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Abstract—One of the main steps in the performance 

based seismic analysis and design of structures is 

determination of performance point where the nonlinear 

static analysis approach is used. The aim of this paper is 

to predict the performance point of semi-rigid steel 

frames using Artificial Neural Networks. As such, to 

generate data required for the prediction, several semi-

rigid steel frames were modeled and their performance 

point was determined then. Ten input variables including 

number of bays, number of stories, bays width, moment 

of inertia of beams, cross sectional area of columns, cross 

sectional area of braces, rigidity degree of connections 

and soft story (existence or nonexistence) were 

considered in the prediction. In addition, the actual results 

were obtained at the presence of different earthquake 

intensity levels and soil types. Back Propagation with 

eleven different algorithms and Radial Basis Function 

Artificial Neural Networks were used in the prediction. 

The prediction process was carried out in two steps. In 

the first step, all samples were used for the prediction and 

the performance metrics were computed. In the second 

step, three of the best networks were selected, and the 

optimum number of samples was found considering a 

very slight reduction in the accuracy of the networks used. 

Finally, it was shown that, despite using rather limited 

number of samples, the generated Artificial Neural 

Networks accurately predict the performance point of 

semi-rigid steel frames. 

 

Index Terms—Artificial neural networks, prediction, 

semi-rigid connection, steel structures, performance point. 

 

 

I.  INTRODUCTION 

Past destructive earthquakes (e.g. 1989 Loma Prieta; 

1990 Manjil-Rudbar; 1994 Northridge) have left their 

signature below the documents of the economical and life 

losses reported then. In accordance with the seismic 

design codes, some degree of damage is expected for 

ordinary buildings subjected to design basis earthquakes. 

Although preventing the natural earthquake occurrence is 

beyond the human control, the ways of mitigating such 

losses have been the enforced interest of researchers and 

engineering communities. The inappropriate performance 

of structures under the past destructive earthquakes 

caused the communities to eliminate the unexpected 

losses then. One of the modern methodologies gaining 

significant attention is the performance-based seismic 

design (PBSD) [1]. Over the last 30 years, the conceptual 

framework of PBSD was developed by the various 

guidelines published by the well-known engineering 

associations such as Structural Engineers Association of 

California [2], Applied Technology Council [3], and 

Federal Emergency Manage Agency [4].  

Conceptually, it is expected to have different seismic 

performance levels of structures due to various structural 

seismic behaviors and hazard levels. Because of this, the 

abovementioned guidelines have introduced different 

seismic performance levels (or objectives) corresponding 

to the different hazard levels and thus, each structure of 

interest should be evaluated based on its relevant 

performances and hazard levels. Based on the studies so 
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far carried out, it was found that the steel frame structures 

experience some degree of nonlinearity under severe 

earthquakes and thus, the single parameters of strength 

could not be accepted for the seismic analysis and design. 

Hence, as the guidelines have recommended, the analysis 

and design process can be carried out using the expected 

seismic performance (e.g. force and/or deformation) of 

the subject structure. In fact, in order to design or retrofit 

the new and existing buildings respectively, a 

performance objective is chosen by owner/designer based 

on the defined performance and hazard levels in the 

mentioned guidelines [4].  

Performance-based seismic analysis and design of 

structures requires determining the performance point. 

The performance point is obtained from the intersection 

point of target displacement and base shear on the 

pushover curve of the subject structure. To determine the 

performance point, nonlinear static analysis is required to 

be performed. The process is case-sensitive and the 

nonlinear analysis is inherently a time-consuming process 

which needs high computational efforts. An alternative 

way is to predict the point using soft computing-based 

predictive tools. Over the last three decades, the much 

computational burden of computational approaches and 

sometimes their weakness were resulted in discovering 

the soft computing-based approach, which have been 

increasingly applying in the different aspects of complex 

engineering problems. Soft computing-based approach 

includes several tools such as evolutionary algorithms, 

artificial neural networks (ANNs), support vector 

machine (SVM), and fuzzy logic. These predictive tools 

are typically used for modeling the nonlinear dependency 

of input parameters to output value(s) where the 

conventional approaches fail or perform poorly [5].  

In the recent decades, soft computing-based approach 

have been widely using to simplify the complex problems 

in a broad range of civil engineering problems (e.g. [5-

18]). Some of the relevant studies to application of ANNs 

in structural engineering problems are described herein. 

Adeli and Karim [19] used ANN model for design 

optimization of cold-formed steel beams. A wavelet 

neural network was used by Salajegheh and Heidari [15] 

to optimal seismic design of structures.  The successful 

applications of a radial basis function (RBF), self-

organizing RBF, and fuzzy self-organizing RBF, and 

fuzzy wavelet RBF neural networks in predicting the 

elastic time-history responses required for optimal 

seismic design of steel structures were reported by 

Salajegheh and his colleagues [13, 14, 20]. Three 

different ANNs including feed-forward Levenberg-

Marquardt backpropagation (BP) neural network, a 

recurrent neural network, and a RBF neural network were 

used by Pannakkat and Adeli [21] to predict the 

magnitude of the largest seismic event in the following 

month based on the analysis of eight mathematically 

computed parameters known as seismicity indicators. 

Seyedpour et al. [16] conducted a research on optimal 

shape design of arch dams under earthquake loads. To 

reduce the computational burden of the optimization 

procedure, they approximated the dam seismic responses 

using wavelet neural networks and fuzzy inference 

system. Naderpour et al. [22] used a BP neural network to 

estimate the compressive strength of FRP-confined 

concrete specimens using a large number of experimental 

data. Alavi and Gandomi [23] formulated three principal 

ground motion parameters of peak ground acceleration, 

peak ground velocity and peak ground displacement by 

using a hybrid ANN coupled with simulating annealing. 

Lagaros and Papadrakakis [24] used ANNs to accurately 

prediction of inelastic dynamic responses of 3D framed 

buildings subjected to three earthquake levels. Ahmadi et 

al. [11] employed a BP neural network to estimate the 

capacity of concrete filled steel tube short columns 

subject to short term axial loads. A new neural network as 

wavelet cascade-forward BP was also employed for 

reducing computational burden of performance based 

optimal seismic design of steel frame structures [25]. In 

fact, the mentioned network was used to accurately 

prediction of inter-storey drift ratio based on pushover 

analysis. Gandomi and Roke [5] assessed the 

performance of a hybrid ANN and genetic programming 

in predicting the punching shear strength of concrete 

slabs by using the experimental data. Gholizadeh and 

Mohammadi [12] used a wavelet BP to predict the 

inelastic responses needed for reliability-based seismic 

optimization of steel frames. Heidari et al. [26] used a BP 

neural network to predict the compressive strength of 

waste concrete. Recently, Kotsovou et al. [27] reported a 

comprehensive study on the failure assessment of 

reinforced concrete exterior beam-column joints using 

ANNs that the results were compared to the analytical 

methods indicating the accuracy of prediction model. 

More recently, Gharehbaghi et al. [6] used ANN and 

SVM methods to estimate the inelastic seismic responses 

of reinforced concrete structures. 

The aim of this paper is to predict the performance 

point of steel frame structures with semi-rigid 

connections, known as semi-rigid steel frames (SRSFs), 

by using ANNs. Several SRSFs were modeled and 

pushover analyses were carried out to derive the capacity 

curve. Ten input variables including number of stories, 

number of bays, bays width, cross sectional moment of 

inertia of beams, cross sectional area of columns, cross 

sectional area of braces, design basis acceleration, soil 

type, rigidity degree of connections and existence or 

nonexistence of soft story were considered in the 

prediction. The actual results were obtained at the 

presence of different earthquake intensity levels and soil 

types. The model prediction has two output values of roof 

displacement and base shear requiring for determining the 

performance point. Eleven BP neural networks and an 

RBF neural network were used for the prediction and the 

results are compared together herein.  

 

II.  STEEL FRAMES WITH SEMI-RIGID CONNECTIONS 

The behavior of beam-column connection has 

significant effects on the both elastic and inelastic global 

behavior of steel frame structures. In order to capture the 

realistic behavior of the connection, its properties need to 
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be modelled accurately. Although the beam-column 

connections are assumed as pinned and/or fixed in 

practical designing, experimental and analytical studies 

have shown that they do not behave as pinned and/or 

fixed and the actual behavior lies somewhere between 

these two idealized models. Moreover, studies have 

shown that there is a nonlinear dependency between the 

applied moment and the rotation of beam-column 

connection. A typical moment-rotation relationship is 

shown in Fig. 1.  

 

 

Fig.1. A typical moment-rotation (M-Rot.) relationship of steel beam-
column connections. 

There are a large number of works dealt with the 

experimental and numerical seismic assessment of SRSFs. 

Some of the works are investigated herein. Static and 

cyclic performance of semi-rigid steel beam-column 

connections was investigated by Azizinamini and 

Radziminski [28]. They found that the beam section to 

which the connection elements are framed, the thickness 

of the flange angles, and the gage in the leg of the flange 

angle attached to the column are the most influential 

geometric parameters on the static moment-rotation 

behavior of the connection. Nader and Astaneh-asl [29] 

compared the dynamic behavior of semi-rigid and rigid 

steel moment frames. They also conducted a study on the 

dynamic behavior of flexible, semi rigid and rigid steel 

frames by using a shake table test. Elnashai et al. [30] 

investigated the cyclic and seismic response of SRSFs. 

They studied the effect of connection stiffness on the 

overall stiffness of the frame, inter-story drift criteria and 

overstrength factor. Awkar and Lui [31] evaluated the 

seismic response of multi-storey SRSFs. It was shown 

that although the connection flexibility tends to increase 

the inter-story drift at upper stories, it reduces the base 

shear and overturning moments of the frames.  It was also 

concluded that connection flexibility will result in the 

frame periods to spread over a wider spectrum which 

increases the contributions of higher modes in structural 

responses. The nonlinear P-Delta effects on the response 

of SRSFs was investigated by Valipour and Bradford [32]. 

Nguyen and Kim [33] presented a numerical procedure to 

assess the three dimensional SRSFs using nonlinear time-

history analysis method. The effects of material, 

geometry and connection nonlinearities were considered 

in their presented procedure. Razavi and Abolmaali [34] 

investigated the seismic performance of a 20-story hybrid 

steel frame with several different patterns and locations 

of semi-rigid connections. They found more collapse 

margine ratio for hybrid frames compared with a 

conventional frame having rigid connections. Yu and Zhu 

[35] evaluated the nonlinear dynamic collapse of SRSFs 

using finite particle method. They found that the 

flexibility of connections which increases the energy 

dissipation capacity due to hysteretic damping, could 

overestimate the overall stiffness and loading capacity of 

the frames, avoiding the frames to resonate under seismic 

load with a dominant frequency close to the natural 

frequency of the frames compared with those of with 

rigid connections. Faridmehr et al. [36] investigated the 

seismic performance of steel frames with semi-rigid 

connections. They showed that the more flexibility of 

semi-rigid connection causes more decreasing in base 

shear demand during earthquake. Pirmoz and Liu [37] 

presented a direct displacement-based design method to 

seismic design of SRSFs. Some of researchers have dealt 

with the optimization of SRSFs. For example, Kameshki 

and Saka [38] presented a work on optimization of SRSFs. 

They used Frye–Morris polynomial model for semi-rigid 

connections. Oskouei et al. [39] presented a framework 

for optimization of seismic behavior of SRSFs using 

genetic algorithm. Both linear and nonlinear analyses 

were used in the process. Yassami and Ashtari [40] 

presented the optimal design of SRSFs. They concluded 

that the SRSFs may result in 30% increase in the roof 

displacement compared with the frames with rigid beam-

column connections. Also, it was revealed that about 10-

20 % decreasing in structural weight of frames with semi-

rigid connections compared with those of rigid 

connections is expected. 

 

III.  NONLINEAR STATIC PROCEDURE 

One of the most preferred structural analysis methods 

for performance-based seismic evaluation and design is 

nonlinear static analysis approach. In the simplified 

version of the approach, only the structural members 

including beams and columns (and braces) are modeled 

and the nonlinear behavior is considered as lumped or 

distributed plasticity. Then the subject structure is pushed 

until reaching a certain roof displacement and seismic 

evaluation is conducted based on the response of the 

structure. 

Based on the abovementioned guidelines such as 

FEMA [4], the subject structure should have enough 

capacity to withstand a specified roof displacement for a 

specific earthquake. This is called as the target 

displacement and, for instance, for Life Safety 

performance level is defined as an estimate of the likely 

building roof displacement under the design earthquake. 

Because the mathematical model accounts directly for the 

effects of material inelastic response, the calculated 

internal forces will be reasonable approximations of those 

expected during the design earthquake. Hence, the 

internal forces and deformations are evaluated when the 

roof displacement is equal to the target displacement. 

Two common methodologies available to determine the 

target displacement are: (i) capacity spectrum method and 

(ii) displacement coefficient method. In this paper, the 

displacement coefficient method is used to obtain the 

target displacement. If the Nonlinear Static Procedure 
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(NSP) is selected for seismic analysis of the building, a 

mathematical model incorporating the nonlinear load-

deformation characteristics of the individual components 

and elements of the building should be subjected to 

monotonically increasing lateral loads representing inertia 

forces in an earthquake until a target displacement is 

exceeded [4]. 

The displacement coefficient method was firstly 

proposed by Nassar and Krawinkler [41] which is the 

recommended method by FEMA-356 guideline [4]. In 

this method, the linear elastic response of an equivalent 

single degree of freedom (SDOF) system is modified by 

multiplying it by a series of coefficients to estimate the 

target displacement of the structure of interest. In this 

method, the structure is pushed with a specific 

distribution of the lateral loads until the target 

displacement is reached. The target displacement can be 

calculated as follow [4]: 
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 
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                    (1) 

 

where C0 is the modification factor to relate spectral 

displacement of an equivalent SDOF system to the roof 

displacement of the subject building; C1 is the 

modification factor to relate expected maximum inelastic 

displacements to displacements calculated for linear 

elastic response; C2 is the modification factor to represent 

the effect of pinched hysteretic shape, stiffness 

degradation and strength deterioration on maximum 

displacement response; C3 is the modification factor to 

represent increased displacements due to dynamic P-∆ 

effects; Sa is the response spectrum acceleration at the 

effective fundamental period and damping ratio of the 

building in the direction under consideration; g is the 

gravity constant; and Te is the effective fundamental 

period in the direction under consideration which shall be 

determined based on the idealized force-displacement 

curve defined in FEMA-356 [4]. 

 

IV.  ANN TECHNIQUE 

Artificial neurons and a simple model of a biological 

neuron are the main body parts of an ANN which is 

arranged on a set of layers. ANNs have distinct features 

in learning the experiences and examples, and matching 

with changing position. Engineers often deal with the big 

and/or incomplete data where the ANNs have been highly 

recommended to have the applications such as function 

approximation, time series prediction, classification, 

recognition and system control. Thanks to their high 

capability and simplicity in using the mentioned 

applications, ANNs have received great attention among 

researchers (e.g. [5-7, 16, 17, 20, 24, 26, 42-51]). In this 

paper, two well-known and most used neural networks of 

BP and RBF were used for the prediction. A brief 

description of both BP and RBF is expressed herein. 

 

A.  Back Propagation (BP) ANNs 

The BP method was firstly presented by Rumelhart et 

al. [52]. The ANN trained by BP method is called as BP 

ANN. BP was created by generalizing the Widrow-Hoff 

learning rule to multiple layer networks and nonlinear 

differentiable transfer functions. Input vectors and the 

corresponding target vectors are used for training a 

network until it can approximate a function. BP 

commonly uses a gradient descent algorithm, as the 

Widrow-Hoff learning rule, in which the network weights 

are moved along the negative of gradient of the 

performance function. 

BP is usually used as a part of algorithms that optimize 

the performance of the network by adjusting the weights, 

for example, in the gradient descent algorithm. The 

overall procedure of the gradient computation and its use 

in the optimization using basic calculus independent of 

the optimization algorithm is simple. After choosing an 

appropriate structure for the ANN and assuming initial 

values for their weights, the optimization algorithm 

repeats two phase cycles of propagation and weight 

optimization. In the propagation phase, the presented 

input vector to the network is propagated through the 

network, layer by layer, until reaching the output layer. In 

fact, in lieu of an input vector, an output is obtained. The 

network output is compared with a desired output and the 

error is calculated for each of the neurons in the output 

layer. The errors derivation with respect to network 

weights is calculated then. In the second phase, this 

gradient is fed to the optimization method in order to 

update the weights. The procedure is repeated to 

minimize the errors until reaching an acceptable error. 

The computations are sequentially carried out within the 

series layers and the final output vector is obtained as 

predicted values. 

B.  Radial Basis Function (RBF) Neural Networks 

An ANN that uses RBF as its activation function is so-

called as RBF ANN. The output of the network is a linear 

combination of RBFs of the inputs and neuron parameters. 

RBFs were firstly used for designing the neural networks 

by Broomhead and Lowe [53]. Because of their fast 

training, simplicity and performance generality, RBF 

neural networks have been widely using in the field of 

civil and structural engineering (e.g. [13, 14, 43]). It has 

been shown that RBF ANNs are universal predictors and 

can predict any continuous function with arbitrary 

precision [54, 55]. These networks are feed forward of 

networks of two layers. In order to train the hidden layer 

of RBF networks, no training is accomplished and the 

transpose of the training input matrix is taken as the layer 

weight matrix. Also, a supervised training algorithm is 

employed to adjust output layer weights [56]. 

 

V.  PREDICTION METHODOLOGY 

As mentioned, this paper aimed at predicting the 

https://en.wikipedia.org/wiki/Function_approximation
https://en.wikipedia.org/wiki/Function_approximation
https://en.wikipedia.org/wiki/Time_series_prediction
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Control_theory
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Linear_combination
https://en.wikipedia.org/wiki/Linear_combination
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performance point of SRSFs. The performance point is 

the value of target displacement (called as TD herein) 

corresponding to a demand base shear (called as BS 

herein). Hence, these two parameters of BS and TD were 

considered as two output values to be predicted using 

ANNs. For this purpose, several SRSFs (our samples 

herein) were modeled and pushover analysis of the 

models was carried out. Then, the subject output values 

were calculated. Ten input variables including number of 

stories, number of bays, bays width, cross sectional 

moment of inertia of beams, cross sectional area of 

columns, cross sectional area of braces, design basis 

acceleration, soil type, rigidity degree of connections and 

soft story (existence or nonexistence) were considered in 

the prediction. The variables are shown in the Fig. 2. 

The number of input-output neurons is determined 

largely based on the requirements, but there is no rule for 

determining the number of neurons in the hidden layer. 

Therefore, it is assumed that all the trained networks have 

a structure with 10 neurons in input layer and two 

neurons in output layer. Since, there is no rule to obtain 

the suitable number of neurons in the hidden layer 

directly, with changing the number of hidden layer from 

4 to 20, the best number of neurons was obtained using a 

trial-and-error process. The fewer periods and less time 

required to achieve less error in testing and training of the 

ANNs were the criterion used to determine the best 

number of neurons in hidden layer. The sigmoid and 

hyperbolic tangent transfer functions were used in BP 

ANNs. Fig. 3 shows the variation of these functions along 

variable x. 
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Fig.2. Input variables of SRSF considered in the prediction. 
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Fig.3. Variation of transfer functions (Sigmoid and Tanh) used for 
variable x. 

 

VI.  WORKED EXAMPLES 

A.  Modeling and Assumptions 

Thirty-five steel moment frames were designed using 

SAP2000 [57] software. The number of bays was 

considered to be 1 to 5, and the number of stories was 

considered in the range of 2 to 8 stories, both with 

incremental step of 1. The length of each bay was 

considered between 3m and 5m (by assuming an 

increasing step of 1m) and the height of each story was 

considered to be equal to 3m. 

Steel sections of IPE and IPB were respectively used 

for beam and column cross sections. Double channel 

(UNP) section was also used for the braces. The dead 

load was assumed equal to 500 kg/m2 for all the floors; 

and live loads were assumed equal to 200 and 150 kg/m2 

respectively for the roof and rest floors. The equivalent 

static loading was applied based on Iranian seismic 

design standard (No. 2800) [58].  It was assumed that the 

structures are constructed in a zone with high seismicity 

and on a site with soil type II, and have important factor 

of 1.0. The connection of columns at the base was 

considered as rigid. After design step, the beam-column 

connections of the designed frames were modified and 

modeled as semi-rigid. For this purpose, the stiffness of 

the connections was modified to have almost 20 to 90% 

(considering 18 ratios in this range) with respect to the 

initially designed frames. The variations mentioned and 
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the stiffness modifications were resulted in 427 SRSFs. 

The beams, columns and braces were modeled such that 

they are capable of considering material nonlinear 

behavior. The P- effect was considered in the modeling 

and analyses. After modeling the frames and by applying 

pushover analysis, the capacity curve of the frames was 

obtained. The target displacement of the frames, 

considering three hazard levels of moderate, high and 

very high seismicity for three soil classes, were 

determined corresponding to the LS performance level. 

For this purpose, the displacement coefficient method 

available in FEMA-356 [4] was used. The mentioned 

classification was resulted in 3057 samples.  

While the soil type assumed for initial design was type 

II, to have a wide range of samples, three soil types were 

considered in generating samples. In Iranian seismic 

design standard (No. 2800) [58], the differences among 

soil types can be identified using the parameter of Ts 

which is equal to 0.4s, 0.5s and 0.7s for soil types of I to 

III, respectively. The design basis acceleration was also 

varied from 0.25g to 0.35g which is corresponding to the 

relatively low to high intensity of seismicity levels (based 

on seismic risk analysis in Iran). The effect of soft story 

was also considered in the results. To achieve this, a 

braced system was modeled in one of the bays of the 

subject frame in all the stories. When a story is not braced, 

it means that the story is susceptible to experience soft 

story. The range of all the variables used in this study are 

listed in Table 1. The parameters (inputs) used in this 

study are named as: (a) NS: number of stories; (b) NB: 

number of bays; (c) BW: bay width; (d) IB: moment of 

inertia of beam section; (e) AC: cross section area of 

column; (f) ABr: cross section area of column; (g) KC: 

relative rotational stiffness of beam-column connection; 

(h) Ts: a period introducing the soil type; (i) Ag: design 

basis acceleration; (j) SS: introducing soft story formation 

(0 for soft story). 

Table 1. The minimum and maximum of input variables used. 

Limits 
Inputs 

NS NB BW (cm) IB (cm4) AC (cm2) ABr (cm2) KC TS Ag SS 

Min. 2 1 300 1317 65.3 11.17 0.2 0.4 0.25 0 

Max. 8 5 500 8356 149 34 0.9 0.7 0.35 1 

 

B.  ANNs Architecture Used 

In this study, feed forward BP and RBF ANNs with 

three layers were used. The architecture of the network is 

shown in Fig. 4. To complete the design of the ANNs, the 

number of neurons was changed from 4 to 20, and then a 

trail-and-error process was performed to find the most 

appropriate number of neurons. Two transfer functions of 

sigmoid and hyperbolic tangent were used in the hidden 

layer. In this research, 3057 samples were used which 

among them, 1835 samples (60% of all samples) were 

used for training the network and the residual samples 

(1222) were considered for testing process. Before 

applying the samples, the input variables were 

normalized to be located between 0.0 and 1.0 as follows: 

 

min

max min

x

x x
s

x x

−
=

−
                              (2) 

 

where sx is the normalized value, xmin and xmax are the 

lower and upper bonds of x variable. 

The mean square error (MSE) measurement of 0.01% 

was used to stop the training process. The maximum 

number of iteration equal to 5000 was considered as a 

second criteria for stopping the ANN training process. 

Also, the tolerance of two sequence iterations was used as 

10-10 as third criteria. Three statistic error measurements 

of mean square error (MSE), mean absolute error (MAE) 

and square of correlation coefficient (R2) were used to 

validate the training ANN and testing its performance. 

The mentioned error measurements are computed as 

follows: 
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Fig.4. Topology of a feedforward ANNs used. 
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where yi and ti are the predicted and actual outputs; iy  is 

average value of the predicted outputs; and n is the 

number of samples used. As mentioned, the actual output 

values were generated by SAP2000 [57]. Lower MSE and 

MAE show a better performance of predictive tool. In a 

addition, the R2 values of near 1.0 indicate a best 

correlation between actual and predicted inputs. Note that 

R2 is the square of R which is expressed by Eq. (5). 

BP with eleven algorithms listed in Table 2 and RBF 

ANNs were used for the prediction. In the first step of the 

prediction process, 60% of data were used randomly for 

training and the rest were used for testing process. The 

same data were used for all 12 ANNs (11 BP and one 

RBF ANNs) introduced. The best number of neurons was 

found for the ANNs corresponding to the both sigmoid 

and hyperbolic tangent as nonlinear transfer functions.  

The ANN parameters which was used to the prediction 

process are listed in Table 3. The values listed herein 

were obtained based on a pre-evaluation using a trial-and-

error process. 

Table 2. The ANN properties used. 

NO. Algorithm abbreviation Description 

1 BP- GDM Gradient Descent with Momentum 

2 BP- GDA Gradient Descent with Adaptive linear 

3 BP- GDX Gradient Descent with momentum and adaptive linear 

4 BP- R Resilient 

5 BP- CGF Fletcher-Powell Conjugate Gradient 

6 BP- CGP Polak-Ribiere Conjugate Gradient 

7 BP- CGB Conjugate Gradient with Powell/Beale Restarts 

8 BP- SCG Scaled Conjugate Gradient 

9 BP- BFGS BFGS Quasi- Newton 

10 BP- OSS One Step Secant 

11 BP- LM Levenberk-Mrguardt 

Table 3. The ANN properties used. 

ANN 
Number of 
Training 

Number of 
Testing 

Goal Epoch 
Learning 

Rate 
Momentum 

Constant 
ANN structure 
I:N:O(a)(TF(b)) 

BP- GDM 1835 1222 0.0001 5000 0.9 0.5 10:10:2 

BP- GDA 1835 1222 0.0001 5000 variable - 10:6:2 

BP- GDX 1835 1222 0.0001 5000 variable 0.5 
10:6:2 (T(c)) 

10:14:2 (S(d)) 

BP- R 1835 1222 0.0001 5000 - - 
10:10:2 (T) 
10:8:2 (S) 

BP- CGF 1835 1222 0.0001 5000 - - 
10:18:2 (T) 

10:20:2 (S) 

BP- CGP 1835 1222 0.0001 5000 - - 10:8:2 

BP- CGB 1835 1222 0.0001 5000 - - 
10:13:2 (T) 

10:15:2 (S) 

BP- SCG 1835 1222 0.0001 5000 - - 
10:17:2 (T) 
10:15:2 (S) 

BP- BFGS 1835 1222 0.0001 5000 - - 
10:20:2 (T) 

10:17:2 (S) 

BP- OSS 1835 1222 0.0001 5000 - - 
10:16:2 (T) 
10:17:2 (S) 

BP- LM 1835 1222 0.0001 5000 - - 10:19:2 

RBF 1835 1222 0.0001 
Max. Nerons Spread (i) 

10:263:2 
300 1.475 

 

C.  Prediction: First Try 

After constructing the suitable ANNs for the defined 

prediction process, the performance of the networks was 

evaluated in both training and testing process using the 

statistic error measurements mentioned. In addition, 

running time and the number of epochs to reach the best 

prediction were determined which are listed in Table 4.  

As can be seen in this table, there is no significant 

difference between the running time of prediction 

considering sigmoid and hyperbolic tangent (as transfer 

functions) with same ANN architecture. For BP-GDM, 

the hyperbolic tangent shows better correlation and less 

MAE compared with sigmoid. Because of having high 

MSE and MAE, the BP-GDM performance is not 

acceptable in general.  This is same for BP-GDA. 

Regarding BP-GDX which uses a combination of the two 

former algorithms (i.e. GDM and GDA), the ANN 

performance is slightly improved. As shown in Table 4, 

although the running time of the Resilient algorithm is 
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similar to that of for the gradient based algorithms, it has 

significantly improved the BP performance in terms of 

the errors. The running time for sigmoid transfer function 

is less than that of for hyperbolic tangent, but the errors 

are almost similar for both transfer functions used. Based 

on the statistic errors calculated for conjugate gradient 

based algorithms which were used in BP networks 

(including CGF, CGP, CGB and SCG), they yielded a 

good prediction in general. Although the run time of BP-

SCG is more than other BP-ANNs with conjugate 

gradient based algorithms, this network with hyperbolic 

tangent transfer function is the most accurate one among 

them to predict TD and with sigmoid transfer function is 

the most accurate ANN to predict BS. BP-BFGS with 

hyperbolic tangent transfer function shows less MAE and 

more R2 considering about four times more running time 

compared with BP-SCG. In addition, the BP-OSS has a 

reasonable and good prediction results. Based on Table 4, 

the BP-LM network with hyperbolic tangent transfer 

function accurately predicts the TD and when it applies 

sigmoid function, it results in a good prediction for BS. 

Likewise, the errors obtained for RBF network shows its 

good performance. 

Table 4. The train and test results for TD and BS. 

ANN TF Epoch Time (s) 
MSE (%) 

BS TD 

MAE (%) R2 (%) MAE (%) R2 (%) 

Train Test Test Test Test Test 

BP- GDM 
T 5000 50.1 17.3 17.4 15.2 90.8 23.4 95.3 

S 5000 52.0 29.7 32.44 19.3 84.4 37.6 90.0 

BP- GDA 
T 5000 42.6 15.68 17.14 14.7 92.0 35.6 92.0 

S 5000 41.5 33.99 34.6 23.1 80.4 36.9 80.4 

BP- GDX 
T 5000 43.8 10.7 11.5 11.6 94.0 16.9 94.8 

S 5000 54.2 23.1 23.5 17.3 88.6 30.9 92.9 

BP-Resilient 
T 5000 53.9 3.35 3.66 5.7 98.2 9.2 98.9 

S 5000 43.0 5.4 6.9 5.5 98.1 9.3 98.6 

BP- CGF 
T 3306 99.1 2.7 3.2 4.7 98.7 11 98.7 

S 2360 80.8 3.9 4.5 5.8 97.9 10.9 98.5 

BP- CGP 
T 2652 56.7 3.06 3.46 5.6 98.1 9.8 99.0 

S 1510 30.4 4.9 5.35 6.3 97.6 11.1 98.1 

BP- CGB 
T 4349 109.3 2.07 2.5 4.7 98.6 7.5 99.3 

S 4036 112 2.28 3 4.7 98.7 10.6 98.9 

BP- SCG 
T 5000 118.1 0.0188 0.0256 4.7 98.5 7.0 99.4 

S 5000 114.6 0.0198 0.026 4.5 98.8 8.5 99.1 

BP- BFGS 
T 5000 426.2 1.09 1.81 3.8 99.0 6.3 99.5 

S 5000 320.8 1.49 2.02 4.5 98.9 7.0 99.4 

BP- OSS 
T 5000 126.1 3.15 3.53 5.2 98.3 11.0 98.8 

S 5000 124.6 4.08 4.92 6.8 97.7 12.6 98.4 

BP- LM 
T 5000 680.5 1.1 1.84 3.5 99.0 6.6 99.5 

S 5000 713.5 1.13 1.72 3.9 99.0 6.3 99.5 

RBF - 263 100.8 0.999 1.99 4.0 98.9 6.5 99.4 

Table 5. The train and test results for TD and BS. 

ANN AF Epoch Time (s) 
MSE (%) 

BS TD 

MAE (%) MAE (%) 

Train Test Test Test 

BP-BFGS T 1399 122.8 0.998 2.47 3.97 7 

BP-LM T 73 7.117 0.997 2.13 4.2 6.5 

RBF - 151 26.14 0.998 2.41 3.95 7.1 

 

D.  Prediction: Second Try 

According to the Table 4, in general, the BP-BFGS, 

BP-LM and RBF ANNs led to the best prediction results, 

though they need much running time. Hence, as these 

networks are susceptible in accurately predicting the 

performance point, we tried to have more accurate results 

accompanied with lower elapsed running time. For this 

purpose, an additional study, as the second try, was 

conducted to improve the performance of the ANNs. 

One of the most important factors which can improve 

the performance of an ANN is the selecting the 

appropriate pairs input-outputs for network training. 

Accordingly, in this section, 50 frames of the 427 

prepared ones, which are corresponding to the 399 

training pairs, were randomly selected. Then, the related 

data were prepared for training and testing a RBF 

network, resulting in an inaccurate prediction. To 

improve the results, 10 frames were added to the current 

database and an acceptable prediction was not reached. 
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The process was iterated until the number of frames 

reached 100. The results were poor again. 

The number of the frames was increased five by five 

until 150 frames were used. In this step, the number of 

training and testing pairs were become 1170. At this 

situation, the prediction results were approach to those of 

with all studied frames in the previous section, i.e. 427 

frames with 3057 pairs. In fact, the optimum number of 

pairs to training and testing the ANN is 1170. These pairs 

were also used to train and test the BP-BFGS and BP-LM 

leading to a novel predicting results which both accuracy 

and running time were excellent. The final results for the 

three ANNs, RBF, BP-BFGS and BP-LM are listed in 

Table 5. It should be noted that the transfer function used 

for both BP-BFGS and BP-LM was hyperbolic tangent. 

As shown in the table, the number of epochs is highly 

reduced compared with the results of the first try listed in 

Table 4. As such, the elapsed time for BP-LM and RBF 

are almost 7 and 26 second which is very low compared 

with those of listed in Table 4. The MSE for both train 

and test using the three networks is about 0.01% which is 

very low and acceptable. The MAE results are also 

satisfactory for both BS and TD, although they are almost 

equal to those of corresponding results in Table 4. The 

results of R2 are also shown in Fig. 5, demonstrating an 

excellent correlation between the actual and predicted 

data. In fact, in this section, an accurate prediction has 

been achieved by BP-BFGS, BP-LM and RBF networks 

with rather limited data. 

 

 
(continued) 

 

 

 

 

  

Fig.5. Correlation coefficient for RBF, BP-LM and  
BP-BFGS based on 1170 pairs.
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VII.  CONCLUSIONS 

The performance point of semi-rigid steel frames 

(SRSFs) was predicted by ANNs. Back Propagation (BP) 

(with eleven different algorithms) and Radial Basis 

Function (RBF) ANNs were used in order to predict the 

performance point. Ten input variables including the 

number of bays, number of stories, bays width, moment 

of inertia of beams, cross sectional area of columns, cross 

sectional area of braces, rigidity degree of connections 

and existence or nonexistence of soft story were used for 

data generation needed for the prediction. The actual 

results were obtained at the presence of different 

earthquake intensity levels and soil types. Three 

performance metrics of MAE, MSE and R2 were used in 

order to investigate the accuracy of the prediction.  

Two trying steps were made in the prediction process. 

First all the ANNs were used for the prediction including 

all data samples.  

In the second step, three of the best ANNs (in terms of 

performance metrics) including BP-BFGS, BP-LM and 

RBF were selected from the previous step. Then, in order 

to reduce the elapsed time for testing and training steps, it 

was tried to reduce the number of samples without 

reducing the accuracy of the ANNs applied. After a trail-

and-error process, the number of samples was reduced to 

from 427 to 100 samples which it was almost 76% 

reduced. This idea was led to the following remarks: 

 

• For BP-BFGS: The elapsed time was almost 70% 

reduced. The MSE values were almost 4.5% and 

11% increased for BS and TD, respectively. The 

R2 values were almost the same. 

• For BP-LM: The elapsed time was almost 99% 

reduced which is significant. The MAE values 

were almost 4.5% and 11% increased for BS and 

TD, respectively. The R2 values were almost the 

same.   

• For RBF: The elapsed time was almost 75% 

reduced. The MAE value was almost 1.2% reduced 

for BS, and it was almost 9% increased for TS. 

The R2 values were almost the same.  

 

Note that the abovementioned results are for the testing 

mode. Finally, it is concluded that the performance point 

of the SRSFs could be accurately predicted by the ANNs 

used. Among them, BP-BFGS, BP-LM and RBF were the 

best networks with higher accuracy where the rather 

limited samples were used.  
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