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Abstract—Differential evolution (DE) is a stochastic 
population-based optimization algorithm first introduced 
in 1995. It is an efficient search method that is widely 
used for solving global optimization problems. It has 
three control parameters: the scaling factor (F), the 
crossover rate (CR), and the population size (NP). As any 
evolutionary algorithm (EA), the performance of DE 
depends on its exploration and exploitation abilities for 
the search space. Tuning the control parameters and 
choosing a suitable mutation strategy play an important 
role in balancing the rate of exploration and exploitation. 
Many variants of the DE algorithm have been introduced 
to enhance its exploration and exploitation abilities. All 
of these DE variants try to achieve a good balance 
between exploration and exploitation rates. In this paper, 
an enhanced DE algorithm with multi-mutation strategies 
and self-adapting control parameters is proposed. We use 
three forms of mutation strategies with their associated 
self-adapting control parameters. Only one mutation 
strategy is selected to generate the trial vector. Switching 
between these mutation forms during the evolution 
process provides dynamic rates of  exploration and 
exploitation. Having different rates of exploration and 
exploitation through the optimization process enhances 
the performance of DE in terms of accuracy and 
convergence rate. The proposed algorithm is evaluated 
over 38 benchmark functions: 13 traditional functions, 10 
special functions chosen from CEC2005, and 15 special 
functions chosen from CEC2013. Comparison is made in 
terms of the mean and standard deviation of the error 
with the standard "DE/rand/1/bin" and five state-of-the-
art DE algorithms. Furthermore, two nonparametric 
statistical tests are applied in the comparison: Wilcoxon 
signed-rank and Friedman tests. The results show that the 
performance of the proposed algorithm is better than 
other DE algorithms for the majority of the tested 
functions. 
 
Index Terms—Differential evolution, Global 
optimization, Multi-mutation strategies, Self-adapting 
control parameters, Evolutionary algorithms. 
 
 

I.  INTRODUCTION 

In 1995, Storn and Price presented the first differential 
evolution (DE) algorithm for global optimization 
problems [1]. It is a stochastic population-based 
optimization algorithm used to optimize real-parameter, 
real-valued functions [2]. The DE is a simple and effective 
algorithm that has a small number of adjustable control 
parameters. It has been successfully used in many 
engineering applications of several fields such as neural 
networks, signal processing, pattern recognition, image 
processing, bioinformatics, control systems, robotics, 
wireless communications, and semantic web [2-8]. 
Exploration and exploitation abilities of any population-
based optimization algorithm play a vital role in 
enhancing its accuracy and convergence speed [9]. In 
exploration, an optimization algorithm explores the search 
space of the problem globally in order to find new 
solutions and perform coarse refinements of the candidate 
solutions. In exploitation, on the other hand, it performs 
fine refinements in the neighborhoods of the existing 
solutions locally to improve the current solutions [9].  

Recently, various variants of the DE algorithm have 
been introduced to improve its exploration and 
exploitation abilities. The changes of these variants are 
based on designing new mutation strategies and self-
adapting control parameters [9-15]. However, the 
performance of the recent DE variants is still dependent to 
a great extent on the particulars of the optimization 
problem at hand [4, 12]. This means that one algorithm 
can succeed with certain problems but it may fail with 
other problems, implying that the algorithm lacks the 
required generality [4, 12]. This represents an open 
research point for promising attempts to devise more 
general optimization algorithms. A self-adapting DE 
algorithm (SaDE) is introduced in [3], where the selection 
of the strategy and the value of control parameters F and 
CR are not required to be pre-defined. In [10], a mutation 
strategy denoted by "DE/current-to-pbest" with optional 
external archive and adapting control parameters is 
proposed to form a new variant of DE called JADE. It 
represents a generalization of the classic "DE/current-to-
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best". The authors in [4] propose to employ an ensemble 
of mutation strategies and control parameters for the DE 
algorithm (EPSDE). In EPSDE, multi-mutation strategies 
and control parameter values with diverse characteristics 
are collected in a pool. An improved version of JADE, 
named success-history based adaptive DE algorithm 
(SHADE), is presented in [16]. It uses a different 
parameter adaptation mechanism for DE based on a 
history of successful control parameter settings. In [17], a 
competitive variant of adaptive DE, called b6e6rl, is 
proposed to solve the set of benchmark functions of the 
CEC 2013 competition. In this variant, the competitive 
adaptation is performed through twelve different mutation 
strategies and parameter settings. A modified adaptive 
differential evolution (ADE) is developed in [18]. It 
adopts the quasi-oppositional probability based on 
population’s variance information to tune the scaling 
factor (F) and the crossover rate (CR). In [19], a modified 
mutation strategy and a fitness induced parent selection 
scheme for the binomial crossover of DE with self-
adapting control parameters are adopted. The proposed 
mutation strategy is based on the classic variant 
"DE/current-to-best/1" with some modifications. It is 
referred to as MDE_pBX. In [20], an auto-enhanced 
population diversity mechanism (AEPD) is proposed to be 
used with DE. The population diversity is enhanced by 
measuring the population distribution in each dimension 
to avoid stagnation and premature convergence issues of 
the DE algorithm. The authors in [11] introduce a new DE 
algorithm with a hybrid mutation operator and self-
adapting control parameters (HSDE). The population is 
classified into two groups; each group has different 
mutation operators and self-adapting control parameters. 
In [21], an abstract convex underestimation-assisted multi-
stage DE is presented. In this algorithm, the supporting 
vectors of some neighboring individuals are used to 
calculate the underestimation error. The variation of the 
average underestimation error is used to perform three 
stages of the evolutionary process with a pool of suitable 
candidate strategies for each stage. In [12], a DE 
algorithm with improved individual-based parameter 
setting and selection strategy is suggested. Hybrid 
mutation strategies with a prescribed probability and a 
selection strategy based on the diversity of a weighted 
fitness value are used. An enhanced fitness-adapting DE 
algorithm with a modified mutation (EFADE) is given in 
[22]. A triangular mutation operator is used in EFADE to 
achieve a good balance between exploration and 
exploitation.  

Although there are many versions of the DE algorithm, 
they have many drawbacks related to their performance [4, 
22]. Firstly, they are good at global exploration, but they 
exhibit a slow convergence at local exploitation. Secondly, 
they are sensitive to the choice of the mutation strategy 
and control parameter values; that is, they are problem 
dependent. Thirdly, the DE performance degrades in high-
dimensional optimization problems.  

In the present paper, we propose a further 
improvement to the basic variants of DE that 
enhances its performance in terms of the 

convergence speed and accuracy, simplicity being 
preserved. A combination of three mutation 
strategies and their corresponding self-adapting 
control parameters is employed. The first and 
second mutation strategies are taken to be 
"DE/rand/1" and "DE/best/1". The third mutation 
strategy is chosen to be the average between the 
previous two mutation strategies. During the 
evolutionary process, the locations of the current, 
best, and worst individuals are utilized to determine 
a suitable mutation strategy. 

This paper is organized as follows: Section II 
reviews the basic variants of DE. Section III 
presents the proposed DE algorithm. In Section IV 
the proposed algorithm is tested through a variety of 
well-known benchmark optimization functions. 
Finally, Section V concludes the paper. 

 

II.  BASIC DIFFERENTIAL EVOLUTION ALGORITHM 

The procedure of the basic DE algorithm is 
outlined in the following four sequential phases: 
initialization, mutation, crossover, and selection [23-
25]. 

A.  Initialization Phase 

In this phase, a population of NP D-dimensional 
real-valued vectors (NP is the population size) is 
randomly chosen within the search space DR of the 
optimization problem [2]. Let G

iX be the target 
vector that minimizes the objective function f(X). It 
can be represented as[25]:  
 

( )1, 2, ,,G G G G
i i i D iX x x x= ………                      (1) 

 
where ,

G
j ix  is the jth ( j=1, 2,. . . , D) component of the ith 

(i = 1, 2, . . . ,NP ) population vector at the current 
generation G (G = 0, 1, . . . ,Gmax). Gmax is the maximum 
number of generations. The initial population at 
generation G=0 can be generated as: 
 

[ ] ( )0
, , , , ,0,1j i j min j i j max j minX x rand x x= + × −      (2) 

 
where ,j minx and ,j maxx are the minimum and maximum 
bounds of the jth component in the search space, 
respectively, and [ ], 0,1j irand ∈ is a uniformly distributed 
random number within the range [0,1]. 

B.  Mutation Phase 

In the mutation phase, the mutant (or donor) vector 
1G

iV + is created for each target vector G
iX . The most 

common mutation strategies are generated using the 
following equations [26, 27]: 

"DE/best/1" 
 

( )1
1 2 G G G G

i best r rV X F X X+ = + × −                  (3)
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"DE/rand/1" 
 

( )1
1 2 3  G G G G

i r r rV X F X X+ = + × −                   (4) 
 
"DE/best/2" 

 
( ) ( )1

1 2 3 4   G G G G G G
i best r r r rV X F X X F X X+ = + × − + × −      (5) 

 
"DE/rand /2" 

 
( ) ( )1

1 2 3 4 5   G G G G G G
i r r r r rV X F X X F X X+ = + × − + × −

     
 (6) 

 
"DE/current-to-best /1" 

 
( ) ( )1

1 2   G G G G G G
i i best i r rV X F X X F X X+ = + × − + × −      (7) 

 
where F ∈  [0, 2] is a control parameter called the 
mutation scaling factor. r1, r2, r3, r4 and r5 are random 
integers within the range [1, NP], such that r1 ≠ r2 ≠ r3 ≠ 
r4 ≠ r5 ≠ i. G

bestX is the best individual that has a minimum 
objective function value at the current generation G. 

C.  Crossover Phase 

In this phase, the trial vector 
1G

iU + is generated by 
exchanging the elements of the target vector 

G
iX with the 

elements of the mutant vector 1G
iV +  as [24, 28]: 

 
[ ]1

1  , 0,1
,

G
G i j rand
i G

i

V if rand CR or j j
U

X otherwise

+
+  ≤ == 


       (8) 

 
where CR ∈  [0, 1] is a control parameter called the 
crossover rate and randj ∈  [0, D] is a random integer used 
to ensure that the trial vector 

1G
iU + and the target 

vector G
iX are different. 

D.  Selection Phase 

In this phase, the target vector G
iX  is compared with 

the trial vector 1G
iU + , and the fittest one that has a lower 

objective function value will be chosen to represent the 
target vector 1G

iX + in the next generation. The selection 
phase is performed using Equation (9) [2]: 
 

( ) ( )1 1
1 ,

,

G G G
i i iG

i G
i

U if f U f X
X

X otherwise

+ +
+

 ≤= 


              (9) 

 
where f is the objective function to be optimized. 
 

III.  PROPOSED APPROACH 

The performance of a DE algorithm depends on two 
issues. The first issue is concerned with the choice of a 
suitable mutation strategy for the optimization problems 

that have distinct properties. The second issue is 
concerned with the adaptation of the control parameters 
that affect the behavior of the mutation strategy and the 
crossover phase [4]. Therefore, the basic DE algorithm 
with a single mutation strategy and fixed control 
parameters can be modified to be more flexible and 
efficient [12]. This enhancement can be achieved using 
multi-mutation strategies and self-adapting control 
parameters to make a balance between the exploration and 
exploitation abilities.  

Motivated by these facts, we propose an enhanced DE 
algorithm, denoted by MSaDE, with multi-mutation 
strategies and self-adapting control parameters. The 
proposed algorithm makes use of three mutation strategies 
with their associated self-adapting control parameters. The 
first one increases the exploration ability which is related 
to the global search. The second mutation strategy 
increases the exploitation ability which is related to the 
local search. The third one achieves a balance between the 
exploration and exploitation abilities. Selection between 
these three strategies is done automatically with the help 
of the current, best, and worst individuals at the current 
generation. 

A.  Proposed Multi-mutation Strategies  

The location of the current individual in the search 
space is a good guide metric to determine if this individual 
is to be assigned to the mutation strategy at high rates of 
exploration or exploitation.  

Two absolute differences are calculated: (1) the 
absolute difference between the objective function of the 
current and worst individuals 

( ) ( )G G G
i i worstCW f X f X= − , (2) the absolute difference 

between the objective function of current and best 
individuals

 
( ) ( ) G G G

i i bestCB f X f X−= . According to 

the result, the current individual will be assigned to one of 
three mutation strategies: "DE/rand/1", "DE/best/1", or the 
average mutation. Five randomly chosen individuals 
( 1 2 3 4, , ,G G G G

r r r rX X X X , and 5
G
rX ) in addition to the best 

individual ( G
bestX ) are used to form the proposed mutation 

strategies. 1
G
rX and G

bestX are used as the base vectors of 
the first two mutations "DE/rand/1" and "DE/best/1", 
respectively. The other individuals are used to create two 
difference vectors: 2 3( )G G

r rX X− and 4 5( )G G
r rX X− . The 

difference vector with a higher objective function value is 
assigned to the first mutation "DE/rand/1" to improve the 
exploration search ability. It increases the ability for 
searching new regions over a large search volume. The 
difference vector with a lower objective function value is 
assigned to the second mutation "DE/best/1" to improve 
the exploitation search ability. It increases the ability for 
searching new solutions in a small or immediate 
neighborhood. The average of the two difference vectors 
is assigned to the third mutation to balance the exploration 
and exploitation abilities. The proposed three mutation 
strategies to generate the mutant vector 1G

iV + (i = 1, 2, . . . , 
NP) are defined as: 
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[ ]
[ ]

( )

1 ,1

1
,2

1 ,3

, 0,1

 , 0,1

( , ) , ,

G G G G G
r i i i i i

G G G G GG
best i i i i ii

G G G G G
r best i i i

X F HDF if CB CW and rand T

X F LDF if CB CW and rand TV

mean X X F mean HDF LDF otherwise

+

×

× <

 + ≥ ≤
 + >= 

×


+
(10) 

 
where G

iHDF and G
iLDF are the two difference vectors 

with higher and lower objective function values, 
respectively. 
 

( ) ( )2 3 2 3 4 5

4 5

,

,

G G G G G G
r r r r r rG

i G G
r r

X X if f X X f X X
HDF

X X otherwise

 − − > −= 
−

   (11) 

 

 

( ) ( )4 5 2 3 4 5

2 3

    

 

,

,

G G G G G G
r r r r r rG

i G G
r r

X X if f X X f X X
LDF

X X otherwise

 − − > −= 
−    

(12) 

 
,1
G

iF , ,2
G

iF , and ,3
G

iF are the scaling factors of the 
proposed mutation strategies. Each scaling factor is 
randomly chosen for every mutant vector from a 
predefined range of values. These ranges suit the 
exploration and exploitation abilities of the selected 
mutation strategy. T is a predefined threshold, and 

( ) mean is the arithmetic mean. The mutant vector is 
generated using only one mutation of the three mutation 
strategies depending on the values of the absolute 
differences G

iCB and G
iCW with a probability threshold 

condition T . 

B.  Parameter Adaptation Strategy  

The control parameter values of the scaling factor F and 
the crossover rate CR affect the performance of the DE 
algorithm. For the same optimization problem, different 
rates of exploration and exploitation are required during 
the optimization process [9]. Therefore, it is recommended 
to tune the values of the control parameters at every 
generation to guide the search direction.   

The proposed mutation strategies have three directions 
of search: (1) search with a high exploration rate that is 
achieved through the first mutation strategy, (2) search 
with a high exploitation rate that is achieved through the 
second mutation strategy, (3) search with a balanced rate 
between them that is achieved through the third mutation 
strategy. For each target vector 

G
iX at the current 

generation G, one of the three mutation strategies is 
selected with suitable values of the scaling factor and 
crossover rate.  

So, we choose the values of these control parameters 
randomly from three predefined ranges. Several trials over 
a large number of benchmark functions with different 
characteristics are made to determine these ranges. The 
first range of the control parameters is taken as F1 = [0.7 
0.8 0.9 0.95 1.0] and CR1 = [0.05 0.1 0.2 0.3 0.4] which is 
suitable when choosing the first mutation strategy (i.e. 

,1
G

iF ∈  F1 and ,1
G
iCR ∈  CR1). The second range is taken as 

F2 = [0.1 0.2 0.3 0.4 0.5] and CR2 = [0.8 0.85 0.9 0.95 1.0] 
which is suitable when choosing the second mutation 

strategy (i.e. ,2
G

iF ∈  F2 and ,2
G
iCR ∈CR2). The third range 

is taken as F3 = [0.3 0.4 0.5 0.6 0.7] and CR3 = [0.4 0.5 0.6 
0.7 0.8] which is suitable when choosing the third 
mutation strategy (i.e. ,3

G
iF ∈  F3 and ,3

G
iCR ∈  CR3). 

During the evolution process, the values of the control 
parameters that will be used in the next generation are 
updated or remain unchanged according to the result of 
the selection phase. If the trial vector is fitter than the 
target vector (i.e.

 ( ) ( )1  G G
i if U f X+ ≤ ), the control 

parameters remain the same without change. The updating 
is done randomly from the proposed ranges when the 
target vector is fitter than the trial vector (i.e. 
( ) ( )1 G G

i if X f U +≤ ). Algorithm 1 illustrates a pseudo-
code of the proposed MSaDE algorithm. 
 

IV.  EXPERIMENTAL STUDY AND DISCUSSION 

Our algorithm MSaDE is applied to minimize three sets 
of well-known benchmark functions with different 
characteristics. The first set of benchmark functions 
consists of 13 traditional functions, named f1, f2, …, f13. 
These functions are the first thirteen functions chosen 
from [11], and they are called Sphere, Schwefel 2.22, 
Schwefel 1.2, Schwefel 2.21, Rosenbrock, Step, Quartic 
with noise, Schwefel 2.26, Rastrigin, Ackley, Griewank, 
Generalized Penalized Function 1, and Generalized 
Penalized Function 2, respectively. The optimal value of 
the function f8 is −12569.5, and the remaining functions 
have optimal values equal to zero. Functions f8 - f13 are 
multimodal, the Rosenbrock function (f5) is unimodal for 
D = 2 and 3 but multimodal in higher dimensions [29]. 
The other functions are unimodal.  

The second set of benchmark functions consists of 10 
special functions, named fc1, fc2 …, fc10. These functions 
are the first ten functions from CEC2005 [30, 31]. 
Functions fc1 - fc5 are unimodal and functions fc6 - fc10 are 
multimodal.  The third set of benchmark functions 
consists of 15 special functions chosen from CEC2013 [31, 
32], named fcc1, fcc2, …, fcc10,  fcc21, fcc22, …, fcc25.  The 
subscript number of the function name refers to its order 
according to the CEC2013 benchmark functions. 
Functions fcc1 - fcc5 are unimodal, functions fcc6 - fcc10 are 
multimodal, and functions fcc21 - fcc25 are compositions.  

MSaDE is compared with the standard "DE/rand/1/bin" 
and some efficient state-of-the-art DE algorithms with a 
hybrid mutation operator and self-adapting control 
parameters (HSDE) [11] over the first and second set of 
benchmark functions with dimension D = 30. The third set 
of benchmark functions with dimension D = 30 and 50 is 
used to compare MSaDE with four state-of-the-art DE 
algorithms: a competitive variant of adaptive DE (b6e6rl) 
[17], an enhanced fitness-adapting DE algorithm with a 
modified mutation (EFADE) [22], Success-History based 
Adaptive DE algorithm (SHADE) [16], and a modified 
adaptive differential evolution (ADE) [18].  

All comparisons are made in terms of the mean and 
standard deviation (STD) of the error. The error in a run is 
calculated as f (xbest) −     f (x*), where xbest is the best 
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solution in a run and x* is the global minimum of the 
function. We use the same results of the mean and 
standard deviation (STD) of the error for the other DE 
algorithms as in their papers. Furthermore, the 
convergence rate for some selected functions is illustrated.  

To achieve a fair comparison between MSaDE and the 
other DE algorithms, we use two nonparametric statistical 
tests in the comparisons: Wilcoxon signed-rank and 
Friedman tests [33]. Wilcoxon signed-rank test computes 
R+, R-, and p-value, where R+ is the sum of ranks that 

MSaDE performs better than the other algorithm, R- is the 
sum of ranks that MSaDE performs worse than the other 
algorithm, and p-value refers to the significant difference 
between each pair of algorithms (MSaDE and one of the 
other algorithms) with a significance level α. The 
considerable difference exists only if p-value < α. 
Friedman test is used to rank all algorithms from best to 
worst over all the tested functions. The algorithm that has 
a minimum rank value is the best and the one that has a 
maximum rank value is the worst.  

Algorithm 1. Pseudo-code of the proposed MSaDE algorithm 

 
 
A.  Test Setup 

The simulation results are obtained using a digital 
computer with CPU core i3 (2.4 GHz, 3M cache) and 4 
GB of RAM in MATLAB R2007b Runtime Environment. 
The maximum number of evaluations of the objective 
function (FEs) = 10,000×D for all sets of benchmark 
functions. The population size (NP) of MSaDE in the first, 
second, and third sets of benchmark functions is NP = 50, 
100, and 100, respectively. The threshold T is set as 0.4 
for MSaDE algorithm in each set of the benchmark 

functions.  
The average of the results is obtained over 30 

independent runs for the first set of benchmark functions, 
25 independent runs for the second set, and 51 
independent runs for the third  set. For the third set, we set 
all values of the error that is less than 10-8 to zero as in 
CEC2013. In order to achieve a fair comparison as in [34], 
we use two different settings of the control parameters NP, 
F, and CR for the "DE/rand/1/bin" algorithm that is used 
in the first set of benchmark functions. In the first setting, 
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the control parameters are fixed to NP=30, CR=0.9, and 
F=0.9 for all functions in this set, and we refer to the 
"DE/rand/1/bin" algorithm as DE1. In the second setting, 
NP is fixed to 25 while F and CR are tuned from one 
function to another to suit the different properties of 
functions.  

We refer to the "DE/rand/1/bin" algorithm of the 
second setting as DE2, and we use the best values for F 
and CR that are reached in [34]. In the second set of 
benchmark functions, the control parameter settings of DE 
are fixed to NP=30, CR=0.9, and F=0.9 as in CEC2005, 
and also we refer to it as DE1. The settings for the other 

DE algorithms are the same as in their papers. We use the 
arithmetic signs "+", "=", and "-" in the results to show 
that MSaDE performs better than, similar to, or worse 
than the other variant of DE, respectively. Wilcoxon 
signed-rank test is applied at a significance level of 
α=0.05 and α=0.1. 

B.  Results of First Set of Benchmark Functions 

For the 13 benchmark functions of the first set, the 
results of the mean and STD of the error for MSaDE, DE1, 
DE2 and HSDE are listed in Table 1. 

Table 1. Mean and STD of error for the first set of benchmark functions with D=30 

f(x) 
DE1 DE2 HSDE MSaDE 
Mean 
(STD) F CR Mean 

(STD) 
Mean 
(STD) 

Mean 
(STD) 

Unimodal 
Functions 

f1 
6.57E -15 

(1.13E -14) + 0.5 0.3 0.00E+00 
(0.00E+00) = 6.08E -52 

(8.33E -52) + 0.00E+00 
(0.00E+00) 

f2 
5.13E -09 

(5.33E -09) + 0.5 0.3 1.74E-108 
(2.23E-108) + 5.82E -38 

(6.18E -38) + 0.00E+00 
(0.00E+00) 

f3 
2.39E -01 

(2.77E -01) + 0.9 0.9 1.20E -03 
(1.40E -03) + 7.41E -33 

(2.52E -32) + 0.00E+00 
(0.00E+00) 

f4 
1.88E+00 

(4.54E -01) + 0.6 0.6 6.66E -14 
(3.53E -14) + 5.01E -19 

(1.11E -18) + 0.00E+00 
(0.00E+00) 

f5 
2.97E+01 

(2.82E+01) + 0.6 0.8 4.66E+00 
(3.06E+00) + 0.00E+00 

(0.00E+00) - 5.40E -29 
(0.00E+00) 

f6 
5.14E -15 

(7.20E -15) + 0.5 0.3 0.00E+00 
(0.00E+00) = 0.00E+00 

(0.00E+00) = 0.00E+00 
(0.00E+00) 

f7 
1.75E -02 

(5.80E -03) + 0.3 0.3 1.80E -03 
(1.10E -03) + 2.27E -03 

(1.06E -03) + 3.00E -05 
(2.83E -05) 

Multimodal 
Functions 

f8 
2.77E+02 

(1.62E+02) + 0.9 0.3 0.00E+00 
(0.00E+00) = 0.00E+00 

(0.00E+00) = 0.00E+00 
(0.00E+00) 

f9 
2.39E+01 

(6.97E+00) + 0.9 0.1 0.00E+00 
(0.00E+00) = 0.00E+00 

(0.00E+00) = 0.00E+00 
(0.00E+00) 

f10 
1.06E -08 

(8.00E -09) + 0.5 0.3 2.67E -15 
(0.00E+00) + 1.44E -14 

(3.78E -15) + 1.42E -15 
(0.00E+00) 

f11 
3.90E -03 

(6.10E -03) + 0.5 0.3 0.00E+00 
(0.00E+00) = 7.22E -03 

(8.30E -03) + 0.00E+00 
(0.00E+00) 

f12 
4.10E -03 

(2.05E -02) + 0.5 0.3 0.00E+00 
(0.00E+00) = 1.57E -32 

(1.11E -47) + 0.00E+00 
(0.00E+00) 

f13 
5.54E+01 

(2.41E+01) + 0.5 0.3 0.00E+00 
(0.00E+00) = 7.39E -53 

(3.10E -52) + 0.00E+00 
(0.00E+00) 

 +/-/= 13/0/0 6/0/7 9/1/3  
 

Table 2. Average ranks of MSaDE and other algorithms using 
Friedman's test for the first set of benchmark functions with D = 30 

f(x) Rank Algorithm Average Rank 

Unimodal 
Functions 

1 MSaDE 1.36 
2 DE2 2.36 
3 HSDE 2.43 
4 DE1 3.86 

Multimodal 
Functions 

1 MSaDE 1.58 
2 DE2  1.75 
3 HSDE 2.83 
4 DE1 3.83 

All 
Functions 

1 MSaDE 1.46 
2 DE2 2.08 
3 HSDE 2.62 
4 DE1 3.85 

 
 
Compared to DE1, the accuracy of MSaDE is the best 

for all tested functions in this set. Compared to DE2, the 
accuracy of MSaDE is the best for the six functions f2-f5, f7, 
and f10 of the set and the same for the seven functions f1, f6, 
f8, f9, and f11-f13. Compared to HSDE, the accuracy of 
MSaDE is the best for the nine functions f1-f4, f7, and f10-
f13 of the set and the same for the three functions f6, f8, and 
f9. The accuracy of HSDE for the function f5 is better than 
MSaDE. The average ranks using Friedman's test for 
MSaDE, DE1, DE2 and HSDE are listed in Table 2. This 
test is applied to three cases: (1) only the unimodal 
functions are considered, (2) only the multimodal 
functions are considered, (3) all of the functions are 
considered. According to the results of Friedman's test for 
all the three cases, the other algorithms are ordered from 
best to worst: MSaDE is the first, DE2 is the second, 
HSDE is the third, and DE1 is the last.  

 
The results of Wilcoxon’s test are listed in Table 3. 

Comparing MSaDE to all other DE algorithms as two 
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pairs, the results show that its values of R+ > R- for all the 
pairs at the significance levels α=0.05 and α=0.1. This 
means that MSaDE accuracy is significantly better than 
the accuracy of the other DE algorithms. The convergence 
curves for functions f7 and f11 are shown in Fig.1. The 
mean of error over 30 runs is plotted in a log scale on the 
vertical axis for each number of function evaluations FEs 
of the horizontal axis.  

Table 3. Results of Wilcoxon’s test for the first set of benchmark 
functions with D = 30 

Algorithm +/-/= R+ R- p value α=0.05 α=0.1 

MSaDE 
 versus  

DE1 
13/0/0 91 0 0.000 Yes Yes 

MSaDE  
Versus 
 DE2 

6/0/7 21 0 0.028 Yes Yes 

MSaDE 
 versus 
HSDE 

9/1/3 50 5 0.022 Yes Yes 

 
As shown in Fig.1, MSaDE reaches very fast the 

optimal solution with large differences than the other DE 
algorithms. 
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Fig.1. Convergence curves for functions f7 and f11 

 
 

C.  Results of Second Set of Benchmark Functions 

The results of the mean and STD of the error for 
MSaDE, DE1, and HSDE, over the 10 benchmark 
functions of the second set, are listed in Table 4. HSDE 
has the same accuracy as MSaDE for fc1 and has the best 
accuracy for fc2, and fc9. For the remaining functions, the 
accuracy of MSaDE is the best among DE1 and HSDE. 
The average ranks for MSaDE, DE1, and HSDE using 
Friedman's test are listed in Table 5. Three cases are 
considered in this test: (1) only the unimodal functions are 
considered, (2) only the multimodal functions are 
considered, (3) all of the functions are considered. 
According to the results of Friedman's test for all the three 
cases, the other algorithms are ordered from best to worst: 
MSaDE is the first, HSDE is the second, and DE1 is the 
last. The results of Wilcoxon’s test are listed in Table 6. 
Comparing MSaDE to DE1 and HSDE as two pairs, the 
results show that its values of R+ > R- for all of the two 
pairs.  

According to Wilcoxon’s test, the pair algorithms 
MSaDE versus HSDE have a considerable difference at 
levels α=0.05 and α=0.1. For the pair MSaDE versus DE1, 
the considerable difference exists only at the significance 
level α=0.1. This means that MSaDE is considerably more 
accurate than the other algorithms. The convergence 
curves for functions fc4 and fc7 are shown in Fig.2. The 
mean of error over 25 runs is plotted in a log scale on the 
vertical axis for each number of function evaluations FEs 
of the horizontal axis. As shown in Fig.2, MSaDE has the 
fastest convergence rate with a high accuracy compared to 
the other algorithms. 

Table 4. Mean and STD of error for the second set of benchmark 
functions (CEC2005) with D=30 

f(x) 
DE1 HSDE MSaDE 
Mean 
(STD) 

Mean 
(STD) 

Mean 
(STD) 

Unimodal 
Functions 

fc1 
5.11E -14 

(1.72E -14) + 0.00E+00 
(0.00E+00) = 0.00E+00 

(0.00E+00) 

fc2 
2.54E -01 

(2.70E -01) + 2.29E -22 
(5.32E -22) - 1.13E -13 

(4.97E -14) 

fc3 
9.65E+05 

(5.11E+05) + 5.37E+04 
(2.33E+04) + 1.36E+04 

(8.87E+03) 

fc4 
3.18E+01 

(3.21E+01) + 1.50E -04 
(7.11E -04) + 4.34E -12 

(4.29E -12) 

fc5 
2.49E+02 

(1.77E+02) + 5.33E+02 
(3.90E+02) + 1.87E -05 

(2.37E -05) 

Multimodal 
Functions 

fc6 
2.82E+01 

(2.63E+01) + 1.59E -01 
(7.97E -01) + 3.06E -13 

(5.77E -13) 

fc7 
3.60E -03 

(6.10E -03) + 1.00E -02 
(1.13E -02) + 7.39E -04 

(2.30E -03) 

fc8 
2.09E+01 

(6.54E -02) + 2.09E+01 
(3.37E -02) + 2.08E+01 

(5.65E -02) 

fc9 
2.11E+01 

(6.96E+00) - 0.00E+00 
(0.00E+00) - 2.30E+01 

(1.50E+01) 

fc10 
1.92E+02 

(5.88E+01) + 4.70E+01 
(1.16E+01) + 4.26E+01 

(1.06E+01) 
 +/-/= 9/1/0 7/2/1  
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(a) Function fc4                                                                                (b) Function fc7 

Fig.2. Convergence curves for functions fc4 and fc7 

Table 5. Average ranks of MSaDE and other algorithms using 
Friedman's test for the second set of benchmark  

functions (CEC2005) with D = 30 

f(x) Rank Algorithm Average Rank 

Unimodal 
Functions 

1 MSaDE 1.30 

2 HSDE 1.90 

3 DE1 2.80 

Multimodal 
Functions 

1 MSaDE 1.40 

2 HSDE 2.00 

3 DE1 2.60 

All Functions 

1 MSaDE 1.35 

2 HSDE 1.95 

3 DE1 2.70 

Table 6. Results of Wilcoxon’s test for the second set of benchmark 
functions (CEC2005) with D = 30 

Algorithm +/-/= R+ R- p value α=0.05 α=0.1 

MSaDE 
versus  
DE1 

9/1/0 50 5 0.06 No Yes 

MSaDE 
versus 
HSDE 

7/2/1 38 7 0.02 Yes Yes 

D.  Results of Third Set of Benchmark Functions  

The third set of benchmark functions contains 15 
special functions with dimensions D = 30 and 50, chosen 
from CEC2013. The results of this set for D = 30 are 
explained as follows. The mean and STD of the error for 
MSaDE, b6e6rl, EFADE, SHADE, and ADE are listed in 
Table 7. Among all DE algorithms, the performance of 
MSaDE in terms of accuracy is the best for the functions 
fcc2 - fcc4, fcc6, fcc7, fcc10, fcc21 and fcc23. MSaDE and ADE 
have the same best value of the mean error over the 
function fcc24.  

The performance over the two functions fcc1 and fcc5 is 
nearly the same for all other algorithms. For the remaining 
functions of the set, MSaDE performance is slightly less 
than the other algorithms. The results of Wilcoxon’s test 
are listed in Table 8. Comparing MSaDE to all other DE 
algorithms pairwise, the results show that its values of 
R+ > R- for all of the four pairs with a significance level 
α=0.05 and α=0.1. These results ensure that MSaDE is 

considerably more accurate than the other DE algorithms. 
The convergence curves for functions fcc3, fcc10, and fcc23 
are shown in Fig.3.  

The mean of error over 51 runs is plotted in a log scale 
on the vertical axis for each number of function 
evaluations FEs of the horizontal axis. Fig.3 shows that 
MSaDE converges very fast to the optimal solution when 
compared to the other DE algorithms.  

The results of this third set for D = 50 are explained as 
follows. The mean and STD of the error for MSaDE, 
b6e6rl, EFADE, SHADE, and ADE are listed in Table 9. 
Among all DE algorithms, the accuracy of MSaDE is the 
best for functions fcc2-fcc4, fcc7, fcc9, fcc10, and fcc23-fcc25. The 
best value of the mean error for functions fcc6, fcc8, and fcc22 
is achieved by SHADE with a slighter difference than 
MSaDE. EFADE has the best accuracy over the function 
fcc21. The performance over the two functions fcc1 and fcc5 
is nearly the same for all other algorithms. The results of 
Wilcoxon’s test are listed in Table 10. Comparing MSaDE 
to b6e6rl, EFADE, SHADE, and ADE pairwise, the 
results show that its values of R+ > R- for all of the four 
pairs. For the pair MSaDE versus SHADE, a considerable 
difference exists only at the significance level α=0.1. The 
other remaining pairs have a considerable difference at 
levels α=0.05 and α=0.1. These results show that MSaDE 
is considerably more accurate than the other DE 
algorithms. The convergence curves for functions fcc4, fcc7, 
and fcc25 are shown in Fig.4. The mean of error over 51 
runs is plotted in a log scale on the vertical axis for each 
number of function evaluations (FEs) of the horizontal 
axis. Fig.4 shows that MSaDE achieves a high 
convergence rate with more accuracy over the other DE 
algorithms. Friedman's test is applied to the functions of 
the third set through three cases of these functions. The 
first case uses the functions of the set with D=30, the 
second case uses the functions with D=50, and the last 
case uses the functions with D=30 and D=50. According 
to these three cases, the average ranks for MSaDE, b6e6rl, 
EFADE, SHADE, and ADE using Friedman's test are 
listed in Tables 11, 12, and 13, respectively. The results 
for each case of the test are obtained considering four 
classifications of the tested functions: unimodal, 
multimodal, composition, and all functions. For all cases 
and classifications of the third set of functions, MSaDE 
has the first rank among all other DE algorithms. 
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Table 7. Mean and STD of error for the third set of benchmark functions (CEC2013) with D=30 

f(x) 
b6e6rl EFADE SHADE ADE MSaDE 
Mean 
(STD) 

Mean 
(STD) 

Mean 
(STD) 

Mean 
(STD) 

Mean 
(STD) 

Unimodal 
functions 

fcc1 
0.00E+00 

(0.00E+00) = 0.00E+00 
(0.00E+00) = 0.00E+00 

(0.00E+00) = 0.00E+00 
(0.00E+00) = 0.00E+00 

(0.00E+00) 

fcc2 
6.99E+04 

(4.41E+04) + 2.67E+04 
(1.53E+04) + 9.00E+03 

(7.47E+03) + 2.11E+06 
(1.55E+06) + 7.60E+03 

(9.31E+03) 

fcc3 
4.36E+03 

(1.35E+03) + 9.10E+05 
(2.41E+06) + 4.02E+01 

(2.13E+02) + 1.64E+03 
(2.83E+03) + 4.09E -05 

(1.26E -04) 

fcc4 
1.80E -02 

(2.88E -02) + 3.37E+00 
(3.78E+00) + 1.92E -04 

(3.01E -04) + 1.69E+04 
(2.84E+03) + 2.74E -07 

(5.44E -07) 

fcc5 
0.00E+00 

(0.00E+00) = 0.00E+00 
(0.00E+00) = 0.00E+00 

(0.00E+00) = 1.39E -07 
(1.86E -07) + 0.00E+00 

(0.00E+00) 

Multimodal 
functions 

fcc6 
5.24E+00 

(9.90E+00) + 6.59E+00 
(4.19E+00) + 5.96E -01 

(3.73E+00) + 8.29E+00 
(5.81E+00) + 2.65E -04 

(8.35E -04) 

fcc7 
2.44E+01 

(8.96E+00) + 5.07E+00 
(3.62E+00) + 4.60E+00 

(5.39E+00) + 1.29E+00 
(1.21E+00) + 5.61E -01 

(7.57E -01) 

fcc8 
2.09E+01 

(4.72E -02) = 2.10E+01 
(4.65E -02) + 2.07E+01 

(1.76E -01) - 2.09E+01 
(4.81E -02) = 2.09E+01 

(3.58E -02) 

fcc9 
2.86E+01 

(1.15E+00) + 1.51E+01 
(3.63E+00) + 2.75E+01 

(1.77E+00) + 6.29E+00 
(3.27E+00) - 1.15E+01 

(1.34E+01) 

fcc10 
1.91E -02 

(1.33E -02) + 3.48E -02 
(2.04E -02) + 7.69E -02 

(3.58E -02) + 2.16E -02 
(1.35E -02) + 7.90E -03 

(9.30E -03) 

Composition 
functions 

fcc21 
2.96E+02 

(8.55E+01) + 3.38E+02 
(8.93E+01) + 3.09E+02 

(5.65E+01) + 3.19E+02 
(6.26E+01) + 2.70E+02 

(4.83E+01) 

fcc22 
1.23E+02 

(1.63E+01) - 2.56E+02 
(1.46E+02) - 9.81E+01 

(2.52E+01) - 2.49E+03 
(3.86E+02) + 1.03E+03 

(3.27E+02) 

fcc23 
5.00E+03 

(4.06E+02) + 3.84E+03 
(1.08E+03) + 3.51E+03 

(4.11E+02) + 5.80E+03 
(5.04E+02) + 3.38E+03 

(4.07E+02) 

fcc24 
2.51E+02 

(1.38E+01) + 2.13E+02 
(7.74E+00) + 2.05E+02 

(5.29E+00) + 2.02E+02 
(1.39E+00) = 2.02E+02 

(5.48E+00) 

fcc25 
2.75E+02 

(1.76E+01) + 2.61E+02 
(6.95E+00) + 2.59E+02 

(1.96E+01) + 2.29E+02 
(2.07E+01) - 2.44E+02 

(3.74E+00) 
 +/-/= 11/1/3 12/1/2 11/2/2 10/2/3  

 

Table 8. Results of Wilcoxon’s test for the third set of benchmark 
functions (CEC2013) with D = 30 

Algorithm +/-/= R+ R- p value α=0.05 α=0.1 
MSaDE 
versus 
b6e6rl 

11/1/3 69 9 0.019 Yes Yes 

MSaDE 
versus 

EFADE 
12/1/2 80 11 0.016 Yes Yes 

MSaDE 
versus 

SHADE 
11/2/2 76 15 0.033 Yes Yes 

MSaDE 
Versus 
ADE 

10/2/3 68 10 0.023 Yes Yes 
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Fig.3. Convergence curves for functions fcc3, fcc10 and fcc23 (D=30) 
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Table 9. Mean and STD of error for the third set of benchmark functions (CEC2013) with D=50 

f(x) 
b6e6rl EFADE SHADE ADE MSaDE 
Mean 
(STD) 

Mean 
(STD) 

Mean 
(STD) 

Mean 
(STD) 

Mean 
(STD) 

Unimodal 
functions 

fcc1 
0.00E+00 

(0.00E+00) = 0.00E+00 
(0.00E+00) = 0.00E+00 

(0.00E+00) = 0.00E+00 
(0.00E+00) = 0.00E+00 

(0.00E+00) 

fcc2 
3.23E+05 

(1.56E+05) + 1.72E+05 
(5.48E+04) + 2.65E+04 

(1.13E+04) + 2.04E+05 
(7.67E+04) + 1.95E+04 

(7.96E+04) 

fcc3 
8.61E+06 

(2.33E+07) + 5.70E+06 
(6.70E+06) + 8.79E+05 

(1.96E+06) + 7.47E+06 
(7.59E+06) + 5.15E+05 

(6.68E+05) 

fcc4 
2.32E-01 

(3.12E-01) + 6.16E+00 
(5.24E+00) + 1.61E -03 

(1.41E -03) + 2.20E+02 
(9.58E+01) + 4.59E -04 

(3.63E -04) 

fcc5 
0.00E+00 

(0.00E+00) = 0.00E+00 
(0.00E+00) = 0.00E+00 

(0.00E+00) = 1.39E -03 
(1.86E -03) + 0.00E+00 

(0.00E+00) 

Multimodal 
functions 

fcc6 
4.34E+01 
(1.43E-14) = 4.34E+01 

(7.83E-10) = 4.28E+01 
(5.52E+00) - 7.35E+01 

(2.80E+01) + 4.34E+01 
(4.75E -13) 

fcc7 
8.26E+01 

(1.55E+01) + 1.80E+01 
(7.26E+00) + 2.33E+01 

(9.32E+00) + 2.07E+01 
(9.15E+00) + 1.33E+01 

(8.52E+00) 

fcc8 
2.11E+01 
(4.65E-02) = 2.11E+01 

(3.68E-02) = 2.09E+01 
(1.68E -01) - 2.11E+01 

(3.53E -02) = 2.11E+01 
(4.52E -02) 

fcc9 
5.67E+01 

(2.57E+00) + 3.28E+01 
(4.67E+00) + 5.54E+01 

(1.98E+00) + 2.60E+01 
(3.04E+00) + 1.58E+01 

(1.88E+00) 

fcc10 
3.54E-02 

(1.85E-02) + 6.98E-02 
(3.74E-02) + 7.36E-02 

(3.67E-02) + 5.98E -01 
(3.42E -01) + 3.23E -02 

(2.25E -02) 

Composition 
functions 

fcc21 
4.60E+02 

(4.10E+02) - 3.53E+02 
(3.19E+02) - 8.45E+02 

(3.63E+02) + 9.65E+02 
(1.43E+02) + 6.19E+02 

(4.82E+02) 

fcc22 
3.60E+01 

(2.44E+01) + 8.84E+02 
(5.22E+02) + 1.33E+01 

(7.12E+00) - 7.72E+03 
(8.46E+02) + 2.37E+01 

(5.80E+02) 

fcc23 
9.77E+03 

(5.33E+02) + 7.35E+03 
(1.53E+03) + 7.63E+03 

(6.58E+02) + 1.17E+04 
(1.47E+03) + 6.60E+03 

(7.29E+02) 

fcc24 
3.33E+02 

(1.54E+01) + 2.45E+02 
(1.10E+01) + 2.34E+02 

(1.01E+01) + 2.78E+02 
(1.82E+01) + 2.33E+02 

(1.16E+01) 

fcc25 
3.64E+02 

(2.08E+01) + 3.27E+02 
(1.15E+01) + 3.40E+02 

(3.08E+01) + 3.53E+02 
(1.71E+01) + 2.91E+02 

(4.43E+00) 

 +/-/= 10/1/4 10/1/4 10/3/2 13/0/2  

 
Table 10. Results of Wilcoxon’s test for the third set of benchmark 

functions (CEC2013) with D = 50 

Algorithm +/-/= R+ R- p value α=0.05 α=0.1 

MSaDE  
versus  
b6e6rl 

10/1/4 58 8 0.012 Yes Yes 

MSaDE  
Versus 

 EFADE 
10/1/4 59 7 0.012 Yes Yes 

MSaDE  
Versus 

 SHADE 
10/3/2 77 14 0.092 No Yes 

MSaDE  
versus  
ADE 

13/0/2 91 0 0.000 Yes Yes 
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Fig.4. Convergence curves for functions fCC4, fCC7 and fCC25 (D=50) 

Table 11. Average ranks of MSaDE and other algorithms using 
Friedman's test for the third Set of benchmark functions (CEC2013) 

with D = 30 

f(x) Rank Algorithm Average Rank 

Unimodal 
Functions 

1 MSaDE 1.7 
2 SHADE 2.3 
3 b6e6rl 3.3 
4 EFADE 3.5 
5 ADE 4.2 

Multimodal 
Functions 

1 MSaDE 1.6 
2 ADE  2.8 
3 SHADE 3.0 
4 b6e6rl 3.6 
5 EFADE  4.0 

Composition 
Functions 

1 MSaDE 1.9 
2 SHADE 2.4 
3 ADE 3.3 
4 b6e6rl 3.6 
5 EFADE 3.8 

All Functions 

1 MSaDE 1.73 
2 SHADE 2.57 
3 ADE 3.43 
4 b6e6rl 3.50 
5 EFADE 3.77 

Table 12. Average ranks of MSaDE and other algorithms using 
Friedman's test for the third set of benchmark functions (CEC2013) 

with D = 50 

f(x) Rank Algorithm Average Rank 

Unimodal 
Functions 

1 MSaDE 1.7 
2 SHADE 2.3 
3 EFADE 3.1 
4 b6e6rl 3.7 
5 ADE 4.2 

Multimodal 
Functions 

1 MSaDE 1.9 
2 SHADE 2.8 
3 EFADE  2.9 
4 ADE 3.7 
4 b6e6rl 3.7 

Composition 
Functions 

1 MSaDE 1.6 
2 EFADE  2.4 
3 SHADE 2.6 
4 b6e6rl 3.8 
5 ADE 4.6 

All Functions 

1 MSaDE 1.73 
2 SHADE 2.57 
3 EFADE 2.80 
4 b6e6rl 3.73 
5 ADE 4.17 

Table 13. Average ranks of MSaDE and other algorithms using 
Friedman's test for the third set of benchmark functions (CEC2013) 

with D = 30 and 50 

f(x) Rank Algorithm D=30 D=50 Average 
Rank 

Unimodal 
Functions 

1 MSaDE 1.7 1.7 1.7 
2 SHADE 2.3 2.3 2.3 
3 EFADE 3.5 3.1 3.3 
4 b6e6rl 3.3 3.7 3.5 
5 ADE 4.2 4.2 4.2 

Multimodal 
Functions 

1 MSaDE 1.6 1.9 1.65 
2 SHADE 3.0 2.8 2.9 
3 ADE 2.8 3.7 3.25 
4 EFADE 4.0 2.9 3.45 
5 b6e6rl 3.6 3.7 3.65 

Composition 
Functions 

1 MSaDE 1.9 1.6 1.75 
2 SHADE 2.4 2.6 2.5 
3 EFADE 3.8 2.4 3.1 
4 b6e6rl 3.6 3.8 3.7 
5 ADE 3.3 4.6 3.95 

All 
Functions 

1 MSaDE 1.73 1.73 1.73 
2 SHADE 2.57 2.57 2.57 
3 EFADE  3.77 2.80 3.28 
4 b6e6rl 3.50 3.73 3.61 
5 ADE 3.43 4.17 3.80 

 

V.  CONCLUSIONS 

In this paper, an enhanced DE algorithm with multi-
mutation strategies and self-adapting control parameters is 
developed. The enhancement aims to improve the 
exploration and exploitation abilities of the DE algorithm 
and achieve an automatic better balance between them. 
Three forms of mutation strategies with their associated 
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self-adapting control parameters are proposed in the 
mutation process. The first one increases the exploration 
rate of the global search. The second one increases the 
exploitation rate of the local search. The third one takes 
the average of the other two mutations to balance the rates 
of exploration and exploitation. For every target vector of 
the population at a current generation G, one of the three 
mutations is selected to generate the corresponding trial 
vector. This selection is basically based on the values of 
the current, best, and worst individuals at the current 
generation G. The values of the control parameters, the 
scaling factor F and the crossover rate CR are randomly 
tuned from three predefined ranges. These ranges are 
related to the proposed three mutation strategies. The 
proposed algorithm is tested on a total of 38 benchmark 
functions: 13 traditional functions, 10 special functions 
chosen from CEC2005, and 15 special functions chosen 
from CEC2013. Comparison is made in terms of the mean 
and standard deviation of the error with the standard 
"DE/rand/1/bin" as well as other five state-of-the-art DE 
algorithms. Moreover, Wilcoxon and Friedman tests are 
used as nonparametric statistical tests. According to the 
results of Friedman's test, the proposed algorithm has the 
first rank among all other DE algorithms. Also the results 
of Wilcoxon's test show that our algorithm is considerably 
more accurate than the other algorithms with an 
acceptable significance level. 
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