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Abstract—Power system contingency studies play a 

pivotal role in maintaining the security and integrity of 

modern power system operation. However, the number of 

possible contingencies is enormous and mostly vague. 

Therefore, in this paper, two well-known clustering 

techniques namely K-Means (KM) and Fuzzy C-Means 

(FCM) are used for contingency screening and ranking. 

The performance of both algorithms is comparatively 

investigated using IEEE 118-bus test system. Considering 

various loading conditions and multiple outages, the 

IEEE 118-bus contingencies have been generated using 

fast-decoupled power flow (FDPF). Silhouette analysis 

and fuzzy partition coefficient techniques have been 

profitably exploited to offer an insight view of the 

number of centroids. Moreover, the principal component 

analysis (PCA) has been used to extract the dominant 

features and ensure the consistency of passed data with 

artificial intelligence algorithms’ requirements. Although 

analysis of comparison results showed excellent 

compatibility between the two clustering algorithms, the 

FCM model was found more suitable for power system 

static security investigation.  

 

Index Terms—Artificial intelligence, cascading outages, 

contingency screening and ranking, fuzzy c-means, k-

means. 

 

I.  INTRODUCTION 

Cascading outage is one of the most frequently stated 

problems with power system reliability. Due to the 

increasing demand on power and new deregulations, the 

system operator has to operate power system equipment 

close to their security limit. Consequently, single tripping 

of a transmission line or generation unit may trigger a 

sequence of unplanned outages that eventually result in a 

total blackout [1]. Therefore, the vulnerability of 

transmission circuits, power transformers, and generation 

units should be investigated all the time to ensure that 

their outage will not leave the network in danger[2]. The 

study of system security under steady-state conditions is 

known as contingency analysis [3]. Typically, 

contingency analysis aims to investigate the 

consequences of a single or multiple equipment outages 

on the security of the whole electrical network. Such 

analysis ends up identifying the initial events, cascading 

chains, and the necessary preventive actions.  

According to NERC, a single outage (N-1) should not 

leave the system under threat [4]. Moreover, many 

studies have taken this investigation a step further to N-k 

(where k ≥ 2). These studies can be divided into two main 

groups based on their methodology, either by using less 

accurate but very fast algorithm [5-8] or by using 

performance indices [9, 10]. Considering thousands or 

even millions of possible contingencies, it is infeasible to 

perform N-K steady-state contingency analysis of a 

modern interconnected power system, especially if k > 2, 

without a compromise. The compromise includes two 

parts; the first part involves how far the operator needs to 

investigate the security of the network against the 

blackout, under specific operating conditions. The second 

part specifies the time margin to respond. Typically, if the 

system operator is looking for an online response, the 

security investigation should not include more than one 

element (N-1), to gain the necessary speed. On the other 

hand, if the operator wants to go with the investigation 

beyond N-1, the time margin to respond will be more 

significant, and the online response may not be applicable 

anymore because of the computational burden attached 

with such studies. Nevertheless, most contingencies have 

less probability of occurring than others which 

dramatically reduced the number of cases that need to be 

investigated. Even though most critical contingencies are 

rare to occur, their occurrence has a destructive 

consequence and should be treated with due caution. The 

contingencies, which have a higher probability of 

occurrence, have to be identified and ranked based on 

their severity for more rigorous analysis. 

In summary, this paper presents a comparative 

conceptual analysis of two clustering algorithms for 

power system contingency investigations. The presented 

work aims to investigate the behavior of the k-means 

algorithm compared with the fuzzy c-means algorithm for 

screening and ranking power system contingencies. The 
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composite insecurity index (CISI) has been adopted to 

quantify the severity of each contingency, where k-means 

and fuzzy c-means are used to group contingencies based 

on the common characteristics they share among others 

and finally giving each observation a meaningful label 

based on cluster centers. Therefore, this paper has been 

organized into four sections. First, section II summarizes 

the previous work involving power system contingency 

analysis. Then, section III reviews the concept of CISI for 

power system monitoring and contingency analysis. Third, 

section IV covers the k-means, Fuzzy c-means clustering 

algorithm; in addition to featuring extraction techniques 

using principal component analysis (PCA). Fourth, 

section V involves the numerical verification of both 

algorithms using the IEEE 118-bus test system. Finally, 

the conclusions summarized in section VI.  

 

II.  RELATED WORK 

Bearing in mind the complicity of modern 

interconnected power systems, the unplanned outage of 

any single element in the power system network today 

may have an adverse impact on the other elements and 

the security of the entire power network. The degree of 

severity varies according to the criticality of the tripped 

element in the network. Under those circumstances, the 

network has to run through a set of pre-specified 

contingencies that are designed to measure how badly 

each element affects the security of the power network. 

The number of these contingencies depends on the size of 

the network and the contingency level that is going to be 

studied. By neglecting the contingency order, however, 

the number of expected cases (C) for N-k contingency 

can be determined as follows [11]: 

 

𝐶 = 𝑁 +  
𝑁(𝑁 − 1)

2!
+

𝑁(𝑁 − 1)(𝑁 − 2)

3!
+ ⋯ =  2𝑁 

(1) 

 

where C is the total number of contingencies and N is the 

number of elements. However, the first term in (1) 

represents the number of N-1 contingency which is equal 

to the number of power system network elements. The 

second term in (in) represents the N-2 contingency and so 

on. Even for a small network, the number of 

contingencies would be enormous and ambiguous in 

some cases [12], which increase the demands for a 

classification technique.  

Considering the overwhelmed number of cases resulted 

from performing N-k analysis, the contingency screening 

has been formulated as an optimization problem in [11, 

13, 14] to identify catastrophic events based on a genetic 

algorithm. In [13] the contingency selection issue has 

been modeled as a combinatorial optimization problem 

and solved by genetic algorithms. The advantage of the 

proposed method was the fact that there is no need for 

off-line calculations required. The study has failed to 

consider a higher level of contingencies and appropriate 

treatment of contingencies. Nevertheless, the higher level 

of contingencies effect has been considered in [14]. In 

[14] a genetic algorithm is proposed to solve a general 

bilevel-programming-based model for N-k power system 

security assessment. The modeling framework provided 

by the proposed approach allows considering the 

nonlinearities and nonconvexities associated with the 

operation of power systems under contingency. However, 

considering a large system, the proposed approach was 

found computationally expensive.  

Alternatively, in [15, 16] neural networks have been 

used for contingency screening and ranking. However, 

using supervised techniques requires that data passed to 

them to be labeled. Therefore, the screening and ranking 

were based on performance indices that have already 

been presented in [17].  In [9] the Monte Carlo method 

has been exploited to evaluate the performance of the 

proposed indices under different loading conditions. The 

proposed technique, which can be considered an 

extension of deterministic methods, offers not only an 

opportunity to identify critical nodes but also critical 

facilities that possibly require more attention from 

planners in the future. 

On the other hand, the vulnerability of network has 

been addressed and assessed in [2, 18-24]. The 

vulnerability studies aim to identify critical components 

and recognize severe scenarios. Therefore, many indices 

have been proposed in [2, 18-24] to conduct the 

vulnerability of the network. A comparison of four 

methods for power system contingency screening and 

ranking has been presented in [25]. All compared 

methods were defined regarding the voltage profile at 

each bus. In [26] a performance index based on voltage-

reactive power has also been introduced. The simulation 

of contingencies has covered N-2 contingency using fast 

decoupled power flow. Contingencies have been 

classified and divided into three groups (non-critical, 

critical, and most-critical) based on the magnitude of the 

proposed index. Even though the study has introduced a 

promising idea, by considering the interconnected power 

network, the voltage index cannot only be used to reflect 

the actual state of contingencies. However, in [27] the 

same classification has been done using three different 

indices. The simulation covers the outage of multiple 

lines up to N-2, but they do not include the effects of 

generation unit tripping. 

Generally, the process of contingencies ranking differs 

based on the adopted methodology, in [28-33] rigid 

boundaries have been used to identify the worst scenarios. 

These boundaries are established based on a well-

understanding of network characteristics. On the other 

hand, in [34-38] different artificial intelligence methods 

have been adopted. The use of artificial techniques 

reduces the required effort to understand the 

characteristics of the electrical network and offers an 

excellent opportunity to generalize the well-trained model 

to serve other purposes. The adopted artificial techniques 

were found efficient in identifying the most catastrophic 

contingencies. Most classifiers used in [16, 28, 30, 38-40] 

relied on labeled data, where each observation has 

already been studied and analyzed before. The role of the 

artificial model, in such a situation, is finding a suitable 
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class for each unseen observation in the future. Such a 

technique will save a lot of time and resources. But not 

all problems in the real world come with labels, 

especially power system issues. Accordingly, 

unsupervised clustering algorithms are found more 

convenient for power system studies [34, 35, 37, 41-43]. 

Clustering algorithms offer an opportunity to split the 

unlabeled data into subsets based on the characteristics 

the samples share among others. The performance of 

clustering algorithms depends mainly on the similarity 

measure that clustering algorithms adopted in the first 

place. In other words, the similarity measure is what 

characterizes many clustering algorithms. As a result, the 

static security of modern power system has been 

comparatively investigated using two well-known 

clustering algorithms, namely K-means and Fuzzy c-

means.  

 

III.  COMPOSITE INSECURITY INDEX 

As previously stated, the contingency analysis 

objective can be summarized in identifying and ranking 

the most deleterious scenarios for further rigorous 

analysis [28, 44-47]. Various indices could use to reflect 

the impact of contingencies on the security of the power 

system. The performance index proposed in [3] can be 

considered the first attempt to quantify the severity of 

contingencies. Then many attempts followed [3] have 

been reported in [29, 36, 45, 48-50]. The simplicity of the 

mathematical structure is what characterizes the 

performance index in [3]. However, it found suffering 

terribly from the masking effect problem [29, 30], which 

makes performance index results questionable. In contrast, 

robust indices have been presented in [51, 52]. Compared 

with the performance index in [3], the performance of the 

composite insecurity index (CISI) in  [51, 52] was found 

superb and comprehensive. CISI defined in terms of the 

thermal limit of transmission lines, voltage profile at each 

bus, active and reactive power of the generation unit. 

Comprehensive behavior makes CISI an excellent choice 

for power system contingency screening and ranking and 

can be mathematically summarized as follows:  

 

𝐶𝐼𝑆𝐼 = ∑
𝐼𝑆𝐼𝐿𝑖𝑛𝑒𝑠(𝑖) × 𝑃(𝑖)

𝑃(𝑖)

𝐼

𝑖=1

+ ∑
𝐼𝑆𝐼𝑉𝑜𝑙𝑡𝑎𝑔𝑒(𝑗) × 𝑉𝑆𝑐ℎ(𝑗)

𝑉𝑆𝑐ℎ(𝑗)

𝐽

𝑗=1

+ ∑
𝐼𝑆𝐼𝐴,𝑃𝑜𝑤𝑒𝑟(𝑙) × 𝑃𝑔(𝑙)

𝑃𝑔(𝑙)

𝐿

𝑙=1

+ ∑
𝐼𝑆𝐼𝑅,𝑃𝑜𝑤𝑒𝑟(𝑙) × 𝑄𝑔(𝑙)

𝑄𝑔(𝑙)

𝐿

𝑙=1

 

(2) 

 

where CISI is the composite insecurity index, ISILines(i) is 

the thermal index of transmission line (i), P(i) thermal 

limit of line (i), ISIVoltage(j) is the Voltage index of bus (j), 

VSch(j) is the scheduled voltage at bus(j), ISIA, Power(l) is 

the active power index of generator (l), Pg(l) is an active 

power limit of generator (l) in megawatt, ISIR, Power(l) is the 

reactive power index of generator (l), and Qg(l) is the 

reactive power of generator (l) in megaVAR. 

 

IV.  ARTIFICIAL INTELLIGENCE TECHNIQUES TO POWER 

SYSTEM CONTINGENCY ANALYSIS 

A.  K-Means Algorithm  

K-Means (KM) is a straightforward unsupervised 

clustering technique that basically aims to split the 

unlabeled dataset into different subsets. Because of its 

simplicity, KM is a fast clustering algorithm, and it 

always converges. Accordingly, there are different 

advanced artificial intelligence techniques such as 

learning vector quantization and Gaussian mixture that 

use the structure of the KM algorithm as the basis of their 

sophisticated structure. However, the initial placement of 

centroids has a significant impact on the clustering results 

of KM which requires more attention to avoid having 

clusters with only one observation assigned to them, or, 

in the worst scenarios, no observations assigned to them 

at all. 

Consequently, the K-means algorithm is suitable when 

a rough estimation of clusters number has existed. Even 

though the number of subsets or subset centers represents 

a challenge to data analysts, different machine learning 

methods can offer a good indication about the number of 

clusters, when the number of clusters is not apparent. In 

this work, for instance, the Silhouette analysis has been 

adapted to offer an insight view about a plausible number 

of clusters. 

On an iterative basis, the distortion measure of KM 

tries to minimize the covariance matrix by continuously 

updating the cluster centers and observations assigned to 

each cluster. The objective function of such an 

optimization problem can be expressed mathematically as 

follows [53, 54]. 

 

 
J = arg min ∑ ∑ ‖𝑥 − 𝜇𝑖‖

2

𝑥∈𝐶𝑖

𝑘

𝑖=1
 (3) 

 

where x (x1, x2,…, xn) is the dataset, Ci is the partitioned 

sets, µi is the mean of points, and k is the number of 

clusters where the target is to find the µi value that 

minimizes J.   

Typically, the output of the KM algorithm usually used 

in two different ways; the first benefits involved splitting 

the dataset into k groups, which is an obvious use case. 

The second uses concerned with giving each observation 

a meaningful label based on the resulting centroids.  As a 

result, after assigning the number of centroids, the 

clustering process based on KM algorithm can be divided 

into three main steps. First, initial placement of centroids 

and there are plenty of techniques that can be used [35, 

55]. Observations assignments will follow the initial 

placements stage to each cluster center. Based on the 

initial assignment of observations, the second step 
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includes statistical calculations to determine the new 

placement of cluster centroids. Finally, the KM algorithm 

will keep updating the results until the termination 

condition materialized. 

B.  Fuzzy C-Means Algorithm  

Unlike KM algorithm that use rigid decision 

boundaries to distinguish clusters, Fuzzy C-Means (FCM) 

allows each observation to have a degree of membership 

in each cluster. Problems with hard-clustering techniques 

can just be summarized in samples located near boundary 

decisions, or in the worst scenarios, samples that are 

located on the boundary itself. These samples, which are 

located on a semi-equal distance from all cluster centers, 

represent a challenge in the decision-making process. On 

the other hand, FCM is an unsupervised technique that 

combines the benefits of hard-clustering algorithms, such 

as hard c-means, and fuzzy terminology [56, 57]. 

Considering pattern recognition problem, FCM aims to 

minimize the objective function [58], and can be 

mathematically formulated as follows: 

 

𝐽𝑚(𝑈, 𝑠) = ∑ ∑ 𝑈𝑖𝑗
𝑚‖𝐶𝐼𝑆𝐼𝑖

𝑓
− 𝑠𝑗‖

2

𝐴

𝑆

𝑗=1
, 1 ≤ 𝑚 ≤ ∞

𝑁

𝑖=1
 

(4) 

 

where 𝑈𝑖𝑗
𝑚  is the membership degree (fuzzy partition 

matrix) of 𝐶𝐼𝑆𝐼𝑖
𝑓
 in the set j, 𝐶𝐼𝑆𝐼𝑖

𝑓
 is the ith of composite 

insecurity index in feature space, 𝑠𝑗  is the vector of 

dataset centroid, and ‖−‖𝐴  express the relationship 

between any sample in feature space and center of the set. 

Since the FCM is basically an iterative optimization 

technique, the membership 𝑈𝑖𝑗
𝑚 and set centers 𝑠𝑗 will be 

updated continuously by using (5) and (6) until the 

tolerance to imprecision in (7) materialized.   

 

 

𝑈𝑖𝑗 =  
1

∑ (
‖𝐶𝐼𝑆𝐼𝑖

𝑓
− 𝑠𝑗‖

‖𝐶𝐼𝑆𝐼𝑖
𝑓

− 𝑠𝑘‖
)𝑆

𝑘=1

𝑛        

 

𝑤ℎ𝑒𝑟𝑒 𝑛 =
2

𝑚−1
 

(5) 

 

 

 max (|𝑈𝑖𝑗
𝑘+1 − 𝑈𝑖𝑗

𝑘 |)  ≤  𝜀 (7) 

 

where 𝜀  is the termination condition and has a small 

value between 0 and 0.1, and k is the number of iterations. 

The target of this iterative process, like KM algorithm,  is 

to keep searching for the optimal location of cluster 

centers and  the degree of membership of each sample 

until the termination condition in (7) verified [59]. 

Therefore, for high confirming efficiency and receiving 

excellent support regarding the decision-making process, 

FCM has been broadly adopted in real-world application 

[56, 57] that requires a decent amount of reliability.  

Additionally, considering labeled data, it is easy 

enough to identify the number of clusters. However, for 

unlabeled data, there is no exact number of clusters that 

could be assumed live in the dataset, this problem is 

known as the cluster validity problem. In such a situation, 

it is necessary to adopt a method or technique that can 

identify the most plausible number of clusters. 

For the KM algorithm, the Silhouette average 

coefficient has been adopted to offer an overview of the 

probable number of clusters that data at hand might have. 

It may be considered a measure of how each observation 

in one cluster close to other samples assigned to other 

clusters. Silhouette’s average coefficient has values 

ranging from -1 (a sample incorrectly assigned to the 

wrong cluster) to 1 (a sample is assigned to a specific 

cluster that is far away from the other clusters). On the 

other hand, a value of 0 shows that the sample could be 

located on the boundary decision between different sets. 

These results can visually be interestingly concluded as 

will be discussed later.  

Alternatively, the FCM algorithm has used the Fuzzy 

Coefficient Partition (FCP), as part of its structure, to 

determine the probable number of clusters. Similar to 

Silhouette analysis, FCP is a measure to what extent the 

number of clusters fits the dataset. The values of FCP are 

ranging from 0 (completely fuzzy) to 1(hard-clustering), 

and can be mathematically interpreted as follows:  

 

  𝐹𝑃𝐶(𝑈) =
(𝑈 ∗ 𝑈𝑇)𝑇

𝑛
 

(8) 

 

where U is the membership degree, n is the number of 

observations, and the operator ‘*’ stands for the standard 

matrix multiplication. Nevertheless, it is important to 

stress that Silhouette analysis and FPC  belong to the 

category of metric classification, which shows that both 

algorithms lack the connection to the geometrical 

structure of data [60]. Therefore, even though both 

adopted algorithms eliminate some of the ambiguity 

attached with unlabeled data clustering  problem, a 

reasonable and logical judgment, unfortunately, is also 

required. 

C.  Feature Extraction  

For bulk power system the N-k contingency analysis 

(where k ≥ 2, 3, 4) would result in an enormous number 

of cases. Most of these cases are redundant and not offer 

new information about the current system state. Also, 

considering all possible contingencies will require large 

storage and more powerful processor. On the other hand, 

undoubtedly, the redundant contingencies will not only 

require more sophisticated infrastructure but also will 

adversely affect the overall performance of the adopted 

artificial tool. Most artificial intelligence tools require the 

data passed to them be distinct, and independent, which is 

not the case with data at hand. Therefore, the need for 

 𝐶𝑗 =  
∑ 𝑈𝑖𝑗

𝑚 ×𝑁
𝑖=1 𝐶𝐼𝑆𝐼𝑖

𝑓

∑ 𝑈𝑖𝑗
𝑚𝑁

𝑖=1

 
(6) 
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feature extraction and dimensionality reduction technique 

has arisen. In [6, 61, 62] different techniques have been 

used to eliminate the redundancy problem attached with 

contingency analysis. Forward sequential method, 

Entropy maximization, fisher discrimination and 

principal component analysis (PCA) are some of these 

techniques. 

In this work, the PCA algorithm has been used to 

ensure that the data passed to the adopted clustering 

algorithms are consistent with requirements. PCA is an 

unsupervised dimensionality reduction algorithm that has 

been extensively used in different applications recently. 

The PCA algorithm has five steps; these steps can be 

concluded as shown below: 

 

Step 1: Calculate the center of the dataset with N 

dimension using the arithmetic mean. 

Step 2: Find the direction that has the most variance and 

obtain the N × N covariance matrix.  

Step 3: Pick up the principal component vector that has 

the highest eigenvalue of the dataset.  

Step 4: Pick up the next highest principal component 

vector which either orthogonal or linearly 

independent of all previously computed vectors.  

Step 5: Rid of the least variance features and save the 

new N × M list. 

 

It is important to stress that PCA as an unsupervised 

algorithm could change the number of features or even 

the value of the feature itself. However, PCA does not 

alter the number of samples. Therefore, the number of 

rows (samples (N)) will hold constant where the number 

of columns (features (M)) will be changed according to 

the resulted covariance matrix. 

So far, this section has focused on the two different 

clustering algorithms for power system contingency and 

feature extraction technique using PCA; the following 

section will discuss the results of the numerical 

investigation. 

 

V.  SIMULATION RESULTS 

To emphasize the significant differences between the 

two proposed clustering algorithms, the IEEE 118-bus 

test system (having 54 generators, 186 transmission lines, 

the total generated active power = 5509.82 MW, and the 

total generated reactive power = 1649.81 MVAR) is 

chosen. A computer with processor Intel Core i7- 7th gen, 

2.9 GHz, and RAM of 8 GB have been used to simulate 

different contingencies of the IEEE 118-bus test system. 

Moreover, all essential analysis including contingencies 

replications, artificial techniques implementation, and 

data visualization is carried out using Python language. 

The simulated contingencies covered multiple outages of 

various transmission lines and generation units, under 

different loading conditions. The total number of 

simulated cases using fast decoupled power flow (FDPF) 

was 3,756,456-case. Also, for labeled data, there are 

plenty of measures that characterize the performance of 

classification algorithms. However, considering 

unlabeled data, there is no measure of how clustering 

algorithms well perform against the unlabeled new 

dataset. Therefore, in this work, KM and FCM algorithms 

performance are compared based on computation time, 

resources usage, and efficiency.  

Because of its sensitivity to sample scaling, PCA has 

been applied over dataset for two main reasons, as 

previously described, first, to reduce the dimensions of a 

dataset, and second, to ensure that the converted dataset is 

consistent with clustering algorithms’ requirements. The 

results of the PCA are depicted in Fig. 1. The reported 

results in Fig. 1 is merely a transformation from 

insecurity indices domain, which is shown in Fig. 2, into 

feature domain as shown in Fig. 1. 

 

 

Fig.1. The PCA output of IEEE 118-bus test system 

 

Fig.2. A sample of insecurity indices representation of IEEE 118-bus 
test system contingencies 

Fig. 2 shows the performance of insecurity indices in 

tracking most of the network’s contingencies. Besides, 

the interpretation of the x-axis coding of Fig. 2 is reported 

in Table 1. 
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Table 1. The description of the x-axis indexing code for Fig.2. 

Contingency 
No. 

Code No. Description 

852490 
Ld0.2, G113, L38, 

L149 

Loading is 20 % of the 

base load, Generator on 

bus 113 and line No. 38 
and 149 are tripped 

⁝ ⁝ ⁝ 

590784 
Ld0.2, G80, L29, 

L148 

Loading is 20 % of the 
base load, Generator on 

bus 80 and line No. 29 and 

148 are tripped 

⁝ ⁝ ⁝ 

1,259,359 
Ld0.5, G55, L38, 

L143 

Loading is 80 % of the 

base load, Generator on 
bus 55 and line No. 38 and 

143 are tripped 

⁝ ⁝ ⁝ 

2,188,030 
Ld0.8, G61, L45, 

L182 

Loading is 80 % of the 

base load, Generator on 
bus 61 and line No. 45 and 

182 are tripped 

⁝ ⁝ ⁝ 

2,791,524 Ld1, G19, L56, L88 

Loading is 100 % of the 

base load, Generator on 

bus 19 and line No. 56 and 
88 are tripped 

A.  Case 1(K-Means Clustering Model)  

For the power system contingency assessment, the 

synthesis of the KM model achieved according to specific 

conditions; The maximum number of iterations is taken 

as 300, where the tolerance is considered 0.005. 

Furthermore, the number of clusters have been identified 

using Silhouette analysis as previously mentioned. Once 

the number of plausible centroids identified, the KM 

model was created. The results of the Silhouette analysis 

have been reported in Fig.3. The three clusters have 

perfectly fitted the dataset based on Silhouette’s average 

coefficient. For three clusters, the KM algorithm has run 

over IEEE 118-bus contingencies, and the results have 

been reported in Fig. 4. Although the elapsed time 

(8.1050 seconds) for KM model training was relatively 

small compared with other sophisticated algorithms, the 

KM algorithm was found suffering badly from the larger 

number of observations. Therefore, only 1% (35,154 × 2) 

of observation considered in the training stage. 

B.  Case 2(FCM Clustering Model)  

Unlike the KM algorithm, FCM can easily assimilate a 

more considerable amount of observation. On the other 

hand, the same conditions have been followed as in the 

case of the KM algorithm. The number of clusters has 

been identified, for the FCM algorithm, using FPC. The 

results have been reported in Fig. 5. The results, shown in 

Fig. 5, are in agreement with those obtained by Silhouette 

analysis, shown in Fig. 3. As Fig. 5 shows, there is no 

significant difference between the different number of 

clusters. Slight changes in FPC values can be traced back 

to the nature of observations and how they are distributed 

in the feature space. So, it is important to stress that 

logical and reasonable judgments are also required to 

determine a plausible number of clusters. Nevertheless, 

both algorithms show that 3 clusters are very suitable for 

fitting IEEE 118-bus contingencies. Once the number of 

centroids identified, the FCM algorithm was applied as 

shown in Fig. 6. Even though both algorithms have 

finished the process of data clustering at almost the same 

time, the FCM algorithm has assimilated more data than 

the KM algorithm. Besides, the KM algorithm consumes 

a considerable amount of resources even with a lower 

number of observations. 

 

 

Fig.3. Silhouette analysis results of IEEE 118-bus test system 

 

Fig.4. KM results for IEEE 118-bus test system 

C.  Comparison of KM and FCM algorithms  

Considering the infeasibility of correctly interpreting 

the clustering results in the feature domain, the clustering 

results of both algorithms have been transformed back 

from feature space, as shown in Fig. 6, to indices domain, 

as shown in Fig. 7, Fig. 8, and Fig. 9. KM clustering 

results split the IEEE 118-bus test system’s contingencies 

into three clusters, as shown in Fig. 7, Fig. 8, and Fig. 9. 

Closer inspection of contingencies in Fig. 7, Fig. 8, and 
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Fig. 9 show that the clustering algorithms were working 

based on two main bases; these bases are the severity of 

contingencies and the characteristics of these 

contingencies. In other words, the contingencies have 

been divided into groups based on two main factors; these 

factors are the severity of insecurity indices and the 

characteristics that observations share among others.  For 

instance, the collected observation in Fig. 7 (cluster No. 

(0)) includes all cases that their occurrence has a minor 

impact on the security of the IEEE 118-bus system, also, 

these contingencies, as shown in Fig. 7, are suffering 

from the same issues. These issues are the lack of reactive 

power support, and the active power of generation units, 

which, if not appropriately treated, maybe eventually led 

to voltage problems. On the other hand, Fig. 8 (Cluster 

No. (1)) shows all contingencies that their outages may 

result in cascading blackouts, where all insecurity indices 

reached the maximum value, which is an equal four, 

refers to (2). Reached the maximum value means that the 

power follow does not converge at the end. Stated 

differently, cases included in Cluster No. (1) Fig. 8 

represents the most catastrophic contingencies that could 

ever hit the network under various loading conditions and 

multiple equipment outages. Nevertheless, it is important 

to stress that power flow divergence is not by necessarily 

mean the system is insecure, but it is a good indication 

that more investigation is required. Moreover, from the 

operational perspective, knowing which element or 

combination of elements that could lead to severe 

scenarios or even putting the network under stress is good 

enough to prepare preventative countermeasures to 

maintain the security and integrity of the network. On the 

other hand, cluster No. (2), as shown in Fig. 9, contains 

all contingencies that their outages result in experiencing 

the shortage of reactive power support. As apparent in 

Fig. 9, the reactive power index of the generation unit 

dominates the whole graph.  

 

 

Fig.5. Fuzzy Partition Coefficient (FPC) results for IEEE 118-bus test system contingencies. 

 

Fig.6. The FCM results for IEEE 118-bus test system 

 

Fig.7. The clustering results of contingencies based on KM and FCM 
algorithms, Cluster No. (0) 
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Fig.8. The clustering results of contingencies based on KM and FCM 
algorithms, Cluster No. (1) 

 

Fig.9. The clustering results of contingencies based on KM and FCM 

algorithms, Cluster No. (2) 

Alternatively, considering the inherent behavior of 

both algorithms, Table 2 shows a comparison between 

KM and FCM algorithms. A closer inspection of the table 

shows the superiority of the FCM model compared with 

the KM model. The FCM model, as shown in Table 2, 

has assimilated more observations with less consumption 

of resources than the KM model. Taking into account 

decision-making support, Table 3 shows a sample of the 

most deceptive results of the KM model for the power 

system’s static security assessment. The KM model, as 

shown in Table 3, tracks the shortest distance from each 

sample to the cluster centers regardless to how close the 

observations are to other cluster centers, which is the 

typical behavior of any hard-clustering technique. Thus, 

the observation usually assigned to the closest cluster. 

Shortest distance can also be defined, using fuzzy 

terminology, as the maximum degree of membership for 

specific observations in all clusters. However, defining 

the state of the system based on the maximum degree in a 

specific cluster and neglecting other notable memberships 

in other clusters is somewhat incorrect if the security and 

integrity of the network have been considered. For 

instance, the contingency number 5, which includes the 

tripping of the generator at bus 4 and outages of lines 

number 8 and 55 at 100 % of the base load, has been 

grouped with cluster No. (0) with a tiny margin compared 

to other clusters. Cluster No. (0) has been characterized 

by having less harmful contingencies than other clusters 

for IEEE 118-bus contingencies, as shown in Fig.7. 

Consequently, the observations, which have a semi-equal 

membership of multiple clusters, cannot be assigned to 

the cluster that has a maximum membership with a small 

margin; instead, the observation will be assigned to the 

more severe cluster to maintain the security and integrity 

of the electrical network.  

Table 2. A comparison of the FCM and KM algorithm. 

Algorithm 
No. of 

Samples 

Elapsed 

Time 

(sec) 

Memory 

usage 

(avg.) 

Processor 

usage 

(avg.) 

KM 35,154 (1%) 8.1050 96 % 75 % 

FCM 1,757,700 (50%) 8.5650 80 % 44 % 

Table 3. A sample of the FCM and KM algorithm results for the IEEE 

118-bus test system. 

No. Contingency  
FCM 

K-M 
0 1 2 

1 Ld1, G4, L0, L8 0.3312 0.3110 0.3579 2 

2 Ld1, G4, L3, L8 0.3012 0.3808 0.3180 1 

3 Ld1, G4, L6, L8 0.3290 0.3149 0.3560 2 

4 Ld1, G4, L8, L38 0.3724 0.3057 0.3219 0 

5 Ld1, G4, L8, L55 0.3564 0.3260 0.3176 0 

6 Ld1, G4, L8, L64 0.3465 0.3522 0.3012 1 

7 Ld1, G4, L8, L69 0.3848 0.3064 0.3088 0 

8 Ld1, G4, L8, L75 0.3659 0.3120 0.3221 0 

9 Ld1, G4, L8, L76 0.3353 0.3484 0.3163 1 

10 Ld1, G4, L8, L78 0.3633 0.3265 0.3101 0 

11 Ld1, G4, L8, L86 0.3100 0.3085 0.3815 2 

12 Ld1, G4, L8, L94 0.3430 0.3412 0.3158 0 

13 Ld1, G4, L8, L111 0.3627 0.3254 0.3119 0 

14 Ld1, G4, L8, L116 0.3255 0.3204 0.3541 2 

15 Ld1, G4, L8, L117 0.3502 0.3184 0.3314 0 

16 Ld1, G4, L8, L127 0.3102 0.3752 0.3146 1 

17 Ld1, G4, L8, L132 0.3467 0.3193 0.3340 0 

18 Ld1, G4, L8, L144 0.3784 0.3010 0.3206 0 

19 Ld1, G4, L8, L146 0.3754 0.3062 0.3185 0 

20 Ld1, G4, L8, L164 0.3225 0.3106 0.3669 2 

21 Ld1, G4, L8, L170 0.3066 0.3305 0.3629 2 

22 Ld1, G4, L8, L180 0.3486 0.3204 0.3310 0 

23 Ld1, G10, L71, L96 0.3730 0.3151 0.3119 0 

24 Ld1, G12, L1, L8 0.3556 0.3331 0.3113 0 

25 Ld1, G12, L4, L8 0.3275 0.3720 0.3005 1 

26 Ld1, G12, L5, L8 0.3362 0.3498 0.3140 1 

27 Ld1, G89, L108, L126 0.3253 0.3096 0.3651 2 

28 Ld1, G89, L126, L148 0.3051 0.3517 0.3433 1 

 

VI.  CONCLUSION 

This study set out to compare the behavior of two 

unsupervised clustering techniques for power system 

static security assessment. These techniques include the 

KM and Fuzzy C-Means (FCM). Silhouette analysis and 

Fuzzy Partition Coefficient (FPC) have been used to 

identify a plausible number of clusters, which is a 

common issue attached to unsupervised techniques. 
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Besides, to enhance the overall performance of the 

adopted unsupervised clustering algorithm, Principal 

Component Analysis (PCA) has been used to extract the 

dominant features and reduce the size of the input matrix. 

Both techniques have been tested by using the IEEE 118-

bus test system. The results show that the KM algorithm 

is susceptible to the observation scale and the number of 

samples which could have an adverse impact on the 

clustering performance. In this work, the sensitivity of the 

algorithm to the number of observations has been 

alleviated by taking a well-representative sample based 

on a statistical measure. However, by optimizing the size 

of observations, the KM algorithm was found robust and 

always converging.  Compared with the KM model, the 

FCM model is immune to observations size. The elapsed 

time taken by the FCM algorithm for clustering of 50 % 

of IEEE 118-bus contingencies was taken by KM 

algorithm to separate only 1 % of total contingencies.  

In a nutshell, KM algorithm is a powerful clustering 

technique to start exploring data at hand. However, the 

FCM algorithm is superior and should be considered if 

decision-making becomes an urgent necessity.  
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