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Abstract—Nowadays, Intelligent Transportation Systems 

(ITS) are known as powerful solutions for handling 

traffic-related issues. ITS are used in various applications 

such as traffic signal control, vehicle counting, and 

automatic license plate detection. In the special case, 

video cameras are applied in ITS which can provide 

useful information after processing their outputs, known 

as Video-based Intelligent Transportation Systems (V-

ITS). Among various applications of V-ITS, automatic 

vehicle speed measurement is a fast-growing field due to 

its numerous benefits. In this regard, visual appearance-

based methods are common types of video-based speed 

measurement approaches which suffer from a 

computationally intensive performance. These methods 

repeatedly search for special visual features of vehicles, 

like the license plate, in consecutive frames. In this paper, 

a parallelized version of an appearance-based speed 

measurement method is presented which is real-time and 

requires lower computational costs. To acquire this, data-

level parallelism was applied on three computationally 

intensive modules of the method with low dependencies 

using NVidia’s CUDA platform. The parallelization 

process was performed by the distribution of the 

method’s constituent modules on multiple processing 

elements, which resulted in better throughputs and 

massively parallelism. Experimental results have shown 

that the CUDA-enabled implementation runs about 1.81 

times faster than the main sequential approach to 

calculate each vehicle’s speed. In addition, the 

parallelized kernels of the mentioned modules provide 

21.28, 408.71 and 188.87 speed-up in singularly 

execution. The reason for performing these experiments 

was to clarify the vital role of computational cost in 

developing video-based speed measurement systems for 

real-time applications. 

 

Index Terms—Parallelism, speed measurement, video 

processing, intelligent transportation systems. 

 

I.  INTRODUCTION 

For several years, providing safe and secure 

transportation circumstances have been considered as the 

basic requirement for the development of industries and 

increasing social welfare level in developed countries [1]. 

Nowadays, transportation issues such as environmental 

pollutions, reduction of energy resources, corporeal and 

financial damages caused by car accidents and the rapid 

growth trend of transportation demands - especially 

during the peak hours of road traffics - have become an 

unbreakable challenge in all cities around the world [2]. 

In this regard, Intelligent Transportation Systems (ITS) 

are defined as the means for collection of tools, facilities, 

and specializations, such as traffic management and 

telecommunications technologies in the form of 

coordinated instruments. ITS have various branches to 

provide the desired solutions to tackle the mentioned 

issues [3]. One of the main applications of ITS is the 

automatic speed measurement. Due to the possible 

dangers such as vehicle-pedestrians’ accidents, vehicles’ 

speed control procedure on urban roadways is very 

important. There are several methods for speed 

measurement purposes and many systems designed over 

the time to calculate the passing vehicles’ speeds, like 

inductive loop detectors, Laser-based (Lidar) and Radar-

based systems [4]. Inductive loop detectors are known as 

widely used instruments, but they suffer from some 

major problems such as challenging installation and 

maintenance, short lifetime and road damage [5]. On the 

other hand, Laser-based and Radar-based systems are 

more expensive than inductive loop detectors, but they 

have the advantage of better accuracy [6]. Here, the 

accuracy is defined as the proximity of a vehicle’s real 
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instantaneous speed and calculated speed. As another 

type of devices, speed sensors using Digital Image 

Processing (DIP) have attracted huge interest among 

researchers in recent years. These systems, which known 

as vision-based approaches, use the video output of 

installed road cameras and process them to obtain 

information about the vehicle’s speed [7]. Vision-based 

methods can be remarked as alternatives for existing 

speed measurement systems, i.e. Radar and Laser-based 

applications, in case they provide acceptable accuracy. 

Although these approaches suffer from some limitations 

like high computational cost and some challenges in 

detecting and tracking vehicles in the video scene, 

measuring vehicle speeds using DIP has several 

advantages such as lower cost, easier maintenance, and 

better expandability. 

In this paper, we introduce a parallel implementation 

of a formerly presented computationally intensive vision-

based vehicle speed measurement method [12] to provide 

a real-time performance by utilizing GPU for 

parallelization. Experimental results have shown about 

55.12% decrease in the execution of the parallelized 

version compared to the CPU-based approach. It should 

be noted that some minor changes in vehicle detection 

and tracking modules have been applied which are 

thoroughly explained in related sections. The main 

contributions of our work are summarized below: 

 

1) We developed a parallel implementation of a 

sequential (CPU-based) speed measurement 

approach; 

2) General analysis and profiling of the method to 

detect computationally intensive modules with low 

dependencies to other modules was performed; 

3) The effect of parallelization in both kernel and 

application levels was calculated; 

4) We observed that by parallelizing some 

computationally intensive modules made the 

method robust against executing in almost real-

time applications; 

 

The rest of the paper is organized as follows: we will 

first explain the definitions and some related works in 

Section 2. In Section 3, the description of the proposed 

method which is a parallelized implementation of a speed 

measurement approach including motion detection, 

license plate recognition, vehicle tracking, and speed 

calculation modules is introduced. Experimental results 

and evaluations are presented in Section 4 and finally, we 

finish with conclusions in Section 5. 

 

II.  RELATED WORKS 

In this section, some primary concepts are introduced 

to provide a better understanding of the speed 

measurement process and later, some related works are 

presented and discussed. As a common classification of 

vision-based speed measurement approaches, two main 

categories, including motion-based and appearance-based 

methods are existed [7]. Motion-based approaches do not 

depend on visual features of the vehicles and instead, 

require a sequence of frames to detect moving vehicles. 

Although these methods are able to recognize the depth 

of the scene, they do not represent vehicles by their 

visual features and thus, they provide lower 

computational costs. Appearance-based approaches, on 

the other hand, need some visual features of the vehicles, 

e.g. license plate or tail-light, in each frame. As a 

common manner, vehicle speed measurement algorithms 

using DIP have a general block diagram as shown in Fig. 

1. They come along with some differences in applying 

algorithms for each part of the scenario which may result 

in different computational costs and performance. As it 

can be mentioned, in the first step, the general 

topographies of moving vehicles in the scene should be 

detected using various methods such as background 

subtraction or frame differencing in motion-based, and 

visual pattern or texture in appearance-based approaches. 

These features may be existed in the whole or some 

special regions of vehicles, like the headlights, license 

plate, etc. In the next step, the previously found features 

should be tracked among sequential frames to provide the 

vehicle’s displacement in pixels. Tracking process makes 

it possible to measure the amount of the moving vehicle’s 

displacement to provide speed measurement parameters. 

The final results of this process can be some special parts 

of the vehicles or the whole vehicle’s shape. Finally, a 

module to calculate vehicle speed through mapping 

pixels to meters and frame numbers to seconds is 

performed. This mapping function should convert the 

displacement vector 𝑑𝑖
⃗⃗  ⃗ in the camera’s focal length to the 

displacement vector 𝐷𝑖
⃗⃗  ⃗ in real-world metrics. 

 

 
Fig.1. A general block diagram of common vision-based speed 

measurement methods. 

Because of the direct recognition of vehicles in 

separate frames, these methods are faced with high 

computational cost and time consumption to provide 

appropriate accuracy. In this regard, parallelization of 

such algorithms is an appropriate process to tackle high 

computational costs by concurrent execution of 

procedure divisions on various processing units. In recent 

years, Graphical Processing Units (GPUs) have become 

significantly powerful tools for parallelization purposes. 

GPUs, with the help of their abundant number of 

processing units, are able to provide SIMT (Single 

Instruction Multiple Threads) parallelization and execute 

a method in a fraction of time required for the execution 

of the same method on CPUs. 

A.  Background Information  

In this sub-section, some important definition of 

concepts and background information which have been 

used in the upcoming parts of the paper are presented [8-

11]: 
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in order to utilize a Graphical Processing Unit as 

a powerful device to speed up computationally 

intensive algorithms, CUDA has been developed 

by NVidia as a great programming tool for 

parallelization. Before introducing CUDA, the 

task of GPU programming was tough and the 

programmer needed to know the main 

architecture of the GPU. CUDA simplified the 

implementation of GPU-enabled applications to 

be rendered on NVidia GPUs. Computationally 

intensive applications with the lowest possible 

dependencies are the best candidates for 

parallelization on CUDA. This environment 

makes programmers able to distribute the 

amount of computation in their codes on 

thousands of cores of their GPU cards and 

consequently, provide the performance equal to 

tens of CPUs with much less cost. In CUDA, 

kernels are referred to data-parallel portions of 

an application, which contain several threads for 

parallel execution to be operated on data stored 

in the GPU’s memory. It should be mentioned 

that the process of initiating the kernels is done 

by CPU. For parallelization of an application, 

these threads should be grouped together to 

provide warps and blocks of codes. The main 

challenge for the programmer is to avoid serially 

execution of threads and provide optimized 

performance. 

 Good features: Since selecting appropriate 

features equivalent to the physical points in 

ground truth is a difficult process, correct 

detection of these features is so important in 

object tracking goals. A “good feature” as it is 

mentioned in [9], is a region with high-intensity 

variations in more than one direction, like the 

areas of texture or corners. In this regard, Good 

Features to Track [9] is a corner detection 

approach based on the Harris corner detector 

which finds the strongest corners in an image 

and skips the corners below a pre-defined 

quality. So the output of this function is a 

number of corners which are appropriate for 

later tracking that makes the system needless of 

extracting information from every single corner 

in an image. 

 Motion History Image (MHI): MHI is a 

common vision-based method for detecting 

moving objects in sequential frames which uses 

a static image template to understand the 

location and path of the motion. This technique 

has some advantages such as insensitivity  to 

silhouette noises, holes, shadows and missing 

parts, and the ability of implementation in low 

illumination conditions. In MHI method, the 

intensity of each pixel in a temporal manner is 

used for motion representation, and a history of 

changes at each pixel location is stored for 

motion detection purposes. 

 Pyramid version of Kanade-Lucas-Tomasi 

(KLT): because the traditional algorithm of KLT 

only works for small displacements (in the order 

of one pixel), the pyramid version of this 

method is used in [10] to overcome the 

limitation of larger displacement detections. The 

pyramid version of KLT algorithm picks up a 

pyramid for each frame, where the image with 

the main dimensions is placed at the base of the 

pyramid. In each level, the width and height of 

the image are reduced by half. The pyramid 

KLT algorithm begins to find the vector d⃗  of 

displacement from the last level of the pyramid 

and uses the results for the initial estimation of d⃗  
at the next level. This process continues to reach 

the base of the pyramid, i.e. the original image. 

 T-HOG text descriptor: this text descriptor 

which was first presented in [8], detects a 

collection of characters by obtaining a gradient 

histogram of the top, middle and bottom of an 

image area by the means of the histograms of 

text regions. These areas have significant and 

fundamental differences with other non-text 

regions. Consequently, this method can be used 

to detect a vehicle’s license plate regions in a 

video frame for further processes. 

B.  Related Works 

Due to the numerous benefits of video-based ITS 

approaches, some different methods for estimating and 

measuring the speed of vehicles on the roadways are 

proposed. Most of these techniques use 

background/foreground segmentation algorithms to 

detect vehicles and track them in sequential frames to 

calculate their displacement in a period of time. These 

approaches follow the steps shown in Fig.1 in most of the 

cases. In [12], a frame differencing technique to detect 

moving vehicles is presented that seeks a vehicle’s 

license plate to extract desired features and track its good 

features in multiple frames using the pyramid KLT 

algorithm. The speed measurement average error in this 

approach was -0.5 km/h and in over 96.0% of cases, 

measurement errors were inside [-3, +2] km/h range. 

Similarly, a robust approach presented in [13] used the 

same vehicle detection technique which considers each 

vehicle as a blob by the means of the edge detection 

method and tracks their centroids to calculate the 

displacements of blobs in a limited time range and 

measure the vehicles’ speed. In [14], another frame 

differencing method to detect moving vehicles is 

presented which detects corners of the vehicle by Harris 

algorithm and tracks the centroid points using the 

Kanade-Lucas-Tomasi (KLT) method among sequential 

frames. After the tracking step, the vehicle’s speed is 

calculated using a spherical projection that relates image 

movement with the vehicle’s displacement. Authors in 

[15] used a frame differencing method for vehicle 

detection, which selects special points with large spatial 

gradients in two orthogonal directions within the 

vehicle’s coverage area to track features. Therefore, the 

vehicle’s speed was calculated by the means of velocity 
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vectors obtained from the tracking step using an optical 

flow method. Similarly, in [16] a frame differencing and 

blob tracking method is presented in which the vehicle’s 

speed is obtained by estimating each blob’s displacement 

using static parameters. In other approaches, authors of 

[17-19] used a median filter for moving vehicle detection 

and calculated the real position of the vehicle in video 

frames to measure speed. A Gaussian distribution for 

detecting moving vehicles is presented in [20] which uses 

blob detection and tracking for speed calculation. In [21], 

the authors used the background/foreground 

segmentation technique to detect moving vehicles and 

blob tracking method to estimate their speed. Some other 

approaches like [22-24] used vehicles’ license plates for 

detection purposes and by tracking the extracted features 

from the license plates, their speed was measured. In [22] 

detected characters using an Optical Character 

Recognition (OCR) algorithm which is inconstant in 

position and size are used for vehicle detection. This 

method requires a robust OCR and does not provide 

acceptable results even in a controlled environment. 

Similar work in [23] is done based on vehicles’ license 

plate detection and tracking. 

Although some of the mentioned methods are similar 

in detection or tracking steps, they have fundamental 

differences due to utilizing a wide variety of algorithms. 

Methods based on blob analysis, i.e. [13-14, 16, 18] and 

[34-35], are sensitive to environmental conditions such as 

shadow, perspective effect, and lighting changes. In 

addition, these methods only provide satisfactory results 

when the camera is fixed on top of the roadway. They are 

also computationally intensive due to their appearance-

based methodologies. Some other methods used the same 

types of features from the blobs, such as [24] that detects 

the edges close to the boundaries of each blob, or [26] 

that extracts features including derivatives, Laplacian and 

colors from each blob. In [27], blob analysis problems 

were solved by direct tracking of unique features using 

the Lucas-Kanade optical flow algorithm, but according 

to the assumptions, this method could only track one 

vehicle in any timestamp [28]. 

Inspired by the mentioned approaches for vehicle 

detection and speed measurement, in this article, we 

implemented a parallel version of the vehicle speed 

measurement approach presented in [12]. The main 

reason for choosing this method is its robust performance, 

containing computationally intensive modules and the 

high potential of parallelization according to the authors’ 

claims. This method takes advantage of license plate text 

features but does not require the characters of the license 

plate to be accurately segmented by the OCR algorithm 

to detect and track vehicles. Instead, the whole text 

appeared inside the license plate zone is recognized and 

tracked. The overall process of this approach includes 

four sequential steps, as it is shown briefly in Fig.2. 

 
Fig.2. A block diagram of the speed measurement approach presented 

in [12]: a) Detecting a moving vehicle, b) Features extraction & 
candidate selection, c) Features tracking, and d) Speed measurement. 

The first step is to find the moving objects – i.e. 

vehicles - among consecutive frames in order to limit the 

whole process to a set of regions. This goal was reached 

using MHI motion detection algorithm presented in [29]. 

Then, the moving parts of the scene were considered as 

vehicles’ boundaries and separated from the background 

scene. The frame differencing method produces a 

threshold binary image D(x, y, t) where the pixels with 

value 1 in each frame are segmented and other remained 

pixels, use the maximum value of the same rate in the 

previous frame. This collection of the output pixels is 

stored as H(x, y, t) in each frame which is shown in 

Equation (1), where τ refers to the duration of the motion 

in sequential frames. 

 

𝐻 (𝑥. 𝑦. 𝑡) =  {
𝜏                            𝑖𝑓 𝐷(𝑥. 𝑦. 𝑡) = 1 

max (0.𝐻(𝑥. 𝑦. 𝑡 − 1) − 1)    𝑜. 𝑤.
        (1) 

 
Then, a binary segmentation mask M(x, y, t) is 

acquired from H(x, y, t) to collect the moving parts, 

where the values of H larger than zero are presented as 

one in the mask. This process is presented in Equation (2): 

 

𝑀 (𝑥. 𝑦. 𝑡) =  {
1      𝑖𝑓 𝐻(𝑥. 𝑦. 𝑡) > 0 
0                            𝑜. 𝑤.

             (2) 

 
Formerly, by applying Vertical Projection Profile 

(VPP) [30], the left and right borders of vehicles are 

detected (considering the vehicles moving from the 

bottom to the top of the screen). VPP counts the number 

of pixels existed in each column of the mask M(x, y, t) 

and stores the values in an array VP with a length equal 

to the number of the mask’s columns. After smoothing 

and normalizing VP, the exact range of pixels refers to 

the vehicle’s presence in each frame are recognized and 

cropped by applying Find-Hills [12] method. By 

detecting the regions inside the vehicle’s cropped area, 

the candidates of being the vehicle’s license plate are 

extracted. Thus, some parts of the moving vehicle with a 

rectangular shape and white background are selected 

using Edge Extraction and Filtering method [31]. 

Furthermore, a module to merge neighboring edges 

remained after filtering is defined in which only the 

edges with a pre-defined size and ratio are selected using 

connected components labeling [32]. Among multiple 

(a)                 (b)                    (c)                       (d) 
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candidates, using T-HOG [27] text descriptor which has 

been introduced in Section 2.1, the region with the most 

probability of being the vehicle’s license plate will be 

extracted. The T-HOG descriptor will be used as an input 

for a Support Vector Machine (SVM) classifier and the 

output of the classifier shows whether the region belongs 

to a text or non-text area. In the next step and by 

detecting the license plate’s region, a set of unique 

features inside the region is chosen for tracking. This 

process is done by good features extraction. The good 

feature, in this case, is a high-intensity region with some 

black pixels inside the white region, representing a 

vehicle’s license plate. This feature is then tracked by the 

pyramid KLT tracking method introduced in Section 2.1 

to provide the motion vector of the moving vehicle. In 

addition, a timer triggers as the vehicle enters the region 

of interest and stops as it leaves the region. Finally, each 

vector can represent the instantaneous speed of the 

vehicle at a specified time in pixels-per-frame metrics. 

Thus, a mapping function to convert it to the kilometers-

per-hour unit is necessary to be applied. As it has been 

proved in the pinhole camera model, for a single view of 

the scene, the homograph matrix HM [33] can perform 

this mapping. Thus, according to the Equation (3), a 

plane-to-plane projective transformation and inverse 

perspective mapping can provide the final world plane 

metrics [37], where for a 3x3 homograph matrix HM, 

point 𝑝𝑖(𝑥𝑖 ‚𝑦𝑖) can be mapped to the point 𝑝�̂�(𝑥𝑤 ‚𝑦𝑤) in 

the world plane [36]: 

 

[
 𝑥𝑤 

 𝑦𝑤

 1
] =  [ 

 𝑧𝑥𝑤  
𝑧𝑦𝑤

 𝑧
] = 𝐻𝑀 [

 𝑥𝑖 

 𝑦𝑖

 1
]                   (3) 

 
HM can be obtained from four points in the image with 

known coordinates in the real-world plane in the 

calibration step. These features are utilized to present the 

relocation of the vehicle and calculate its speed by 

mapping pixels-to-meters and frames-to-seconds. 

As it has been acknowledged in the paper, the process 

of calculating H(x, y, t) and M(x, y, t) matrices is 

computationally intensive. To solve this issue, the author 

suggested to apply subsampling function [12], but it still 

would be a bottleneck for the performance of the system. 

We will discuss the structure of parallelization for better 

performance in Section 3. 

 

III.  PROPOSED METHOD 

For parallelization, some time-consuming modules of 

the mentioned method were detected and implemented on 

GPU using CUDA programming environment. Although 

the mentioned approach is robust against high accuracy 

performance, it is considered as a time-consuming 

method due to containing multiple computationally 

intensive modules. In this section, the implementation of 

a CUDA-enabled version of the same method is 

presented in order to decrease the time required for 

execution. To investigate the effects of each module in 

the performance, we implemented the same approach 

[12]. Fig.3 shows the time portion required for the 

execution of each module obtained by the means of 

profiling technique. To gather these time-shares, the 

implemented method was executed on several videos and 

the presented values are the average of the multiple 

calculated measures. 

 

 
Fig.3. The time portion of various modules in the system (in 

milliseconds). 

As it can be seen, the calculation of H(x, y, t) and M(x, 

y, t) matrices takes the most portion of time among the 

whole process, respectively. Vehicle tracking using the 

pyramid KLT is another computationally intensive 

module. In this regard, the system consumes totally 

870.35 milliseconds to process the scene in order to 

detect and track vehicles in each frame; while the three 

mentioned modules consume 80.67% of the total time. 

The main reason of the huge time consumption in H(x, y, 

t) and M(x, y, t) matrices calculation is due to the system 

requirement for repeatedly performing the calculation for 

each pixel. These two modules have a rich data 

parallelism capability because they are made up of nested 

matrix multiplication operations. In addition, in the 

pyramid KLT tracking phase, the process of downsizing 

the vehicle’s image and drawing motion vectors in each 

level of the pyramid needs a huge amount of calculations. 

According to Fig.3, VPP is another computationally 

intensive module which does not support running across 

multiple cores in parallel. 

To optimize the performance of these three time-

consuming modules, we want to perform a parallelization 

by implementing their CUDA-enabled versions. In the 

parallel implementations, data-parallel portions of each 

module should be implemented as a CUDA kernel, where 

these kernels are manipulated by the main processor, i.e. 

CPU. Consequently, a 30×30 matrix of pixels was 

allocated as a block to the GPU to optimize the 

calculating process. A block is a group of threads 

referring to each pixel that should be processed and by 

aggregating them into Grids, the architecture of a parallel 

version of each module will be shaped. The 

parallelization logic should distribute light calculation 

workloads (such as matrix multiplication) of the selected 

modules on each thread with the lowest data fetching 

overhead and optimal memory allocation. 

Fig.4 shows the architecture of a GPU in brief [39]. 

According to Fig.4, there is a shared memory module and 

several registers inside each block which are allocated for 

calculations and shared for all threads of the block. In 

addition, each thread of a block has a unique local 



Parallel Implementation of a Video-based Vehicle Speed Measurement System for Municipal Roadways 

30                                                                                                                                                                     Volume 11 (2019), Issue 11 

memory to store non-local variables, which are placed 

outside of the block. On the other hand, other memories 

including global, texture and constant memories are 

considered in GPU’s architecture for higher efficiency 

and better control of processes and shared by all threads 

inside the Gird. Consequently, to provide a high-

efficiency system, it is necessary to utilize these 

memories and registers by the means of the CUDA 

platform. 

 

 
Fig.4. A common architecture of a GPU. 

In order to parallelize H(x, y, t), M(x, y, t) and pyramid 

KLT modules, we need to utilize GPU threads for each 

light-weight process. Fig.5 shows the CPU-based 

(sequential) version of MHI calculation according to 

Equation (1). As can be seen, all the pixels belong to the 

subtraction matrix of two sequential frames, named as 

diff should be checked as it was previously discussed in 

Equation (1). The current value of MHI module which is 

called H in this figure is the output of the system based 

on the previous frame’s MHI value prev. It should be 

noted that the variable mhi_duration is set to 5 in this 

approach, which means the system keeps tracking of five 

frames as the history to calculate the H matrix. 

 

 
Fig.5. Sequential implementations of H(x, y, t) module. 

In addition, Fig.6 shows the pseudo-code of the 

parallelized version of Algorithm1 presented in Fig.5. In 

this case, the block-size of the GPU is set to 30×30 which 

provides the best performance according to experiments 

and the resolution of the frames, named as w and h are 

utilized to calculate the grid based on block-size. In the 

parallel implementation, all the elements of the matrix 

diff are sequentially segmented into blocks and each 

block element should dedicate into a single processing 

thread. The pixels to thread mapping is done in O(1) and 

the row-major fetching of the diff matrix element, makes 

the H matrix calculation process to run in O(w+h) instead 

of O(wh). 

 

 

Fig.6. Parallel implementations of H(x, y, t) module. 

Similarly, Fig.7 and Fig.8 show the CPU-based 

(sequential) and GPU-based (parallel) versions of M(x, y, 

t) matrix calculation method. As it has been described 

before, M(x, y, t) matrix is used for segmentation of MHI. 

Here, variable M refers to the calculated mask M(x, y, t) 

presented in Equation (2). The parallelization process of 

this module was the same as the method described in Fig. 

6. 

 

 

Fig.7. Sequential implementations of M(x, y, t) module. 

 
Fig.8. Parallel implementations of M(x, y, t) module.
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In addition, Fig.9 shows the output of the produced 

mask in the motion detection step. As it is shown, the 

moving vehicle in multiple frames is totally segmented 

from the background scene. 

Finally, Fig.10 and Fig.11 illustrate the sequential and 

parallel versions of the pyramid KLT module, 

respectively. In these figures, previous and current frame 

matrices with the resolution of w×h are utilized to detect 

any relocation of the objects with special visual features 

and provide tracking of them in two sequential frames. 

These matrices are named prev_frame and curr_frame 

and the candidate features of being a license plate found 

by the good features algorithm are stored in 

prev_features and the curr_features arrays, respectively. 

Firstly, the algorithm builds a pyramid with multiple 

levels, where the variable max_level defines the number 

of levels. 

 

 
(a) 

 
(b) 

Fig.9. A sample frame (a), its binary segmentation mask M (b). 

 

 
Fig.10. Sequential implementations of the pyramid KLT tracking module. 

Each detected license plate from the detection step of 

the method lays in the base level of the pyramid and each 

higher level, stores the image of the license plate with 

half dimensions. Each pyramid version of the prev_frame 

and curr_frame frames are stored at 

pyramid_prev_frame[i] and pyramid_curr_frame[i] 

respectively, where i is the corresponding level of the 

pyramid. After building the pyramid, if a feature found in 

both previous and current frames, its corresponding 

element in the status array becomes one and otherwise, it 

becomes zero. Similarly, the array err includes the type 

of errors occurred in tracking the corresponding feature. 

In addition, the variable tc stores the terminating 

conditions of the search module and the maximum 

number of pyramid levels is set to five by experiment in 

this approach. Finally, the OpticalFlow variable includes 

the required features for tracking the license plate in later 

frames. It should be noted that in the proposed 

implementation, we considered 10 frames for tracking, 

instead of tracking the vehicle in the whole scene and no 

huge changes in tracking accuracy were detected. Fig 11 

indicates the parallel implementation of Algorithm5 in a 

CUDA-enabled environment. According to [40], the 

parallelized version of the KLT tracking algorithm can 

provide a large rate of speed-up due to containing 

multiple add, subtraction, and multiplication matrix 
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processes. The definition of block and grid is the same as 

Algorithm2 and Algorithm4. The pixels to threads 

mapping is done in O(1) and the row-major fetching of 

the pixels in each pyramid level is executed in parallel. It 

should be noted that the implementation codes of both 

CUP-based and CUDA-enabled version of Algorithms1 

to 5 are presented in the Appendices section. 

 

 
Fig.11. Parallel implementations of the pyramid KLT tracking module. 

 
Fig.12. The overall diagram of the proposed parallelized speed measurement system. 
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As a summary, Fig.12 demonstrates the overall process 

of the speed measurement approach and the proposed 

parallelized modules. As it can be seen, we have 

considered a 30×30 block of pixels for parallelization of 

MHI and segmentation modules, i.e. calculation of H(x, y, 

t), M(x, y, t) matrices, respectively. On the other hand, the 

parallelization of the pyramid KLT was done in each 

level of the pyramid to track the vehicles in sequential 

frames. Consequently, each block contains N+1 threads 

and each thread works on M+1 data blocks on the global 

memory. The final results of the processes are transferred 

to the shared memory. 

 

IV. EXPERIMENTAL RESULTS 

This section introduces the performances of the 

parallel implemented method presented in this article in 

terms of time execution. Both the parallel (GPU-enabled) 

and sequential (proposed in [12]) methods were analyzed 

on a computer with properties demonstrated in Table 1. 

We describe the experiment by introducing the main 

factors utilized for time consumption comparison. 

A.  Dataset 

The provided dataset for the experiment is a video 

dataset which has been captured via a camera installed 

above an urban roadway. The dataset is provided by the 

Federal University of Technology of Paraná (FUTP) [12], 

including five H264 videos captured by a 5-megapixel 

CMOS image sensor with different illumination and 

weather conditions summarized in Table 2. The video has 

been captured the rear view of vehicles, makes it suitable 

for license plate detection and speed measurement 

purposes. It has to be mentioned that due to different 

types of motorcycles’ license plates, they have been 

skipped in this paper [12]. Frame resolution of the dataset 

is 1920×1080 pixels and the frame-rate is 30.15 frames 

per second. The videos are categorized into five different 

categories according to weather and recording conditions. 

Each video has a separate XML file format that contains 

information about that video such as vehicle speed. Table 

2 shows the properties of this dataset with its 

corresponding speed ranges. 

Table 1. Implementation Hardware And Environment 

Hardware Properties 

CPU 3.5 GHz Intel Core i7 – 7500U 

RAM 12 GB 

GPU NVIDIA GEFORCE 920MX 

Operating System 64-bit Windows 10 

Table 2. Properties Of The Dataset. 

#Vehicles Video properties #frame Filename Dataset 

119 Normal illumination 6918 Set01_video01 

The Federal 

University of 
Technology of 

Paraná [12] 

223 High illumination 12053 Set02_ video01 

460 
Low-light 

illumination 
24301 Set03_ video01 

349 
Rainy weather 

conditions 
19744 Set04_ video01 

869 
Extreme rain 

weather 
36254 Set05_ video01 

2020 - 99270 - Total 

 

B.  Time Consumption 

To evaluate the performance of the parallelized 

method, we have compared it to the sequential method 

presented in [12]. Since there were no vast changes in the 

accuracy of vehicle detection, tracking and speed 

measurement processes in the parallelized and sequential 

approaches, we have only focused on the time-

consumption comparison. By comparing elapsed times 

for execution of the parallelized versions of H, M and 

Pyramid KLT modules to the original, we observed a 

huge change in the fields of performance and efficiency. 

Table 3 shows the results of this evaluation in brief. It 

should be noted that each cell of the table refers to the 

average elapsed time for a particular vehicle to run the 

mentioned modules in different videos. As it can be seen, 

the parallelized versions (kernels) execute 188.87, 408.71 

and 21.28 times faster than the sequential versions in 

calculating H, M and Pyramid KLT modules, respectively. 

According to Table 3, only the effect of parallelization 

on each module H, M and Pyramid KLT are presented in 

terms of speed-up. In other words, Table 3 only shows 

the effect of parallelization on each kernel, while the 

whole effect of utilizing these modules in the application 

level is not provided. In order to review the effects of 

parallelization on the whole process of speed 

measurement, Fig.13 illustrates the average of the total 

time required to calculate a single vehicles’ speed in 

various videos of the dataset. As can be seen, 

parallelization of the most computationally intensive 

modules leads to about 1.81 execution speed-up in 

application level in various illumination and weather 

conditions. To acquire these numbers, a timer triggered 

as a vehicle entered the ROI with a recognizable license 

plate and stopped as it left the region. Although the 

parallelized versions of H, M, and Pyramid KLT modules 

provide a robust speed-up according to Table 3, the effect 

of utilizing them in the speed measurement process did 

not provide a vast difference, as it can be seen in Fig.13. 

The reason can be found in the huge amount of data 

transportation among GPU and CPU for processing. 
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Table 3. Time Consumptions Of Sequential And Parallelized Implementations Of Modules For Each Vehicle. 

Dataset Filename H(x, y, t) M(x, y, t) Pyramid KLT 

The Federal 
University of 

Technology 

of Paraná 
[12] 

Set01_video01 CPU GPU CPU GPU CPU GPU 

Set02_ 
video01 

318.93 1.54 272.76 0.18 132.71 6.02 

Set03_ 

video01 
285.42 1.33 224.85 0.43 144.56 6.49 

Set04_ 
video01 

341.72 2.19 242.12 0.82 150.25 7.73 

Set05_ 

video01 
315.07 1.68 218.74 0.68 146.23 6.89 

Average 321.64 1.64 247.22 0.84 151.42 6.94 

Speed-up 316.56 1.68 241.14 0.59 145.03 6.81 

  188.87 408.71 21.28 

 

 
Fig.13. Total running time of sequential and CUDA-enabled 

implementations to calculate the speed of a single  
vehicle on various videos. 

Finally, to provide a better demonstration of the 

parallelization effect on each distinct modules of the 

proposed speed measurement approach, Fig.14 presents 

the time portion required for the execution of each 

essential module in brief. As it can be seen, the chart 

shows the execution time (in milliseconds) of each 

distinct modules of the parallelized version in 

comparison with the sequential version, which has been 

previously presented in Fig.3. It should be noted that to 

acquire these execution times, the time wasted to transfer 

data between GPU memories and CPU are skipped. On 

the other hand, the effect of parallelization on the 

accuracy of the system compared to the sequential 

version was negligible. 

 

 
Fig.14. Profiling time portion of various modules in the system (in 

milliseconds). 

According to Fig.14, the huge gap between H, M and 

Pyramid KLT modules are obviously distinct (shown in 

red dots for both sequential and parallelized versions). As 

a result, the benefits and advantages presented in the 

experiments are adequate to make the CUDA-enabled 

version more applicable in almost real-time applications. 

 

V.  CONCLUSIONS 

Intelligent Transportation Systems are used in various 

traffic-related applications such as roadway monitoring 

and vehicle counting. By utilizing cameras in ITS 

applications, Video-based Intelligent Transportation 

Systems were appeared, which can be used in various 

applications like speed measurement. In this paper, a 

parallelized version of a formerly-proposed vehicle speed 

measurement method is presented which has the 

advantage of appropriate time consumption, accuracy, 

and robustness. The CPU-based version of the mentioned 

method has three modules including vehicle detection, 

tracking, and speed measurement. We have realized that 

two functions in vehicle detection and one in the tracking 

phase are computationally intensive and have the 

potential to be highly reduced in cost. By implementing 

the same method in a CUDA-enabled environment and 

applying data-level parallelism on these modules, better 

throughputs and performance have been obtained. 

Experimental results showed that the parallelized version 

of the method provides 1.81 speed-up in application level 

to measure each vehicle’s speed compared to the normal 

CPU-based implementation in overall. In addition, the 

kernel-level parallelization provided 21.28, 408.71 and 

188.87 speed-up in executing three computationally 

intensive modules. 

APPENDICES 

Appendix I - Sequential and parallel implementations of 

H(X, Y, T) module in C++ 

Below, the variable diff_mat refers to the subtraction 

matrix of two sequential frames. If the result of the 

subtraction was equal to 1, the first condition of Equation 

(1) is used and otherwise, the second condition would be 

utilized. In addition, variable current_mhi refers to the 

current value of MHI and prev_mhi represents its value 

in the previous frame. The variable mhi_duration is set to 

5 in this approach, which means the system takes 

advantage of five frames as the history to calculate the H 
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matrix. In the CUDA-enabled codes, the block-size of the 

GPU is defined in BX and BY and the resolution of the 

frames are defined in DX and DY, respectively. In 

addition, the function type qualifier __global__ refers to 

a kernel with the ability to be executed on the CUDA 

device and grid and block variables, contain the 

dimensions of grids and blocks. The block size is set to 

30×30, which provides the best performance according to 

experiments. In addition, _Update_MHI_GPU is the 

name of kernel and row and col variables are used to 

choose threads. The provided pseudo-codes of these two 

implementations are shown in below. 
 
CPU: 

for (int y=0; y<diff_mat.rows; y++)  

  for (int x=0; x<diff_mat.cols; x++) {  

    if (diff_mat.at<uchar>(y,x) == 1)  

      current_mhi.at<uchar>(y,x) = mhi_duration; 

    else if (prev_mhi.at<uchar>(y,x) > 0)  

      current_mhi.at<uchar>(y,x) = prev_mhi.at<uchar>(y,x) - 1; 

  } 

 

GPU (CUDA): 

#define BX 30    #define BY 30  

#define DX 1920  #define DY 1080 

dim3 block(BX,BY); 

dim3 grid(DX/block.x,DY/block.y); 

 

_Update_MHI_GPU <<<grid,block>>> ((uchar *) current_mhi.data, 

(uchar *)prev_mhi.data, (uchar *) diff_mat.data, prev_mhi.step, 

DY, DX, mhi_duration); 

  

Function: 

__global__ void _Update_MHI_GPU(uchar* current_mhi, uchar* 

prev_mhi, uchar* diff_mat, size_t step, int h, int w, int 

mhi_duration) {  

  int row = blockIdx.y * blockDim.y + threadIdx.y;  

  int col = blockIdx.x * blockDim.x + threadIdx.x;  

  int index = col + row*(step / sizeof(uchar));  

  if (index >= (h*w))  

    return;  

  if ( diff_mat[index] == 1 )  

    current_mhi[index] = mhi_duration;  

  else if (prev_mhi[index] > 0) 

      current_mhi[index] = prev_mhi[index] - 1;  

} 

Appendix II - Sequential and parallel implementations of 

M(X, Y, T) module in C++ 

Below, the CPU-based (sequential) and GPU-based 

(parallel) implementations of M(x, y, t) matrix calculation 

method are shown, where _SegmentationBy_GPU is the 

name of the kernel. As it has been described before, M(x, 

y, t) matrix is used for segmentation of MHI. Variable 

m_mat refers to M(x, y, t) matrix presented in Equation 

(2), thus if the value of MHI was bigger than zero, the 

value of M would be 1 and otherwise, it stores as zero. 

Pseudocodes of these two implementations are shown in 

below. 
 
CPU: 

for (int y=0; y<mhi.rows; y++)  

  for (int x=0; x<mhi.cols; x++) {  

    if (mhi.at<uchar>(y,x) > 0)  

      m_mat.at<uchar>(y,x) = 1;  

    else  

      m_mat.at<uchar>(y, x) = 0;  

  } 

 

 

GPU (CUDA): 

#define BX 30   #define BY 30  

#define DX 1920 #define DY 1080 

    

dim3 block(BX,BY);  

dim3 grid(DX/block.x, DY/block.y);  

_SegmentationBy_GPU <<<grid, block >>> ((uchar *) GMat.data, 

(uchar *)GMotionMat.data, GMat.step, DY, DX);  

   

Function: 

__global__ void _SegmentationBy_GPU(uchar* m_mat, uchar* mhi, 

size_t step, int height, int width) { 

  int row = blockIdx.y * blockDim.y + threadIdx.y;  

  int col = blockIdx.x * blockDim.x + threadIdx.x;  

  int index = col + row*(step / sizeof(uchar)); 

  if (index >= (height* width)) return; 

  if (mhi[index] > 0) 

    m_mat[index] = 1; 

  else 

    m_mat[index] = 0; 

} 

Appendix III - Sequential and parallel implementations of 

the pyramid KLT tracking module in C++ 

Below codes illustrate the sequential and parallel 

implementations of the pyramid KLT module. According 

to these codes, prev_frame and curr_frame variables 

refer to the current and previous frames matrices, 

respectively. The candidate features of being a license 

plate found in the previous frame by the good features 

algorithm are stored in prev_features and the 

curr_features variable keeps the features existed in the 

current frame. Finally, variable tc stores the terminating 

conditions of the search module. Pseudocodes of these 

two implementations are shown in below. 
 
CPU: 

TermCriteria tc = TermCriteria (TermCriteria::COUNT + 

TermCriteria::EPS, 30, 0.01); 

CalcOpticalFlowPyrLK (prev_frame, curr_frame, prev_features, 

curr_features, status, Size(11, 11), 5, tc, 0, 0.0001); 

 

GPU (CUDA): 

Ptr<cuda::SparsePyrLKOpticalFlow> d_pyrLK_sparse = 

cuda::SparsePyrLKOpticalFlow::create(Size(11, 11), 5, 1); 

d_pyrLK_sparse->calc(prev_frame, curr_frame, Prev_Points, 

Next_Points, d_status); 
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