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Abstract—In this work an analysis of neurocontrollers is 
given. The purpose of this paper is the neurocontroler for 
attitude control: satellite rotations. The classification of 
neurocontroller architecture is provided. The pros and 
cons of different neurocontrollers are described. Two 
configuration of neural network – feedforward neural 
networks with mini-batch descent and modified Elman 
neural network, are investigated in this work to verify its 
ability to control the attitude of a satellite. The 
advantages and disadvantage of different predictive 
model neurorization systems are described. The class 
diagram for the simulating of satellite rotation for neural 
network learning is given. The proposed approach 
provides the architecture of the neural network and the 
weights among the layers in order to guarantee stability 
of the system. The accuracy was calculated.  The AI 
module, after trained for different configurations of 
wheels, will get commands with desired 3D rotation 
speeds and control the wheels to achieve the desired 
rotation speeds. 
 
Index Terms—Neural network, neurocontroller, satellites, 
attitude control, control, training of artificial neural 
network. 
 

I.  INTRODUCTION 

Neurocontrol is a special case of intelligent control, 
using artificial neural networks to solve problems of 
controlling dynamic objects. 

The term “neural control” was first used by one of the 
authors of the method of back propagation of an error by 
Paul J. Verbos in 1976. There are numerous examples of 
the practical application of neural networks for solving 
problems of controlling an aircraft, a helicopter, a robot 
car, an engine shaft rotation speed, a satellite with 
rotation wheels ect. 

Most fuzzy logic controllers are actually proportional–
integral–derivative controller (PID controllers) with the 
fuzzy logic used to schedule its gains. So, it is actually a 

PID controller, but with variable gains. For nonlinear 
processes, using variable gains is naturally better than 
fixed ones. But fuzzy logic is an “approximation” of 
experienced rules. It is mostly used to transform neural 
networks or statistical like interpolations into PID 
tunnings. 

The main problem is in training organization on the 
board when the new training results are appeard [1]. The 
learning process can be quite long (days or weeks), but 
the decision process in a neural network is determined 
only by the number of layers (and neurons for the case of 
sequential processing) (milliseconds). In the neural 
network basis, it is possible to effectively solve the 
problem of approximating the function of searching for a 
control action in a time that is shorter or comparable to 
the traditional approach. In addition, it should be noted 
that homogeneous methods for solving heterogeneous 
control problems would significantly simplify the 
hardware implementation of the control system. Thus, 
neural and neuro-fuzzy control systems meet the 
requirements for onboard systems or satellites and form 
control models in a common technological key both in 
terms of the hardware solution and in the sense of the 
unity of the methods for obtaining the solution. 

The purpose of this paper is the neurocontroler for 
attitude control: satellite rotations. The AI module, after 
trained for different configurations of wheels, will get 
commands with desired 3D rotation speeds and control 
the wheels to achieve the desired rotation speeds.  

The novelty of the paper are modified NN Elman 
approach and Feed Forward NN mini-batch approach that 
allow us to decrease computation complexity and 
increase the accuracy of satellite’s model. 

The paper consists of the neurocontroller classification 
chapter, proposed neurocontroller method, the results 
discussion and conclusions. The first part of paper is 
overview of neurocontroller types. After that, the new 
configuration of neurocontroller is proposed. The 
simulator is created for dataset creating. The results of 
trained neurcontroller using modified NN Elman 
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approach and Feed Forward NN mini-batch approach are 
presented. In conclusion part the comparison with 
existing neurocontroller is given. 

 

ІІ.  THE NEUROCONTROLLERS CLASSIFICATION 

The methods of neural control are divided by the 
method of using neural networks into direct methods and 
indirect methods. In direct methods, the neural network is 
trained to directly generate control actions on an object; 
in indirect methods, the neural network is trained to 
perform auxiliary functions: identification of the control 
object, noise suppression, online tuning of the device in 
the control loop with feedback controller coefficients. 
Depending on the number of neural networks that make 
up a neurocontroller, neural control systems are divided 
into single-module and multi-module. Neural control 
systems that are used in conjunction with traditional 
regulators are called hybrid ones [2]. 

In the tasks of neural control, the black box model is 
used to represent the control object, in which the current 
input and output values are observed. The state of an 
object is considered unavailable for external observation, 
although the dimension of the state vector is usually 

considered fixed. The dynamics of the control object can 
be represented in a discrete form: 

 
( ) ( )1 ( ), ( )X k X k u k+ = Φ                     (1) 

 
( 1) ( ( ))y k X k+ = Ψ                           (2) 

 
where ( ) NX k R∈  is state of object of range N  in the 

tact k ; ( ) Pu k R∈  is value of P -dimensional control 

vector in the tact k ; ( 1) Vy k R+ ∈  is value of V -
dimensional object output in the tact ( 1)k + .  

The analysis of modern systems of automatic control 
of nonlinear dynamic objects shows that they are created 
as adaptive systems with feedback. This requires 
knowledge of the model of the control object. A well-
known control system is a feedback model with real-time 
time-varying coefficients.  

The adaptive Astrom regulator based on Lyapunov's 
direct method presents such type of model [3]. Fig. 1 
represents the Closed Loop Control applied to Satellite 
using Neurocontrol. 

 

  
Fig.1. Closed Loop Control applied to Satellite using Neurocontrol 

The use of neural network has its own specificity, 
which creates the corresponding requirements for the 
neural network architecture and its learning algorithm. In 
most cases, for the considered works, the neural network 
acts in one of the following elements (Fig. 2). 

 
1. Regulator [4]. 
2. Models of the control object [5]. 
3. Optimal control object filter [6]. 
4. The regulator is compatible with another regulator: 

linear and built using elements of fuzzy logic [7]. 
5. Optimization controller of another type [8]. 
6. Classifier or system for image recognition [9]. 
 

III.  RELATED WORKS 

Inherited Neurocontrol (Neurocontrol learning based 
on mimic, Controller Modeling, Supervised Learning 
Using an Existing Controller) [10] covers neurocontrol 
systems in which a neurocontroller learns on examples of 
controller dynamics. After training, neural network 
accurately reproduces the functions of the input controller. 
Inherited neurocurrency is used for initial learning of 

neural network with the use of other methods for the 
subsequent training of the neurocontroller. 

Inverse Neurocontrol. In [11], some examples of the 
use of an inverse model control scheme for linear systems 
using neural network are shown. In this approach, the 
formation of an inverse control object model is carried 
out through the training of neural network. 

In the generalized inverse neurocontrol [12] it is 
envisaged to study neural network in off-line mode, based 
on the recorded trajectories of the behavior of a dynamic 
object. To get such trajectories on the control object as a 
control signal, some random processes are presented. The 
values of the control signals and the corresponding 
reactions of the object are recorded and form the learning 
sequence on the basis of them.  

During of training, the neural network must monitor 
and remember the dependence of the control signal u(k-1) 
on the next value of the reaction of the control object   
that was before in the state X(k-1). The values of the 
control signals and responses of the object are recorded 
and, on this basis, a training sample is formed.  
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Fig.2. Neurocontrol realization ways 

{ } [ ]1, : ( ) ( 1) , ( )TM
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= = − =       (3) 

 
We used and desired reaction.  
In the training mode neural network must find and 

remember the dependence of control signal ( 1)u k − , in 
state before ( 1)S k − . When the object is controlled, the 
inverse neuro-emulator is connected as a controller and it 
is receiving the ( )rr k  value from input ( 1)r k + : 

 

[ ]( ) ( 1) ( ) Trr k r k X k= +                        (4) 
 

It is assumed that the inverse model of the control 
object formed during training is adequate, therefore, the 
control signal emitted by the neural network will ensure 
the object's transition to the position specified by the 
setpoint. 

Thanks to the stabilizing feedback effect, a fairly high-
quality control is achieved. Known variations of general 
inverse control, in which, instead of the running value of 
the target value, the target trajectory is given in L steps 
ahead. 

The advantage of generalized inverse neurocontrol is 
the training of the neurocontroller in off-line mode in the 
absence of an exact mathematical model of the control 
object. 

Specialized inverse neurocontrol [13]. This type of 
inertia allows you to teach an inverse neurocontroller on-
line, using the deviation error from the set value 
e r y= − . The neural network generates a control signal   
that gives the control object’s position ( 1)y k + . Further, 

we determine the error of the neurocontroller. The 
correction of neurocontroller weights is performed using 
descent method or some other gradient method. The 
advantage of this approach is the high quality of control 
compared to the generalized inverse neurorubation 
method. A significant disadvantage is the need to know 
the exact mathematical model of the control object that is 
required for training the neurocontroller. 

The method of error transmission through a direct 
neuroemulator. This approach uses two neural networks 
[14], one of which acts as a controller, and the other - a 
direct neuroemultizer, trained to simulate the dynamics of 
the controlled object. And while learning a direct 
neuroemulator at the output of the control object, a 
random control signal u is made that changes the position 
of the control object y, and on the basis of such values, 
we create a training sample. The training of a direct 
neurocontroller is carried out in off-line mode. The 
mechanism of reverse propagation through a direct 
neuroemultizer implements a local inverse model of the 
state of the control object in the current space. Passing 
through the neurotransmitter, the error spreads through 
the neurocontroller, but now its passage is accompanied 
by correction of weight coefficients of the neurocontroller. 
The neuroemultizer thus performs the functions of 
additional layers of the neural network neurocontroller, in 
which the weight of the connections is not corrected. 

Forecasted neurocontroller. In [15], an neural network 
speed controller with prediction is given Predictive 
Controller is considered. The method of training 
neurocontrollers, which minimizes the deviation of the 
current position of the control object from the specified 
for each step, does not always provide the best integrated 
control quality. The quality of work will depend on the 
implementation and selection of the minimization 
algorithm to predict the corresponding signal obtained 
from the control object model. 

The prediction models of neurocontroller [16] 
minimizing the integral error functionality looks like: 
 

( )
2

1

2( )
L

i L

Q k e k i
=

= + +∑  

( ) ( )( )
2

2

0

1
L

i

u k i u k iρ
=

+ + − + −∑                (5) 

 
where e  is error, ρ  is the contribution of the control 
signal to the overall function Q . We make prediction to 

2L  tacts, 1 20 L L≤ ≤  and start from 1L  tact. 
To predict the future behavior of the system and 

determine the error, a direct neuroemultier is used. It is 
trained for the inverse spread of the error. The peculiarity 
of such a method is the lack of a training controller. Its 
place is an optimization module that can work in real 
time [16]. The disadvantage of predictive model 
neurorization systems is its limited use in systems with 
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fast changing dynamics, since the optimal real-time 
algorithm will not be able to find the best control strategy 
for one tact. 

The methods of neutralization based on adaptive 
critique [17], like the system of predictive model control, 
choose a control signal based on estimates of the future 
behavior of the control system. Such a system contains 
two neural modules: a neurocontroller and a module of 
criticism. The criticism module uses the approximation of 
the transfer function value. The popularity of systems of 
adaptive criticism is due to the presence of a developed 
theoretical basis in the form of the theory of dynamic 
programming of Bellman, as well as the property of 
similarity to optimal or close to optimal control. 

Multidimensional neurocontrol is characterized by a 
structure of type of expert committees [17]. For a 
multidimensional approach, the original task is divided 
into separate subtasks, the solution of which is assigned 
to individual modules. Systems of multimodal 
neurocontrol based on local inverse models consist of a 
large number of linear neurocontrollers and a control 
module. Each of the linear controllers is the neural 
network direct propagation of the signal, which is trained 
to control within the local area of the object state space. 

Different methods can be used to form a 
neurocontroller [2]: 

 
• generalized inverse neurocontrol, 
• specialized inverse neurocontrol, 
• method of return error transmission through a 

neurocontrol. 
 
The disadvantage of such a method for training a 

neurocontroller is the need for a large amount of training 
examples distributed in the space of states of the control 
object. 

The method of multimodal neurocontrol based on the 
pair of direct and inverse models [18] differs from the 
method of neurocontrol based on local inverse models, in 
which the behavior of the system is formed during 
training and during control is not corrected. Such a 
method involves adjusting the behavior of neural modules 
at each beat of the neurocontrol. A significant 
disadvantage of the multimodal neurocontrol system is 
the opaque procedure for separating the training sample 
into a sample for the study of direct and inverse 
neurotransmitters of different modules. Hybrid 
neurocontrol is based on the use of compatible neural 
network approach with conventional controllers, 
proportional–integral–derivative controller (PID 
controller or three-term controller) regulators or other 
types of controllers. The hybrid neuro-PID control [19] 
allows self-adjusting of the PID controller in on-line 
mode using neural network. Controlling using the PID 
controller is to minimize feedback errors. The control 
signal produced by the controller is the sum of the 
proportional, integral and differential components. 

A disadvantage is the problematic evaluation of the 
stability of the resulting nonlinear controller. For such a 
method, there is a need for an analytical mathematical 

model of the control object. 
Methods of hybrid parallel neurocontrol. In [98] 

parallel use of neurocontrollers with a conventional 
controller for the controlling of dynamic objects is 
foreseen. In this case, the neurocontroller and the usual 
controller, in the role of which, for example, PID-
controller, receive identical setup values. 

Hybrid parallel neurocontrol is a compromise solution 
for traditional neurocontrollers and transition from 
conventional controllers to neural network. Auxiliary 
neurocontrollers is relevant when it is necessary to solve 
additional problems that arise in the process of dynamic 
objects controlling. The quality of controller control can 
be increased and the trajectory of motion of the object 
smoother when using external perturbation filtering [19]. 
Initially, such a scheme was use in conjunction with 
neurocontrollers trained on the principle of general 
neutralization. This approach is applied to the control 
object with reverse dynamics in the presence of an 
adequate mathematical or simulation model of the control 
object for the training of a direct and inverse 
neurotransmitter. 

Model of Reference Adaptive Control [20] is an option 
of neutralization according to the method of reverse error 
propagation through a direct neuroemultizer with 
additional introduction into the scheme of the reference 
model. In order to reduce the uncertainty in the control 
process between the object and the neurocontroller, a 
reference model, as a rule, a linear dynamic system of 
low order, which can be easily verified by analytical 
methods for stability [20], is introduced. The reference 
model is selected in such a way that the trajectory 
generated by it on each tread could be attainable for the 
control object. K. Krishnakumar et al. [20] proposed an 
original modification of the neutrophication with 
anadaptive reference model for the creation of a crash-
resistant control system of the aircraft. The standard 
model is studied in the off-line mode by minimizing the 
mean square error by deviating the trajectory of the 
motion of the control object from the target trajectory. 
Such an adaptive system can be considered as a normal 
neurocontroller of the type of adaptive criticism, which 
controls the combined dynamic system "PID-controller + 
object control." 
 

ІV.  PROPOSED NEUROCONTROL METHOD 

First, we should generate dataset for neural network 
training. 

A.  Simulator architecture 

The class diagram for the simulating of satellite 
rotation for neural network education is given in Fig. 3. 

Design layers:  
 

• Contracts shows main entities of simulator and 
grants low coupling between their 
implementations. Contracts consists of 
abstractions; 
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• Core implements contracts. It contains primary 
physical model and Simulation entity. 

• Satellite simulation extends Core with a dynamic 
of reaction wheel and satellite. 

 
Entities: 
 
• Point – provides an abstract point for further 

implementations; 
• MassPoint – point with mass and movement 

vector; 

• ForcePoint – predetermines point of attachment 
of force and current vector of force; 

• Object – provides enumeration of points, which 
interact with each other; 

• ReactionWheel – inherited from MassPoint 
instances, is used for changing rotation speed of 
satellite by changing its angular momentum; 

• Satellite – inherited from Object, provides 
simulated Satellite of arbitrary form, which 
moves and rotates using thrusters (ForcePoint) 
and reaction wheels. 

 

 
Fig.3. The simulator class diagram 

Simulator provides enumeration of Object instances 
and configuration of scenario of their behavior. 

Point class is a generalization of 3D point, which can 
be moved or rotate. Logic of this class is used in other 
points (MassPoint, ForcePoint etc.). 

Instance movement of Point is rather a simple 
implementation. We just have to set a vector of current 
instance speed (SetInstanceSpeed method) and use Move 
method to move it. Notice that all vector values are from 
Eigen library these implementations use vector3d class. 

Rotation movement is more complicated than the 
previous movement. The point to be rotated must have 
axes of rotation and its rotation speed.  Rotation axes is a 
line, which can is set as a guide vector of the line and 
point, which belongs to the line. The point P will be 
rotated around the axes after its rotation speed and 
rotation axes are set and Rotate method called. 

As far as it concerns rotation speed, it is measured in 

radians per second, if it is positive point rotates clockwise, 
else anticlockwise. 

When we use this type of motion, we simulate moving 
of point by vector of speed. In further implementations of 
simulation’s core, it is used to move other objects. 

Parameters of RotatePoint:  
 
• point – point to rotate, 
• axesVector – vector of rotation axes, 
• axesPoint – point which bellows to rotation axes, 
• angle – angle for rotation[rad]. 
 
MassPoint class inherits implementations of Point so 

motion of MassPoint is same as in Point. However, there 
is mass [kg] MassPoint added which is used in Object 
implementation to define its mass and inertia. 

Object class is a virtual model of material object, 
which is represented as array of mass points.  
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Object obeys the laws of mechanics and non-
relativistic kinematics. Implementation of its behavior we 
use to create more complicated physical systems, such as 
satellite, for instance. 

B.  Neurocontoller implementation using NN Elman 

The neurocontroller for the control loop is based on the 
Elman network, which consists of the input, hidden and 
output layers. Elman's neural network is one of the types 
of recurrent networks, which is derived from the 
multilayer perceptron by the introduction of feedback, 
only the connections go not from the output of the 
network, but from the outputs of the internal neurons. 
This allows you to take into account the history of 
observed processes and accumulate information to 
develop the correct management strategy. These networks 
can be used in the control systems of moving objects, 
because their main feature is memorization of sequences. 
Unlike other types of recurrent neural network (NN), 
such as Hopfield, Hemingham, Jordan, additional lines of 
dynamic delay from the output of neural network to its 
input were introduced into the structure of NN Elman [21 
– 22]. 

The modified algorithm for neurocontroller using NN 
Elman training consists of the following steps:  
 
Step 1. At the initial time 1t = , all hidden neurons are set 

to zero - the initial value is zero. 
Step 2. We send the input value to the network, where it 

is directly distributed in the neural network. 
Step 3. According to the training of the neural network 

by the chosen Fletcher-Rives algorithm, which, in 
comparison with the gradient-descent algorithm, 
governs the convergence speed not only by setting 
the speed parameter, but also corrects the step size 
for each iteration. So, achieve the set value of the 
error we perform for the minimum number of 
iterations.  

Step 4. We set 1t t= +  and carry out the transition to 
Step 2. We will continue to train the neural 
network until the total mean square error of the 
network is of the least value. 

 
The network final error depends on the number of 

hidden neurons and the number of training points. In 
order to achieve a given precision, the larger the training 
set, the greater the number of hidden neurons. Training 
was carried out by generating positions from IRotatable. 
The neural network used in controller design is three-
layered. 

Starting with 8 neurons and 256 training points, the 
required output error was reached with 24 neurons, and 
the learning process succeed with only 2576 points [22 -
24]. In this network, the unknown parameters are 
considered as network’s weights, which are updated over 
the time and are converged to their true values.  

 

( )( )( ) ,i i i j ijz f Y f U X W= = +∑                 (6) 

 

where, iU  is output signal of neuron i , f  is activation 
function, iY  is average sum of input signals, iX  is signal 
j of hidden layer, ijW  is weight [23 – 26]. 

Weight updates are be done using the error between 
output of the network (estimated control torques) and the 
control torque generated by feedback linearization 
controller. The back propagation update law is considered 
as follow:  
 

JW
W

η ∂
∆ = −

∂
                              (7) 

 
where, J  is the cost function of neural network which 
defined based on the difference between the estimated 
torque and real torque control.  

C.  Neurocontoller implementation using mini-batch 
gradient descent 

For the design of adaptive-neural network control, first, 
the feedback linearization controller is designed and then 
a neural network is used to estimate the system’s 
uncertainty. To estimate the unknown parameters of the 
system, the multilayer neural network with back 
propagation update law is used. Simple structure and 
small number of parameters to be adjusted, is the main 
advantage of the designed neural network. 

Generalized inverse learning presents some negative 
properties when the training is performed with the real 
system, as there is no guarantee that the system output 
covers totally the state space. Of course, this problem will 
not happen in case of a numeric simulated system. 
Indirect model presents some instability during training, 
depending on the system dynamics. Specialized inverse 
method requires a network direct model in order to 
establish a relation between the direct model output error 
and the control network output error. In a simulated 
system, nevertheless, specialized and generalized 
methods are equivalents and so the results presented here 
were obtained with the generalized inverse model, as 
shown in Fig. 4. 
 

 
Fig.4. Control network training model 
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Inputs to the control network are the state (speed of 
each rotation wheel) at time t  and the propagated speed 
at time t t+ ∆ . The output is the control signal (torque). 
The neural network structure looks like this: 

 
• Input layer – 3 neurons (for rotation speed by 

x,y,z), 
• Hidden layer – fully-connected neurons with 

sigmoid activation function, 
• Output layer – n neuron with predicted energy 

level, where n is equal amount of rotation wheels, 
• The bias is used too. 
 
The controller class diagram is given in Fig. 5. 

 

 
Fig.5. The controller class diagram 

V.  RESULTS 

The process of NN Elman training lasted 154 epochs.  
The training parameters are as follows (Fig. 6):  
 
• the limit value of the learning target goal - 10-5; 
• minimum gradient value min_grad - 10-10; 
• maximum number of epochs training - 1000. 

 
Fig.6. Training schedule of NN Elman 
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Error value estimating is demonstrated in Fig. 7. We 
compared error rate for tuned PID controller with Ts=1 
and Ts=2 and for modified NN Elman with Ts=1 and 
Ts=2. The modified NN Elman (proposed approach) 
gives the smaller error rate for both times. 
 

 
Fig.7. Error while adjusting, sine trajectory: 1 - tuned PID controller, Ts 
= 1; 2 - tuned PID controller, Ts = 2; 3 - modified NN Elman, Ts = 1; 4 

- modified  NN Elman, Ts = 2 

In addition, we create fully connected NN using mini-
batch gradient descent. Mini-batch gradient descent is 
typically the algorithm of choice when training a neural 
network and the term stochastic gradient descent usually 
is employed also when mini-batches are used. The best 
result can be achieved by using this parameter:  

 
NUMBER_OF_SAMPLES   1000 
NUMBER_OF_HIDDEN_LAYERS  1 
HIDDEN_LAYERS_LENGTH  15 
LEARNING_RATE    0.0007 
BATCH_SIZE    200 
EPOCH     40000 
NORMAL_DISTRIBUTION_MEAN 0 
STANDARD_DIVIATION  0.01 
RANDOM_SEED    40 
Network results are given in the Fig. 8. 
 
As you can see, the error rate is appr. 0.02, that is 

smaller than in previous NN configuration. 
The advantage of this NN configuration are: 
 
• reduce the variance of the parameter updates, 

which can lead to more stable convergence.  
• can make use of highly optimized matrix 

optimizations common to state-of-the-art deep 
learning libraries that make computing the 
gradient w.r.t. a mini-batch very efficient. 
Common mini-batch sizes range between 50 and 
256, but can vary for different applications. 

 
Fig.8. Trained neural network parameters 

 

VI.  CONCLUSIONS 

The paper presented a comparison of a neural network 
attitude and conventional PID controllers. Neural network 
acting as a nonlinear system control has some intrinsic 
advantages that can be exploited in further studies. The 
class diagram for simulator was build.  

Two types of NN configuration were created and 
trained.  

As the output accuracy of NN Elman was a fraction of 
the value 0.1, training was completed even with 24 
hidden neurons. The indicated graphs of the comparator 
work of the controller indicate that the change of the 
parameter of the controlled object does not significantly 
affect the quality of the control in the circuit with the NN, 
and the PID-regulator tuned to the sinusoidal signal, with 
a significant error, runs the pulse change of the input 
signal. 

As the output accuracy of NN with mini-batch gradient 
descents was a fraction of the value 0.02, training was 
completed even with 15 hidden neurons. 

The result of system error is too small, that is why the 
AI module, after trained for different configurations of 
wheels, will get commands with desired 3D rotation 
speeds and control the wheels to achieve the desired 
rotation speeds. 
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