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Abstract—The 0/1 Knapsack (KP) is a combinatorial 

optimization problem that can be solved using various 

optimization algorithms. Ant Colony System (ACS) is 

one of these algorithms that is operated iteratively and 

converged emphatically to a matured solution. The 

convergence of the ACS depends mainly on the heuristic 

patterns that are used to update the pheromone trails 

throughout the optimization cycles. Although, ACS has 

significant advantages, it suffers from a slow 

convergence, as the pheromones, which are used to 

initiate the searching process are initialized randomly at 

the beginning. In this paper, a new heuristic pattern is 

proposed to speed up the convergence of ACS with 0/1 

KP. The proposed heuristic enforces an order-critical 

item selection. As such, the proposed heuristic depends 

on considering the profit added by each item, as similar to 

the existing heuristics, besides the order of item selection. 

Accordingly, the proposed heuristic allows the items that 

are added at the end to get more value in order to be 

considered in the beginning of the next round. As such, 

with each cycle, the selected items are varied 

substantially and the pheromones are vastly updated in 

order to avoid long trapping with the initial values that 

are initialized randomly. The experiments showed that 

the proposed heuristic is converged more rapidly 

compared  to  the  existing  heuristics  by  reducing  up  to   

30% of the cycles required to reach the optimal solution 

using difficult 0/1 KP datasets. Accordingly, the times 

required for convergence have been reduced significantly 

in the proposed work compared to the time required by 

the existing algorithms.  

 

Index Terms—Ant Colony System, Heuristic 

Optimization, Combinatorial Optimization, Knapsack 

Problem, 0/1 Knapsack Problem. 

 

I.  INTRODUCTION 

The optimization problems are those require searching 

for the best solution among the set of all feasible 

solutions[1]. Generally, the optimization problems are 

enormous, accordingly, in order to promote the advances 

in solving these problems, the research community has 

come up with common, generalized and simple forms of 

these problems. Examples of these common forms are the 

traveling salesman problem (TSP), the knapsack problem 

(KP) and the graph coloring problem [2]. The 0/1 

knapsack problem is a combinatorial (i.e.: discrete 

variables) problem that is categorized as an NP-complete 

problem with an exact algorithm that runs in exponential 

time.  

The 0/1 knapsack problem is formed by the following 

inputs: A fixed-size knapsack and a set of items and the 

following output: A selected subset of items, such as, the 

obtained benefits/values from this subset is maximized 

while the weights/sizes of the subset is less than or equal 

to the weight/size of the knapsack. Accordingly, each of 

the items in the input set can be either be selected or 

unselected. The selected items are represented by the 

value 1, while the unselected items are represented by the 

value 0. Thus, the name 0/1 knapsack problem was given. 

Besides the 0/1 knapsack problem, there are other forms 

of the knapsack problems, such as: 0/1 multi-objective 

knapsack problem [3], multi-dimensional knapsack 

problem [4], multiple knapsack problem [5] and subset 

problem [6]. The differences between these problems are 

either due to the constraints on the input or the output 

form.  

The optimization algorithms were proposed either to 

solve the optimization problems that do not have known 

exact algorithms that find the best solution or to solve 

problems, such as the 0/1 knapsack problem, that have 

exact algorithms but they consume unaffordable time [7]. 

The optimization algorithms search the solution space 

and find a nearly optimal solution in a finite time. 

Compared to the exact, the optimization algorithms find a 

nearly optimal solution more rapidly, preserve the 

computational resources while scarifying limited 

accuracy.  

The presence of the optimization algorithms is related 

to the significant of the underlying problems. The 

significant of the 0/1 knapsack problem has gained from 

its enormous application, such as the resource allocation 

problems which occur in the financial field, the industrial 
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field, the architecture and other fields. To solve these 

critical problems, various optimization algorithms were 

proposed to solve the 0/1 knapsack problem, such as the 

simulate annealing [8, 9], the genetic algorithms [10, 11], 

the swarm optimization [12, 13] and the ant system (AS) 

optimization [14]. The differences between these 

optimization algorithms with respect to the 0/1 knapsack 

problem in specific and optimization problems in general, 

are: the ability to find the optimal solution, the quality of 

the generated solution, the non-trapping in local optima 

and the speed of convergence.  

Ant System (AS) optimization algorithm was proposed 

by Marco Dorigo in 1996 [15] and inspired by the 

foraging behavior of ants in the colony. The ants are 

communicating with each other during foraging using 

chemical pheromones that is dropped on the trails. 

Accordingly, ants are guiding each other by the 

pheromones that are concentrated on the trails. Overall, 

the shortest path between the food and the nest is marked 

with high concentrated pheromones, as illustrated in Fig. 

1. The ants start exploring the surrounding for food by 

following random paths. As the ants find the food, these 

ants tend to leave pheromones on the way back to the nest 

that depends on the quality or the amount of the gathered 

food.  

 
Nest Food

1. All Ants are in the nest. There is no 
pheromones in the trails

Nest Food

2. The foraging of the ants start. There is a 50% 
probability that the ants take the shortest path, 
and 50% of the ants take the other path.

Nest Food

3. The ants that took the shortest path reached 
the destination earlier and return to the nest 
faster. Making more journeys and add more 
pheromones.  

Nest Food

4. The pheromone on the shortest path increase 
as more ants use it for nest-food travelling 
journey

 

Fig.1. Ant Colony Foraging Behavior [17] 

AS optimization algorithm simulates the foraging 

behavior of the ants using artificial ants, each of which 

construct a solution that follows the representation of the 

underlying problem. Then, an amount of artificial 

pheromones that are simulated the actual phenomes, are 

associated with the constructed solution based on its 

quality. Running this process for a finite number of 

cycles lead eventually to find the optimal solution for the 

underlying problem. AS was empirically proved to find 

solutions for many problems, including KP, with 

guaranteed matured solution [16].  

A better version of AS is the Ant Colony System 

(ACS), which uses heuristic patterns besides the 

associated pheromones to guide the searching process. 

Although, ACS has many advantages, it has limitation 

embodied in its slow convergence, as the pheromones, 

which are used to guide the searching process are 

initialized randomly at the beginning. In this paper, a new 

heuristic pattern is proposed to overcome the slow 

convergence of ACS with 0/1 knapsack problems. The 

proposed heuristic combines the gathered profit before 

adding an item with the pheromone updating rules. As 

such, the proposed heuristic depends on considering the 

profit added by the item, as similar to the existing 

heuristics, besides the value gathered so far, which allows 

items that are added at the end to get more value in order 

to be considered in the beginning of the next round. 

Accordingly, with each cycle, the selected items are 

varied substantially and the pheromones updating is 

rapidly implemented to avoid long trapping in the initial 

values. The rest of this paper is organized as follows: 

Section 2 gives a brief review of the related work. Section 

3 discusses the proposed approach with the proposed 

heuristic mechanism. Section 4 is devoted to discuss the 

experiments and the results. Finally, the conclusion is 

given in Section 5.  

 

II.  RELATED WORK 

Several extensions to the popular AS optimization 

were developed in the last decades. Elitist Ant System 

(EAS) [18] improved the pheromone updating rules by 

incorporating all the solutions in the previous cycle with 

the best solution so far. Only the best solution so far, can 

contribute to pheromone increment with value equal to 

one (e.g.: maximum value), while the component of the 

other solutions contributes with less value and based on 

their added values. Accordingly, strong increment is 

added to the components of the best solution to increase 

the exploitation of the solution space.  

Rank-based Ant System (RAS) [19] also modifies the 

pheromone updating by incorporating the m-best ranked 

solutions in the previous cycle with the best solution so 

far.  

Min-Max Ant System [20] uses two updating rules, 

these rules are: Iteration-Based (IB-update), which gives 

strong bias towards to the best solution in the iteration, 

however suffers from trapping in local optima and Best-

Solution (BS-update), which gives even more bias 

towards the best solution in the iteration so fat.   

Ant Colony System (ACS) [21] implements various 

improvements to AS. First: ACS uses the pseudo-random 

proportional, by selecting the components of the solution 

depends on both the pheromones and the heuristic value 

of each component. Second, ACS uses BS-update with 

evaporation. As such, only a particular portion of 

pheromone increment is applied after each cycle.  ACS is 

currently the most utilized versions of the AS.  

In order to solve the lacks of pheromones in the initial 

stages and slow exploration, various approaches were 

developed, which varies with their nature. The first 

approach is based on using other optimization with AC, 

in this context, genetic algorithm were used to explore the 

search space initially followed by AC [22]. Zhang and 

Wu [22], for example, proposed to combine ACS with 

genetic algorithms, which is faster in exploring the 

solution space, and slower compared to ACS in 

exploiting the solution space. Accordingly, genetic 

algorithm is used initially to explore the space followed 

by exploiting the final solution using ACS. Although 

ACS solves much of the limitations in AS and its 

variations, it still suffers from slow convergence, as the 
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pheromones, which are used to guide the searching 

process are initialized randomly at the beginning. The 

second approach focus on the heuristic pattern, which are 

used with the pseud-random in selecting objects at each 

cycle and accordingly influence the exploring process 

marginally.  

There are three patterns that are used with 0/1 

knapsack problem, these are: static, dynamic and squared. 

In the static patterns, the heuristic is calculated as the 

ratio of the profit coefficient to the weight coefficient 

multiplied by the total knapsack capacity. For the 

dynamic approach, the heuristic is calculated as the ratio 

of the profit coefficient to the weight coefficient 

multiplied by the current knapsack load capacity [23]. 

The squared approach, the heuristic is calculated as the 

ratio of the square profit coefficient to the square weight 

coefficient [24]. The dynamic heuristic patterns make 

varied updating of the pheromones after each cycle 

compared to the static one. 

 

III.  PROPOSED WORK 

In the proposed approach, the heuristic is integrated 

with the pheromone updating while changing the order by 

which the items are added to the knapsack. Accordingly, 

this creates varied constructed solutions. Overall, the 

proposed approach focuses on the variability of the item 

selection process.  

A.  Problem Formation 

The 0/1 knapsack problem can be represented by a 

knapsack of fixed-size, W, and a set of n items, 

S={o1,o2, .., on}, in which each item or object, oi, has a 

value vi and a weight wi.  The objective function is to 

maximize the value of the selected items in the output 

subject to the limitation of knapsack capacity, as given in 

(1).  

 

𝑚𝑎𝑥 ∑ 𝑥𝑖𝑜𝑖

𝑛

𝑖=1
, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑥𝑖𝑤𝑖𝑊

𝑛

𝑖=1
  

 

𝑤ℎ𝑒𝑟𝑒 𝑥𝑖  ∈ {0,1}                          (1) 

 
Using ACS, KP can be solved by running multiple ants 

in each cycle, each of which constructs a solution using 

the objective function that is given in (1). The probability 

of choosing an object at each step for each ant depends on 

the pheromone and the heuristics that are calculated at 

that object. After each cycle, the pheromones at each 

object is updated based on the quality of the solution(s) in 

which the object was loaded, as given in Algorithm 1.  

As given in Algorithm 1, in line 1 and line 2, the form 

of the problem, the number of ants, and the pheromones 

are initialized. Line 3, line 4 and line 5 initiate looping 

over cycles, ants and object per-solutions. Object 

selection is implemented in line 6 and line 7 

stochastically based on the calculation at line 7, where, α: 

pheromone significance, β: heuristic significance, ρ: 

evaporation rate and τ: the pheromone concentration 

value. 

 
Algorithm 1. Ant Colony System for Knapsack Problem 

Begin  

1. 

2. 
3. 

4. 
5. 

6. 

7. 
8. 

9. 

10. 

11. 

12. 

Parameter Initialization 

Set initial pheromones 
While (Not Stopping Condition) 

        For (1to K)              // K is the number of ants 
               For ( 1 to n)   // n is the number of objects  

                      Select an object oi with probability   

                      pi=τi
α* μi

β /⅀i τ
α* μβ for wi≤ W 

              EndFor 

        EndFor 
        Update BestSolution 

        Update Pheromones with evaporation  

EndWhile  
End 

B.  Convergence Speed-Up Approach 

To increase the diversity of the solutions, the order by 

which the elements are selected is altered, which in turn 

will create diverse solutions. As known in knapsack 

problem, the order by which the items are inserted into 

the knapsack affects the content of the final solution. The 

first item(s) selected for solution influence the selection 

of the rest of items. Accordingly, changing the first 

selected item(s), without effecting the fitness/profit, will 

change the whole solution, without degrading the results. 

To implement such rapid order-critical solution 

construction, a new heuristic pattern is proposed and 

integrated with the pheromones updating in order to 

speed up the convergence process. The proposed heuristic 

depends on considering the profit of the solution, as 

similar to the existing heuristics besides the profit 

obtained so far in the same solution. Accordingly, the 

value added by any object, depends on its association 

with other objects. Choosing an object, a then an object b 

does not have the same influence as choosing b then a.  

C.  Overall Processes 

In the proposed approach, each object is given a 

different pheromone increment rate based on the solution 

profit and the situation of the knapsack before adding the 

object. The optimization processes are implemented as 

given in Fig. 2. First, a set of ants is created, each of 

which assigned an empty solution. Then, as the ants move 

from a state to another, an object is added to the 

underlying solution based on the solution construction 

process. An ant reaches the final state when the knapsack 

capacity is reached. After all the ants finish the solution 

construction process, the heuristic calculation is 

implemented followed by implemented the pheromone 

updating process and pheromone evaporation. 
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Ants Initialization

Solution Initialization

Object Selection

Calculate Heuristics

Reaching Knapsack 
Capacity

Calculate Pheromone 
Updating

Calculate Pheromone 
Evaporation

Reaching Stopping 
Criteria

Start

End

No

Yes

Yes

No

 

Fig.2. Knapsack Data Categories 

D.  Solution Construction 

Each ant constructs a solution by adding an object in 

each step to the initialized empty solution. An object is 

selected with a probability value, as given in (2). 

 

𝑃𝑖
𝑘 =

[𝜏𝑖]𝛼[𝜇𝑖]𝛽

∑[𝜏𝑖]𝛼[𝜇𝑖]𝛽                                  (2) 

 
where, τi is the pheromone concentration on the object i, 

ui is the heuristic calculated at the object i, α is the 

pheromone significance and β is the heuristic significance. 

E.  Pheromone Trails Updating 

The pheromone associated with each object is updated 

after each cycle based on the solutions that are formed by 

that object, as given in (3).  

 

𝜏𝑖(𝑡 + 1) = 𝜌𝜏𝑖(𝑡) + (1 − 𝜌)∆𝜏𝑖                  (3) 

 
where, τi is the pheromone concentration, ρ is the 

evaporation rate and Δτi is the increase value of the 

pheromone, as calculated in Equation (4).  

 

∆𝜏𝑖 = ∑ 1/(1 +

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

(𝑉𝑏𝑒𝑠𝑡 − 𝑉)/𝑉𝑏𝑒𝑠𝑡) + 𝑉𝑡𝛾/𝑉𝑏𝑒𝑠𝑡  

 (4) 
 

where, Vbest is the profit of the best solution so far and V 

is the profit of the solutions, in which the object i are 

presented. The variable Vt is the current solution profit 

and γ is the convergence rate [0-1]. As such, the amount 

of pheromone at an object increases significantly if the 

object is added to a loaded knapsack, while the 

incremental portion is identical to the original ACS, when 

the object is added to an empty knapsack.  

F.  Heuristic Calculation for Solution Construction 

The probability of selecting an object depends on both 

the pheromone, which is updated based on the profit of 

the solutions that are constructed by the object and the 

heuristics, which depends on the profit and the weight of 

the object. In the proposed work, the heuristic is 

calculated as given in (5).  

 

𝜇𝑖 = (𝑉𝑖/𝑤𝑖) ∗ 𝑊𝑐                         (5) 

 
where, Vi and Wi are the profit and the weight of the 

object, Wc is the remaining capacity before adding the 

object. This calculation is similar to the dynamic 

approach for heuristic calculation.  

 

IV.  EXPERIMENTAL RESULTS 

Although testing cases in most of the recent literature 

showed that the knapsack problem is easy to solve and 

can be solved using the exact algorithm in almost pseudo-

polynomial time, Pisinger [25] “show that the knapsack 

problem still is hard to solve for these algorithms for a 

variety of new test problems”.  

 

 
Fig.3. Knapsack Data Categories [25]. (1) Classical Data, (2) Weakly 

Correlated, (3) Strongly Correlated, (4) Inverse Strongly Correlated, (5) 

Almost Strongly, (6) Subset Sum, (7) Uncorrelated with Identical 
Weights. 
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Accordingly, in order to distinguish the hard knapsack 

problems from other, the knapsack problems, as 

illustrated in Fig. 3, were classified into seven categories 

based on Pisinger [25]. These categories are: 1) classical 

data, 2) uncorrelated data with identical weight, 3) 

weakly correlated data, 4) strongly correlated data, 5) 

subset data, 6) inverse strongly correlated data and 7) 

almost strongly correlated data. The first three categories 

are easy to be solved and are used often for testing the 

knapsack problem’s solution in the literature. The second 

three categories are difficult to be solved. While the 

seventh category is very similar to the strongly correlated 

data, which is difficult to be solved.  

In this paper, various datasets from these categories are 

utilized, with various number of objects.  The settings for 

the experimental results were determined as given in 

Table 1 for the original and proposed approaches. In the 

experiments 14 datasets were used, each of which 

contains 100 problem instances with various number of 

objects and various item weights and knapsack capacity. 

Table 2 lists the properties of these datasets. 

Table 1. Parameter Settings 

Parameter Value Parameter Value 

Alpha 1.0 Number of Rounds 1000 

Beta 1.0 Number of Ants 10 

Evaporation 0.95 Gamma 0.6 

Table 2. Summary of the Utilized Datasets 

Dataset ID Type of Data 
# 

objects 

# 

instances 

Uncorrelated50 Uncorrelated 50 100 

Uncorrelated100 Uncorrelated 100 100 

WeaklyCor50 Weakly Correlated 50 100 

WeaklyCor100 Weakly Correlated 100 100 

StrongCor50 Strongly Correlated 50 100 

StrongCor100 Strongly Correlated 100 100 

InvStrongCor50 
Inverse Strongly 

Correlated 
50 100 

InvStrongCor100 
Inverse Strongly 

Correlated 
100 100 

AlmStrongCor50 
Almost Strongly 

Correlated 
50 100 

AlmStrongCor100 
Almost Strongly 

Correlated 
100 100 

Subset50 Subset Sum 50 100 

Subset100 Subset Sum 100 100 

IdnWeight50 
Uncorrelated/Identical 

Weight 
50 100 

IdnWeight100 
Uncorrelated/Identical 

Weight 
100 100 

 

The experiments are conducted by randomly initialized 

the pheromones with both the original and the proposed 

approach. Then, the output profit from the constructed 

solution is monitored after each cycle. The profits are 

affected by the pheromones updating process, thus, the 

better the updating is the faster the optimal profit is 

reached.  Moreover, the number of cycles required to 

reach the convergence state with the optimal solution is 

reported. 

 

Fig. 4, Fig. 5, Fig. 6, Fig. 7 and Fig. 8 give examples of 

the results of running the original ACS and the proposed 

approach over selected instances from “StrongCor50” 

dataset. The results show that the proposed approach 

converge faster compared with the original ACS. More 

specifically, with the rising line of the proposed approach 

in Fig. 4, for example, it proofs that the proposed 

approach converges faster, and makes a great 

enhancement of the gained profit within the first few 

cycles, compared to the original that makes strong 

changes after a considerable number of cycles. Even with 

the instances problems, at which the original approach 

outperforms the proposed approach, as given in Fig.8, it 

is noted that the proposed approach makes great changes 

in the first few cycles, but the original was also fast as 

well, which prove that the proposed achieved the 

intended goal.  

 

 

Fig.4. Output Results after each Cycle for Selected Problem 1  

 

Fig.5. Output Results after each Cycle for Selected Problem 2 

The results of the proposed algorithm, compared with 

the original ACS, for the 100 problems of the first dataset 

(Uncorrelated50) are illustrated in Fig. 9. More round 

comparisons are given in Appendix A. It is noted that the 

proposed approach requires less number of cycles/rounds 

to converge compared to the original ACS. The rest of the 

results, for the other datasets, are summarized in Table 3 

and Table 4. As noted, both of the original and proposed 

finds the optimal solution, with equal accuracy value that 

is almost 99%. However, the proposed approach is 

clearly faster than the original one, in most of the 
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problem instances. It is to be noted that the pseudo-

random plays a major role in the convergence. 

Accordingly, with some instance, one of the approaches 

converge faster not because of the pheromones but 

because of the randomization process.  

As noted in Table 4, the proposed approach sacrifices 

insignificant accuracy compared with the original one, as 

the pheromone increment is given to some objects with 

low profits. However, this reduction in the accuracy is 

trivial. 

 

 

Fig.6. Output Results after each Cycle for Selected Problem 3 

 

Fig.7. Output Results after each Cycle for Selected Problem 4 

 

Fig.8. Output Results after each Cycle for Selected Problem 5 

 
Fig.9. Round Comparison of the Original and Proposed Approaches 

over Uncorrelated50Dataset 

Table 3. Summary of the Results’ Speed 

Dataset ID 

Average Number of 

Rounds Rounds 

Reduction 
Original Proposed 

Uncorrelated50 91.59 65.9 28% 

Uncorrelated100 349 322.97 7% 

WeaklyCor50 486.65 441.23 9% 

WeaklyCor100 596.99 493.94 17% 

StrongCor50 388.13 326.78 16% 

StrongCor100 523.58 468.3 11% 

InvStrongCor50 433.13 391.78 10% 

InvStrongCor100 529.87 429.29 19% 

AlmStrongCor50 393.52 381.93 3% 

AlmStrongCor100 483.95 417.13 14% 

Subset50 14.34 10.08 30% 

Subset100 4.77 4.24 11% 

IdnWeight50 238.28 233.44 2% 

IdnWeight100 470.6 447.58 5% 

Average 357.4571 316.7564 13% 

 

In summary, the average rate of cycle reduction of the 

proposed approach compared to the original is 11.4%. 
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Table 4. Summary of the Results’ Accuracy 

Dataset ID 
Accuracy 

Original Proposed 

Uncorrelated50 100% 100% 

Uncorrelated100 99.79% 99.79% 

WeaklyCor50 99% 99% 

WeaklyCor100 98.36% 98.36% 

StrongCor50 99.80% 99.80% 

StrongCor100 99.19% 99.19% 

InvStrongCor50 98.91% 98.91% 

InvStrongCor100 98.46% 98.46% 

AlmStrongCor50 99.78% 99.78% 

AlmStrongCor100 99.21% 99.21% 

Subset50 100% 100% 

Subset100 100% 100% 

IdnWeight50 99.85% 99.85% 

IdnWeight100 99.31% 99.31% 

Average 99% 99% 

 

V.  CONCLUSION 

In this paper, the slow convergence of AC with KP is 

solved by introducing new heuristics that integrated with 

the amount of pheromone increase after each cycle. The 

proposed heuristic integrates the gathered profit so far 

with the amount of pheromone increment to enforce 

diversity in the selected items. As such, the amount of 

pheromone increment at an object increases significantly, 

if the object is added to a loaded knapsack, while the 

incremental portion is identical to the original ACS, when 

the object is added to an empty knapsack. Accordingly, 

the original ACS treated all objects of a given solution as 

the same in term of the amount of pheromone increment. 

On the other hand, in the proposed approach, each object 

is given different pheromone increment based on the 

solution profit and the situation of the knapsack before 

adding the object. The experimental results in seven 

categories of datasets range from easy to difficult showed 

that the proposed approach is clearly faster than the 

original one in most of the problem instances. 

Nevertheless, with some instances, the original approach 

seems to converge fast due to the nature of the problem. 

It is to be noted that the pseudo-random plays a major 

role in the convergence. Accordingly, with some instance, 

one of the approaches converge faster not because of the 

pheromones but because of the randomization process.  

APPENDIX A  

More results are illustrated in Fig. A.1, Fig. A.2, Fig. 

A.3, Fig. A.4 and Fig. A.5. 

 

Fig.A.1. Round Comparison for Selected Dataset 1 

 

Fig.A.2. Round Comparison for Selected Dataset 2 

 

Fig.A.3. Round Comparison for Selected Dataset 3 
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Fig.A.4. Round Comparison for Selected Dataset 4 

 

Fig.A.5. Round Comparison for Selected Dataset 5 
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