compared to ECA and LMS, RLS and SCA succeed to 

yield a good tradeoff between complexity and 

performance. Recently, the sparse characteristics of radar 

signal components is utilized to improve clutter 

cancellation performance. A 2D-structure of NLMS is 

presented in [13], as a two dimensional sparse weight 

filtering scheme which improves the interference 

cancellation ability. Also, a cancellation scheme of strong 

targets in proposed in [14] based on the sparse filtering. 

Some sparse property of the weight matrix in iterative 

filters is investigated as well in this paper.  

In the existing disturbance cancellation techniques, the 

clean signal is computed by solving the minimization 

problem. Then, targets are detected after analyzing the 

ambiguity function. In other words, the clean signal is the 

same error computed signal to be minimized. In this 

paper, it is first shown that the acquired weight matrix 

from the iterative algorithms has some unique properties 

which reveal the clutters identities. Then, a new scheme 

is innovated using the weight matrix extracted in 

conventional iterative algorithms, to cancel the clutters 

more effectively with not much increased computational 

effort. Specifically, the new method is proved to reduce 

the computational complexity in ECA-B technique. 

Furthermore, FBLMS cancels the non-stationary clutters 

in this method. The accuracy of the proposed scheme is 

examined by comparing the two weight matrix-based and 

error-based procedures in the test bed of several iterative 

algorithms like RLS, LMS, FBLMS, and ECA-B. An 

important byproduct of this research is presenting a new 

formalism of FBLMS algorithm to cover the case of 

complex input signals.  

The rest of the paper is organized as follows. Passive 

radar signals are modeled in section II. The weight matrix 

extraction in iterative clutter cancellation algorithms is 

explained in section III. Next, the weight matrix-based 

algorithm is explained in section IV. The results are then 

discussed in section V to compare the complexity and 

clutter cancellation performance of weight matrix-based 

and conventional error-based algorithms in test bed of 

several iterative filters. The paper is concluded in section 

VI. 

II.  PASSIVE RADAR MODELING AND SOLUTIONS 

The problem is formulated in this section and some 

existing works are investigated. Finally, a new matrix-

based formalism of iterative filters is elaborated. 

A.  Passive Radar Signal Modeling 

The surveillance channel is responsible for collecting 

the emitted signal from the targets, while the reference 

channel receives the direct signal (DS) from the 

illumination source of opportunity. This signal is 

employed as a matched filter to reveal the identities of the 

targets. The following mathematics describes the above-

mentioned signals in details, [15]: 

 

𝑆𝑟𝑒𝑓[𝑛] = 𝐴𝑟𝑒𝑓 . 𝑑[𝑛] + 𝑛𝑟𝑒𝑓[𝑛]                  (1) 

 

𝑆𝑠𝑢𝑟𝑣[𝑛] = 𝐴𝑠𝑢𝑟𝑣 . 𝑑[𝑛] + ∑ 𝑐𝑖𝑒
2𝑗𝜋

𝑛𝑝𝑐𝑖
𝑁

𝑁𝑐
𝑖=1 𝑑[𝑛 − 𝑙𝑐𝑖

] +  

∑ 𝑎𝑖𝑒
2𝑗𝜋

𝑛𝑝𝑡𝑖
𝑁

𝑁𝑡
𝑖=1 𝑑[𝑛 − 𝑙𝑡𝑖

] + 𝑛𝑠𝑢𝑟𝑣[𝑛]            (2) 

 

for 𝑛 = 0, … , 𝑁 − 1,where [𝑛] denotes n-th sample of a 

signal, 𝑑  is the direct signal, 𝐴𝑟𝑒𝑓  and 𝐴𝑠𝑢𝑟𝑣  are the 

complex amplitudes of reference and surveillance signals, 

𝑛𝑟𝑒𝑓 and 𝑛𝑠𝑢𝑟𝑣 are the thermal noises of the reference and 

surveillance antenna, 𝑐𝑖 , 𝑝𝑐𝑖
, 𝑙𝑐𝑖

 are complex amplitude, 

Doppler shift and delay of the i-th clutter from 𝑁𝑐 clutters 

and 𝑎𝑖, 𝑝𝑡𝑖
, 𝑙𝑡𝑖

 are complex amplitude, Doppler shift and 

delay of the i-th target from 𝑁𝑡  targets. Moreover, 𝑁 

samples are collected by the surveillance channel, while 

the reference channel collects 𝑁 + 𝑅  samples. A target 

and clutter signal can be modeled as follows by 

exploiting the reference signal (1) instead of the DS: 

 

𝑆𝑡𝑎𝑟𝑔[𝑛] = 𝐴𝑡 . 𝑒2𝑗𝜋
𝑛𝑝𝑡

𝑁 . 𝑆𝑟𝑒𝑓[𝑛 − 𝑙𝑡]              (3) 

 

𝑆𝑐𝑙𝑢𝑡[𝑛] = 𝐴𝑐 . 𝑒2𝑗𝜋
𝑛𝑝𝑐

𝑁 . 𝑆𝑟𝑒𝑓[𝑛 − 𝑙𝑐]              (4) 

 

for 𝑛 = 0, … , 𝑁 − 1, where 𝐴𝑡, 𝑝𝑡  and 𝑙𝑡  are respectively 

target’s amplitude, Doppler and delay and 𝐴𝑐 , 𝑝𝑐  and 𝑙𝑐 

are clutter’s amplitude, Doppler and delay. Since clutter 

and target signals are delayed and Doppler shifted 

replicas of reference signal, the surveillance signal is 

highly correlated with the reference signal. Therefore, the 

cross-correlation function (CCF) between the surveillance 

and reference signal reveals the targets coordinates, if the 

surveillance signal is cleared from the disturbances. 

However, target peaks in CCF are masked under the high 

power disturbance signals side lobes. Different 

disturbance cancellation schemes are investigated 

subsequently. 

B.  Related Works 

In this subsection some existing clutter cancellation 

methods are explained. The pure block approaches 

include ECA and SCA (see [3]), while their batches 
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version (ECA-B, SCA-B), which are completely 

investigated in [4–6], along with RLS, LMS, and FBLMS 

(see [7]), are categorized under iterative filters. A range 

cell 𝑙 has the relation 𝑙 = 𝜏 𝐹𝑠⁄  with the delay 𝜏, where 𝐹𝑠 

is the sampling frequency. The maximum range of 

clutters is assumed to be less than 𝑀 . A clutter-space 

matrix 𝑯)𝑁×𝑀  is constructed then from the delayed 

replicas of the reference signal as 

 

𝑯 =  [𝑆𝑐(0) … 𝑆𝑐(𝑀 − 1)]                     (5) 

 

where, the vectors 

 

𝑆𝑐(𝑛) = [𝑆𝑟𝑒𝑓[−𝑛] … 𝑆𝑟𝑒𝑓[𝑁 − 1 − 𝑛]]
𝑇

         (6) 

 

for 𝑛 = 0, … , 𝑀 − 1 , form the column space of the 

𝑯 matrix. The following convex optimization problem 

seeks a weight sequence 𝑊 = [𝑤0𝑤1 … . 𝑤𝑀−1]𝑇  to 

minimize the norm of the residual of surveillance signal 

after subtracting a linear combination of clutter space 

vectors as: 

 

min
𝑤

‖𝐸𝑟𝑟𝑜𝑟‖, 𝐸𝑟𝑟𝑜𝑟 = 𝑆𝑠𝑢𝑟𝑣 − 𝑯𝑊              (7) 

 

Detailed solution of (7) in LS sense might be found in 

[4]. However, the cancellation algorithm in (7) is 

inadmissible for non-stationary environments. In an 

extension of this approach (the so called ECA), limited 

Doppler shifted replicas of 𝑯are augmented in it. The 

complexity of ECA (in order 𝛰(𝑁𝑀𝑎
2 + 𝑀𝑎

3)) increases 

by enlarging the clutter space dimension. Note that 𝑀𝑎 is 

the column space dimension of augmented matrix 𝑯. The 

main drawback of the method is that the clutter Doppler 

shifts are not pre-known. The SCA technique simplifies 

the inverse matrix computation in ECA. The complexity 

of computation is reduced to order 𝛰(𝑁𝑀𝑎𝑄) , if the 

recursion is continued up to 𝑄  instead of 𝑀𝑎 . In their 

batches versions (ECA-B and SCA-B) the surveillance 

and reference signals are divided into 𝑁𝑏  batches, such 

that each division of the signal contains 𝑏 = 𝑁/𝑁𝑏 data. 

The cleaning algorithm is then implemented on each 

batch separately. The complexity is of order  𝛰(𝑏𝑀𝑎
2 +

𝑀𝑎
3)  for ECA-B and 𝛰(𝑏𝑀𝑎𝑄)  for SCA-B in each 

iteration. The coefficients of weight vector are updated in 

each batch.  

Recursive least square (RLS) algorithm is another 

iterative filter with quite different mathematical 

observation. In this approach, a cost function is 

minimized in each step. The clean signal is defined as the 

following error (clean signal):  

 

𝑒(𝑛) =  𝑆𝑠𝑢𝑟𝑣[𝑛] − 𝑊∗(𝑛)𝑆𝑟
𝑇(𝑛)               (8) 

 

where, weight coefficients and 𝑆𝑟  are defined as: 

 

𝑊(𝑛) = [𝑤0(𝑛) 𝑤1(𝑛) … 𝑤𝑀−1(𝑛)]          (9) 

 

𝑆𝑟(𝑛) = (𝑆𝑟𝑒𝑓[𝑛] … 𝑆𝑟𝑒𝑓[𝑛 − 𝑀 + 1])           (10) 

 

Finally, a recursive algorithm is extracted to update the 

weights 𝑊(𝑛)  by minimizing the cost function in each 

iteration. The detailed formalism of this method might be 

found in [7]. In this method, 5𝑀2 + 4𝑀  number of 

complex multiplications is required in each iteration.  

The LMS filter is similarly an iterative algorithm. 

However, the steepest descent method is employed to 

update the weights in each step. Therefore, the 

computational effort is much lower than other approaches 

(2𝑀 + 1 complex products in each iteration).The only 

drawback is the relatively large convergence error at the 

beginning steps. A simple solution is suggested in [16] to 

solve this problem. A repetition of 𝑝 initial steps using 

the last step values as the initial weights, will 

considerably remove the initial convergence error while 

the number of complex products are slightly increased to 
(𝑁 + 𝑝)(2𝑀 + 1) for each iteration. 

The complexity of LMS is more reduced by employing 

FBLMS technique. In this scheme the weights 𝑊(𝑛) in 

(9) are updated every 𝑀  steps (similar to batches 

algorithms. The basic mathematics of FBLMS is covered 

in [7] for the case of real filter inputs. However, the PBR 

received data by its channels are complex signals. 

Therefore, the method is modified in Appendix A to 

encompass the case of complex filter inputs.  

C.  The Weight Matrix Representation 

A weight matrix formalism of iterative filters is 

suggested in this partto construct the basis of the 

proposed technique in this paper.It is obvious from (4), 

that a delayed reference signal can enforce a Doppler 𝑝𝑐 

on the clutter signal only if it is multiplied element-wise 

to a vector of the form 

 

𝑤𝑖 = 𝐴𝑐 . 𝑒
2𝑗𝜋𝑝𝑐

𝑁
[0…𝑁−1]𝑇

                    (11) 

 

However, 𝑊 is a vector with scalar components𝑤𝑖 , 𝑖 =
0, … , 𝑀 − 1  in pure block algorithms like (7).Such 

cancellation algorithms are inadmissible for non-

stationary environments. On the other hand, a weight 

matrix is extractable in iterative filters like RLS, LMS, 

ECA-B and FBLMS. The vectors 𝑆𝑟(𝑛), 𝑛 = 0, … , 𝑁 − 1 

in (10) construct the row space of the weight matrix 𝑯 in 

(5) while 𝑆𝑐 in (6) forms its column space. For example 

in RLS algorithm, the computed weight vector𝑊(𝑛), 𝑛 =
0, … , 𝑁 in (9) construct a𝑁 × 𝑀 weight matrix 𝑾𝑅𝐿𝑆 as: 

 

𝑾𝑅𝐿𝑆 = [
𝑤0(0) … 𝑤𝑀−1(0)

⋮ ⋱ ⋮
𝑤0(𝑁 − 1) … 𝑤𝑀−1(𝑁 − 1)

]         (12) 

 

The column space of 𝑯  is constructed of delayed 

replicas of reference signal. Also, the clutter signal in (4) 

is an element-wise product of a delayed replica of 𝑆𝑟𝑒𝑓  

and a weight vector in form (11). Therefore, the element-

wise product of the i-th column of 𝑾𝑅𝐿𝑆 and 𝑯 represents 

a clutter signal of the form (4) only if  
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𝑤𝑖(𝑛) = 𝐴𝑐. 𝑒2𝑗𝜋𝑝𝑐
𝑛

𝑁, 𝑛 = 0, … , 𝑁 − 1            (13) 

 

describes the column space of 𝑾𝑹𝑳𝑺 . A similar weight 

matrix is obtained for LMS, ECA-B and FBLMS.A𝑁𝑏 ×
𝑀𝑎weight matrix is obtained for ECA-B where, 𝑀𝑎 is the 

column space dimension of augmented matrix 𝑯 and 𝑁𝑏is 

number of batches. Also, the weight matrix dimension 

reduces to 𝑁𝑚 × 𝑀, for FBLMS scheme where, 𝑁𝑚  is 

number of batches. 

 

III.  WEIGHT MATRIX-BASED FORMALISM 

It was demonstrated in section II that a weight matrix 

formalism is extractable in iterative algorithms. In 

contrast, a weight vector is obtained for pure block 

algorithms. The main idea of this paper is to exploit the 

weight matrix as the revealing source of clutters identities. 

A novel weight matrix-based scheme is proceeded at the 

following which increases clutter cancellation capability 

of the above mentioned methods specifically for moving 

environment scenarios. An error vector is computed in all 

explained iterative filters ECA-B, RLS, LMS and 

FBLMS at (7), (8), and (21). Note that the error computed 

in (8) is employed in both LMS and RLS schemes. The 

error vector is basically the same clean signal to be 

utilized in the ambiguity function for target detection. On 

the other hand, it was already mentioned that the element-

wise product of the i-th column of 𝑯 matrix and weight 

matrix 𝑾 reproduces a clutter signal if the columns of 𝑾 

satisfy (13). Since the number of clutters is limited, 

limited numbers of column space of the weight matrix 

have nontrivial entries. Consequently, the weight matrix 

is a sparse matrix. This property is also mentioned in 

[13,14]. Clutter delay bins are then simply computed by 

finding those columns of weight matrix which have 

nontrivial entries. This can be pursuit by plotting the 

average of each column as:  

 
1

𝑁
∑ 𝑾𝑁

𝑖=1 (𝑖, 𝑛), 𝑛 = 1, … , 𝑀                 (14) 

 

The corresponding taps with nontrivial column average, 

represent the clutter delay bins. Also, the average value in 

(14) closely approximates the clutter amplitude. Finally 

the clutter Doppler is evaluated from the phase equality 

of two sides of (11) 

 

𝑝𝑐 =
∠𝑾(𝑁,𝑙𝑐)

2𝜋(𝑁−1)/𝑁
                            (15) 

 

where, 𝑙𝑐 is the corresponding range. The last step (𝑁-th 

step) data of 𝑙𝑐-th column is exploited in (15) to provide 

enough precision. The clutters are lastly reproduced using 

the evaluated delay, Doppler and amplitude. Then, a 

subtraction of the surveillance signal from the clutters 

gives a clean signal. The computed clean signal is called 

the weight matrix-based clean signal. 

The high quality of the computed weight matrix-based 

clean signal is illustrated in the next section where the 

accuracy of the presented method is examined in the test 

bed of RLS, LMS, FBLMS and ECA-B algorithms. 

 

IV.  SIMULATION 

The effectiveness of the above-explained scheme is 

investigated in this section via a prototype PBR working 

under the effect of an FM signal which operates in 88-

108 band. The method described in [2] is applied to 

construct the radio stereo FM signal. Target and clutter 

coordinates are considered according to Table  1 and  2. A 

relatively large Doppler band is assumed for clutters to 

simulate more realistic conditions of a non-stationary 

environment. 

Define the clutter attenuation (CA) as the ratio of the 

power of the input signal to the output signal. The 

complexity of RLS, LMS, FBLMS, and ECA-B is 

compared in Table  3 in terms of the parametric number 

of complex products. Subsequently, the clutter 

attenuation and computational complexity of ECA-B, 

RLS, LMS, and FBLMS algorithms are compared for the 

two scenarios of error-based clean signal and wright 

matrix-based clean signal. The conventional technique of 

computing error vector as the clean signal is employed 

first. Next, the proposed scheme for this paper is 

evaluated.  

A.  Simulation results of RLS scheme 

The initial convergence error after implementing the 

RLS filter is observable in Fig.1. This error increases 

even more for LMS and FBLM approaches. Similar to 

the proposed technique in [16], a repetition of initial p 

steps is suggested for RLS, LMS and FBLMS schemes to 

improve the algorithm precision. This improvement also 

results in a more qualified weight matrix. 

A repetition of RLS filter for the initial p = 200 steps 

updates the first p rows of the weight matrix to more 

precise values. Then, the clutter ranges are found by 

plotting the average of 𝑾𝑅𝐿𝑆  columns in Fig.2. The 

product of ranges with sampling frequency raises delays 

exactly equal to the list presented in Table 1. The zero 

delay refers to the direct signal. Factual clutter amplitudes 

(𝑐𝑖 in (2)), which are computable from CNRs, (see Table  

1), are listed in Table 4. On the other hand, the average 

values of weight columns corresponded to the computed 

delay bins are read from Fig.2. Table 4 provides a 

comparison of factual and evaluated Doppler and 

amplitudes. Eventually, Table 5 compares the clutter 

attenuation and the number of required complex products 

for the RLS algorithm in case of employing error-based 

and weight matrix-based schemes. The CA metric is 

considerably improved in weight matrix-based scheme. 

The ambiguity function plotted in Figs.3 and 4 reveal that 

the weaker target is not recognized in the error-based 

technique while it is detectable in weight matrix-based 

approach. 

The false detected targets in Fig.3 are a result of initial 

convergence error in conventional error-based RLS, 

while the false detected target in Fig.4 is a result of the 

very small mismatch between the factual and evaluated 

Doppler and amplitudes in Table 4. 
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The false detected targets in Fig.3 are a result of initial 

convergence error in conventional error-based RLS, 

while the false detected target in Fig.4 is a result of the 

very small mismatch between the factual and evaluated 

Doppler and amplitudes in Table  4. 

B.  Simulation results of LMS scheme 

The weight matrix 𝑾𝐿𝑀𝑆 is computed next, similar to 

subsection A. Initial filter iteration is chosen 𝑝 = 4𝑒3 to 

decrease the initial convergence error. Apparently, a 

larger value of 𝑝 required in this methods is a result of the 

slower convergence.Plotting the average of weight matrix 

columns (14) reveals clutter ranges exactly similar to 

Fig.2. A Comparison of factual and evaluated clutter 

parameters is provided in Table 6. Furthermore, CA and 

complexity are compared for error-based and weight 

matrix-based LMS in Table 7.  

Table 1. Clutters parameters (delay, Doppler and clutter to noise ratio). 

Clutters               #1           #2         #3         #4         #5          #6        

Delay(ms)          0.1        0.15       0.2       0.25        0.07       0.17     
Doppler(Hz)         3            2           1           -1           -2           -3         
CNR                    30          20         10          5            27          18        

Table 2. Targets parameter (delay, Doppler and signal to noise ratio). 

Targets                           #1                          #2                      #3          

Delay(ms)                      0.3                        0.5                     0.6 
Doppler(Hz)                  -50                        100                    50 
CNR                                4                            2                     -10        

Table 3. Number of complex products in each iteration. 

RLS            LMS       FBLMS       ECA-B 

Complex  (5M2+4M)N  (2M+1)N  (16M+12log(2M))Nm (2Ma
2b+Mab 

 products                                                                                   +Ma
3)Nb 

Table 4. Comparison of factual and evaluated clutters  

parameters in RLS. 

Clutters #1 #2 #3 #4 #5 #6 

Factual 
Amplitude 

22.42 7.09 2.24 1.26 15.87 5.63 

Evaluated 

Amplitude 
22.41 7.10 2.27 1.30 15.87 5.63 

Evaluated 
Doppler 

2.99 1.998 1.005 -1.013 -2.000 -2.99 

 

 
Fig.1. Clean signal after implementing RLS algorithm. 

 

Fig.2. Computing clutters range and amplitude. 

 

Fig.3. Target detection of RLS employing error-based clean signal. 

 

Fig.4. Target detection of RLS employing weight  
matrix-based clean signal. 

Table 5. Error-based RLS compared to Weight matrix-based RLS. 

RLS algorithm Error-based  Weight matrix-based  

CA 37.4450 54.4657 

Complexity 1.3209e9 1.3235e9 

 

The ambiguity functions are plotted for error-based and 

weight matrix-based LMS in Figs. 5 and 6. Employing 

the proposed weight matrix-based algorithm, CA is 

considerably improved (Table 8) and targets are detected 

(Fig. 6) in spite of some false detection in a few Doppler 

coordinates.
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Table 6. Comparison of factual and evaluated clutters  

parameters in LMS. 

Clutters #1 #2 #3 #4 #5 #6 

Factual 
Amplitude 

22.36 7.07 2.23 1.25 15.83 5.61 

Evaluated 

Amplitude 
22.34 7.08 2.25 1.28 15.82 5.62 

Evaluated 
Doppler 

2.99 1.999 60.99  
-

1.003 
-

1.997 
-

2.995 

Table 7. Error-based LMS compared to Weight matrix-based LMS. 

LMS algorithm Error-based  Weight matrix-based  

CA 32.4470 54.4563 

Complexity 10.30e6 10.71e6 

C.  Simulation results of FBLMS scheme 

The weight matrix 𝑾𝐹𝐵𝐿𝑀𝑆  is computed in this 

subsection. Initial filter iteration is chosen equal to  

𝑝 = 7𝑒3. A larger initial filter repetition is required here 

in comparison to two previous methods, since 

convergence has a slower pattern. Clutter ranges are 

computed precisely similar to Fig.2, by plotting the 

average of weight matrix columns (14). 

 

 

Fig.5. Target detection of LMS employing error-based clean signal. 

 

Fig.6. Target detection of LMS employing weight  
matrix-based clean signal. 

A Comparison of factual and evaluated clutter 

parameters is provided in Table  8. Furthermore, CA and 

complexity are compared for error-based and weight 

matrix-based FBLMS in Table 9. The ambiguity 

functions are plotted for error-based and weight matrix-

based FBLMS in Figs. 7 and 8. Compared to LMS, the 

weight vector is updated every 𝑀  step in FBLMS. 

Therefore, the method is inappropriate for moving clutter 

cancellation (Fig.7). The false detection in Fig.7 is a 

result of relatively coarse approximation of Doppler and 

amplitude computed in Table 8. However, the much 

lower computational effort of FBLMS among all other 

methods is a supremacy. Tables  5,  7 and 9 prove that the 

clutter attenuation is much more powerful in case of 

weight matrix-based algorithm, while the computational 

effort is not increased much. 

Table 8. Comparison of factual and evaluated clutters  

parameters in FBLMS. 

Clutters #1 #2 #3 #4 #5 #6 

Factual 

Amplitude 
22.31 7.05 2.23 1.25 15.79 5.60 

Evaluated 
Amplitude 

21.86 7.00 2.23 1.26 15.66 5.49 

Evaluated 

Doppler 
2.969 1.979 60.99  -0.995 -1.979 -2.968 

Table 9. Error-based FBLMS compared to Weight  

matrix-based FBLMS. 

FBLMS algorithm Error-based  Weight matrix-based  

CA 24.1838 49.1314 

Complexity 3.6086e6 3.8612e6 

 

 

Fig.7. Target detection of FBLMS employing error-based clean signal. 

 

Fig.8. Target detection of FBLMS employing weight  
matrix-based clean signal. 
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D.  Simulation results of ECA-B scheme 

A very interesting application of the weight matrix-

based approach is in ECA-B scheme. In this algorithm, 

signals are divided into 𝑁𝑏  batches and 2𝑀𝑎
2𝑏 + 𝑀𝑎𝑏 +

𝑀𝑎
3 number of complex products is required in each batch, 

where 𝑁𝑏 = 𝑁/𝑏  and 𝑀𝑎  is the dimension of column 

space of augmented matrix 𝑯. In conventional ECA-B, 

the clean signal is computed in each computational batch, 

by minimizing the error in (7). Six Doppler defined in 

Table  1 along with the zero Doppler (which corresponds 

to direct signal) result in 𝑀𝑎 = 7𝑀. Also, number of data 

𝑏  in each batch is arbitrarily assumed equal to 𝑀  to 

resemble a similar condition to FBLMS scheme. Note 

that, increasing 𝑀𝑎 results in a high computational cost. 

Moreover, the pre-knowledge of clutters Doppler is an 

irrational assumption.  

Next, the proposed method is examined to find the 

clutter properties from the weight-matrix, while 

augmentation of 𝑯 is no longer required. Therefore, its 

column dimension is 𝑀 . Clutters amplitude, delay and 

Doppler are evaluated from (14) and (15). Similar to Fig. 

2, average of weight matrix columns reveal the exact 

ranges from (14). Table 10 compares the factual and 

evaluated Doppler and amplitudes computed from the 

weight matrix 𝑾𝐸𝐶𝐴−𝐵 . Table 11compares the 

complexity of error-based and weight matrix-based 

schemes of ECA-B. The CCF plot for error-based ECA-B 

and Weight matrix-based ECA-B are shown in Figs. 9 

and 10. 

Although target detection is dropped down in weight 

matrix-based scheme, the complexity is considerably 

reduced. Tables 9 and 11 declare that the clutters 

evaluation precision of FBLMS and ECA-B algorithms 

(in weight matrix-based scheme) is less compared to 

other algorithms. The less computed CA is a result of the 

less precise clutter evaluation displayed in Tables 7 and 

10. 

Table 10. Comparison of factual and evaluated clutters parameters in ECA-B. 

Clutters #1 #2 #3 #4 #5 #6 

Factual Amplitude 22.36 7.07 2.23 1.25 15.83 5.62 

Evaluated Amplitude 21.23 7.08 2.24 1.26 15.81 5.58 

Evaluated Doppler 3.0310 2.019 1.018 -1.017 -2.021 -3.032 

 

Table 11. Error-based ECA-B compared to Weight  

matrix-based ECA-B. 

ECA-B algorithm Error-based  Weight matrix-based  

CA 54.4254 49.1165 

Complexity 7.4235e9 111.78e6 

 

The reason is simply that the rows of weight matrices 

in both FBLMS and ECA-B are not updated in each step 

but the update is provided for each batch. Obviously, 

ECA-B could not detect targets similar to FBLMS in Fig. 

7, if the H matrix was not augmented by considering all 

clutter Doppler shifts. Therefore, the moving clutter 

cancellation of batches algorithms like ECA-B and 

FBLMS (under the error-based scheme) is disproved. 

 

 
Fig.9. Target detection of ECA-B employing error-based clean signal. 

 

Fig.10. Target detection of ECA-B employing weight matrix-based 
clean signal. 

APPENDIXA THE FBLMS ALGORITHM 

The row space of 𝑯matrix in (5) is divided into 𝑁𝑚 

batches. Each partition is called a row-batch. Vectors are 

denoted by underline. The weights 𝑤(𝑘) =
[𝑤0(𝑘) … 𝑤𝑀−1(𝑘)]𝑇  are multiplied to each row of 

the k-th row-batch of 𝑯 as follows:  

 
𝑦(𝑘𝑀)                  = ∑ 𝑤𝑖

∗(𝑘)𝑆𝑟𝑒𝑓[𝑘𝑀 − 𝑖]𝑀−1
𝑖=0

⋮
𝑦(𝑘𝑀 + 𝑀 − 1) = ∑ 𝑤𝑖

∗(𝑘)𝑆𝑟𝑒𝑓[𝑘𝑀 − 𝑖 + 𝑀 − 1]𝑀−1
𝑖=0

  

(16) 

 

Define 𝑦(𝑘) = [𝑦(𝑘𝑀)…𝑦(𝑘𝑀 + 𝑀 − 1)]𝑇  and 

𝑠(𝑘) = [𝑆𝑟𝑒𝑓[𝑘𝑀 − 𝑀]…𝑆𝑟𝑒𝑓[𝑘𝑀 + 𝑀 − 1]]𝑇 .  A 
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Fourier transform algorithm is pursuit to compute 𝑦(𝑘) 

with less computational effort. Denote the flipped vectors 

𝑦  and 𝑠  by 𝑦𝐹 and 𝑠𝐹 . If the FFT transform of 𝑠𝐹  is 

denoted by 𝑆𝐹, then the i-th component of 𝑆𝐹 is denoted 

as 𝑆𝐹 𝑖
= ∑ 𝑆𝑟𝑒𝑓[𝑘𝑀 + 𝑀 − 1 − 𝑙]2𝑀−1

𝑙=0 𝑒−2𝑗𝜋𝑖𝑙/(2𝑀). Now, 

define 

 

𝑊 = 𝐹𝐹𝑇 [
𝑤(𝑘)

𝟎)𝑀×1
]                       (17) 

 

by adding 𝑀 zeros at the end of 𝑤(𝑘). The components 

of 𝑦(𝑘) are extracted by rewriting the product of Fourier 

transforms of 𝑆𝐹 𝑖
 and 𝑊𝑖

∗ as follows: 

 

𝑊𝑖
∗𝑆𝐹𝑖

= 

∑ ∑ 𝑤𝑛
∗(𝑘)𝑆𝑟𝑒𝑓[𝑘𝑀 + 𝑀 − 1 − 𝑙]2𝑀−1

𝑙=0
𝑀−1
𝑛=0 𝑒−2𝑗𝜋𝑖

𝑙−𝑛

2𝑀   

= 𝑒−2𝑗𝜋𝑖
0

2𝑀 ∑ 𝑤𝑛
∗(𝑘)𝑆𝑟𝑒𝑓[𝑘𝑀 + 𝑀 − 1 − 𝑛]𝑀−1

𝑛=0   

+ ⋯ + 𝑒−2𝑗𝜋𝑖
𝑀−1

2𝑀 ∑ 𝑤𝑛
∗(𝑘)𝑆𝑟𝑒𝑓[𝑘𝑀 − 𝑛]𝑀−1

𝑛=0   

+𝑒−2𝑗𝜋𝑖
𝑀

2𝑀𝐶0 + 𝑒−2𝑗𝜋𝑖
2𝑀−1

2𝑀 𝐶𝑀−1 

(18) 

 

Looking at (16), the second line in (18) can be 

interpreted as: 

 

𝑒−2𝑗𝜋𝑖
0

2𝑀𝑦(𝑘𝑀 + 𝑀 − 1) + ⋯ + 𝑒−2𝑗𝜋𝑖
𝑀−1

2𝑀 𝑦(𝑘𝑀)    (19) 

 

It is obvious then from (18) that 𝑦(𝑘)  is computed 

from: 

 

[
𝑦𝐹

𝐶
] = 𝐼𝐹𝐹𝑇 {[𝐹𝐹𝑇 (

𝑤(𝑘)

𝟎)𝑀×1
)]∗ × 𝐹𝐹𝑇(𝑆𝐹)}      (20) 

 

where, ×  denotes element-wise product of vectors and 

𝐶 = [𝐶0 … 𝐶𝑀−1] defines remaining coefficients in (18). 

Now, the convergence error is obtained from  

 

𝑒(𝑘) = [
𝑒(𝑘𝑀)

⋮
𝑒(𝑘𝑀 + 𝑀 − 1)

] = [
𝑆𝑠𝑢𝑟𝑣[𝑘𝑀]

⋮
𝑆𝑠𝑢𝑟𝑣[𝑘𝑀 + 𝑀 − 1]

] − 𝑦(𝑘) 

(21) 

 

The weight vector is updated in each batch step from 

𝑤(𝑘 + 1) = 𝑤(𝑘) + 𝛿𝑤(𝑘), where  𝛿𝑤(𝑘) is evaluated 

by accumulating the product of 𝑒∗(𝑘) and each row (in 

the k-th row-batch of 𝑯matrix) as: 

 

𝛿𝑤(𝑘) = ∑ 𝑒∗(𝑘𝑀 + 𝑖)𝑀−1
𝑖=0 ∗  

(𝑆𝑟𝑒𝑓[𝑘𝑀 + 𝑖] … 𝑆𝑟𝑒𝑓[𝑘𝑀 + 𝑖 − 𝑀 + 1])𝑇     (22) 

 

Let's rewrite 𝛿𝑤(𝑘) = [𝛿𝑤0(𝑘) … 𝛿𝑤𝑀−1(𝑘)]𝑇  as a 

columns vector, where: 

 

 

 

 

𝛿𝑤𝑗(𝑘) = ∑ 𝑒∗(𝑘𝑀 + 𝑖)𝑆𝑟𝑒𝑓[𝑘𝑀 + 𝑖 − 𝑗]𝑀−1
𝑖=0      (23) 

 

holds for 𝑗 = 0, … , 𝑀 − 1 . The 𝑀 -length error vector 

𝑒(𝑘) is padded at the end with 𝑀 zeros and a 2𝑀-length 

FFT is computed as: 

 

𝐸 = 𝐹𝐹𝑇 [
𝑒(𝑘)

𝟎)𝑀×1)
]. 

 

Then, the i-th element of 𝐸 and 𝑆 = 𝐹𝐹𝑇(𝑠(𝑘))  are 

respectively defined as: 

 

𝐸𝑖 = ∑ 𝑒(𝑘𝑀 + 𝑛)𝑒−2𝑗𝜋𝑖
𝑛

2𝑀𝑀−1
𝑛=0 , 

𝑆𝑖 = ∑ 𝑆𝑟𝑒𝑓[𝑘𝑀 − 𝑀 + 𝑙]𝑒−2𝑗𝜋𝑖
𝑙

2𝑀2𝑀−1
𝑙=0 . 

 

It is demonstrated next that a revision of the product of 

𝑆𝑖 and 𝐸𝑖
∗guides one to compute 𝛿𝑤(𝑘). Let's write:  

 

𝑆𝑖𝐸𝑖
∗ = 

∑ ∑ 𝑒∗(𝑘𝑀 + 𝑛)𝑆𝑟𝑒𝑓[𝑘𝑀 + 𝑀 − 1 − 𝑙]2𝑀−1
𝑙=0

𝑀−1
𝑛=0 𝑒−2𝑗𝜋𝑖

𝑙−𝑛

2𝑀   

= 𝑒−2𝑗𝜋𝑖
0

2𝑀𝐷0 + 

𝑒−2𝑗𝜋𝑖
1

2𝑀 ∑ 𝑒∗(𝑘𝑀 + 𝑛)𝑆𝑟𝑒𝑓[𝑘𝑀 − 𝑀 + 𝑛 + 1] +𝑀−1
𝑛=0   

… + 𝑒−2𝑗𝜋𝑖
𝑀

2𝑀 ∑ 𝑒∗(𝑘𝑀 + 𝑛)𝑆𝑟𝑒𝑓[𝑘𝑀 + 𝑛] +𝑀−1
𝑛=0   

𝑒−2𝑗𝜋𝑖
𝑀+1

2𝑀 𝐷1 + ⋯ + 𝑒−2𝑗𝜋𝑖
2𝑀−1

2𝑀 𝐷𝑀−1. 
 

The second line of above equation reveals the elements 

of 𝛿𝑤(𝑘) denoted in (23) as: 

 

𝑒−2𝑗𝜋𝑖
1

2𝑀𝛿𝑤𝑀−1(𝑘) + ⋯ + 𝑒−2𝑗𝜋𝑖
𝑀

2𝑀𝛿𝑤0(𝑘)      (24) 

 

Define 𝛿𝑤𝑓 as the flapped vector 𝛿𝑤 . Then 𝛿𝑤  is 

computed from: 

 

[

𝐷0

𝛿𝑤𝑓(𝑘)

𝐷
] = 𝐼𝐹𝐹𝑇 {[𝐹𝐹𝑇 (

𝑒(𝑘)

𝟎)𝑀×1
)]∗ × 𝐹𝐹𝑇(𝑠)}       (25) 

 

The algorithm in Fig.11 elaborates in details, the 

required steps of implementing the complex-FBLMS 

method: 

Eventually, the weight matrix 𝑾𝐹𝐵𝐿𝑀𝑆  is constructed 

similar to (12), by updating its rows in each batch step. In 

this algorithm an aggregate number of 6 FFT and IFFT 

which requires 2𝑀𝑙𝑜𝑔(2𝑀) multiplication each, and also 

other 16𝑀 multiplication is implemented in each batch. 

The convergence rate improvement algorithm which is 

applied in is also considered in above computation. Then, 

the whole complexity is evaluated by (12𝑀𝑙𝑜𝑔(2𝑀) +
16𝑀)𝑁𝑚 number of complex products. 



Weight Matrix-Based Representation of Sub-Optimum Disturbance Cancellation Filters 

Volume 11 (2019), Issue 10                                                                                                                                                                     23 

 

Fig.11. An algorithm to explain the complex FBLMS formalism. 

 

V.  CONCLUSION 

A weight matrix is extracted in iterative disturbance 

cancellation filters. It is then shown that this weight 

matrix can be employed effectively as a revealing source 

of clutters properties. A weight matrix-based scheme is 

innovated to progress the existing disturbance 

cancellation algorithms. The scheme upgrades the RLS, 

LMS, and FBLMS schemes in terms of clutter attenuation 

(CA), while the complexity is not much increased. 

Weight matrix-based LMS has the most acceptable 

results in preserving low computation along with high 

enough CA. Also, FBLMS formalism is revised to cover 

the case of complex input signals. Then, it is elaborated 

that FBLMS which is inadmissible for moving clutters 

cancellation, can remove the non-stationary clutters by 

employing the weight matrix-based scheme. Moreover, 

the method is applied for the ECA-B algorithm and 

compared to conventional ECA-B, the complexity is 

largely reduced. However, CA metric is slightly 

decreased. The weight matrix-based target detection 

scheme can be examined and compared for different 

filters in further investigations.  
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