
I.J. Intelligent Systems and Applications, 2019, 5, 18-26
Published Online May 2019 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijisa.2019.05.03

This work is open access and licensed under the Creative Commons CC BY 4.0 License. Volume 11 (2019), Issue 5

Accelerating Training of Deep Neural Networks
on GPU using CUDA

D.T.V. Dharmajee Rao

Aditya Institute of Technology and Management, Tekkali-532201, Srikakulam, Andhra Pradesh, India
E-mail: dtvdrao@gmail.com

K.V. Ramana

JNTUK College of Engineering, JNTUK University, Kakinada - 533003, Andhra Pradesh, India
E-mail: vamsivihar@gmail.com

Received: 15 October 2018; Revised: 16 November 2018; Accepted: 13 December 2018; Published: 08 May 2019

Abstract—The development of fast and efficient training
algorithms for Deep Neural Networks has been a subject
of interest over the past few years because the biggest
drawback of Deep Neural Networks is enormous cost in
computation and large time is consumed to train the
parameters of Deep Neural Networks. This aspect
motivated several researchers to focus on recent
advancements of hardware architectures and parallel
programming models and paradigms for accelerating the
training of Deep Neural Networks. We revisited the
concepts and mechanisms of typical Deep Neural
Network training algorithms such as Backpropagation
Algorithm and Boltzmann Machine Algorithm and
observed that the matrix multiplication constitutes major
portion of the work-load for the Deep Neural Network
training process because it is carried out for a huge
number of times during the training of Deep Neural
Networks. With the advent of many-core GPU
technologies, a matrix multiplication can be done very
efficiently in parallel and this helps a lot training a Deep
Neural Network not consuming time as it used to be a
few years ago. CUDA is one of the high performance
parallel programming models to exploit the capabilities
of modern many-core GPU systems. In this paper, we
propose to modify Backpropagation Algorithm and
Boltzmann Machine Algorithm with CUDA parallel
matrix multiplication and test on many-core GPU system.
Finally we discover that the planned strategies achieve
very quick training of Deep Neural Networks than classic
strategies.

Index Terms—Deep Neural Networks, Matrix
multiplication, CUDA, Many-core GPU systems.

I. INTRODUCTION

In the recent years, Deep Neural Networks (DNN) are
widely used in many domains such as Handwriting
recognition, Image identification, Object identification,
Data classification, Pattern recognition, Speech and
Natural Language processing etc. In any case, one
drawback of DNN is that training stays terribly slow,

particularly in compute intensive algorithms involving
plenty of complex data sets [1]. Hence DNN needs a
huge computational power for significant speedup of the
training of DNN which were not available a few years
ago. Researchers worked out the way to train DNN
practically. The reason DNN has turned out to be
extremely well known is training it effectively became
possible and researchers used them to dominate the state
of the art approaches [2].

As the need to train computationally intensive DNN
algorithms is on rise, the convergence time involved in
training these algorithms must reduce. This is
accomplished with the upcoming many-core GPU
technologies and high performance parallel programming
models such as NVIDIA CUDA, AMD Brook+, OpenGL,
and DirectX [3]. GPU (Graphics Processing Unit) is seen
as compute device that is a coprocessor/accelerator to
Central Processing Unit or host machine with its own
memory and runs several parallel threads. The GPU is
particular for large data compute-intensive parallel
applications [4]. Significantly more circuitry is dedicated
to data processing instead of data storage and flow
management. CUDA is a development platform intended
for composing and executing general purpose programs
on the NIVIDIA GPU. Similar to graphics and animation
algorithms and applications, CUDA algorithms and
applications can also be quickened by data parallel
computation of more number of parallel threads [5]. An
instance of kernel is called thread, namely a program
executing on the GPU. A collection of threads running
physically in parallel is called Warp. A collection of
threads that execute together by sharing memory on a
GPU is called Thread Block. A collection of thread
blocks that execute a single CUDA program in parallel is
called a Grid [6].

A computing system comprises of a conventional CPU
(Host) and at least one GPU (Device). The GPUs are
massively parallel coprocessors/accelerators furnished
with an extensive number of arithmetic execution units
[7]. A CUDA source code comprises of various stages
that are executed either on the CPU (Host) or a GPU
(device). The stages that show almost no data parallelism

Accelerating Training of Deep Neural Networks on GPU using CUDA

Volume 11 (2019), Issue 5 19

are executed on the CPU. The stages with rich amount of
data parallelism are executed on the GPU [8]. CUDA
threads are significantly lighter weight than the CPU
threads. It implies that the generation cost, resource
utilization, and switching cost of GPU threads is much
smaller than CPU threads. Due to efficient hardware
support, CUDA threads take only a few cycles to create
and schedule of threads where as CPU threads need
thousands of clock cycles. When kernel function is
invoked or launched, all the threads that are created take
advantage of data parallelism [9].

In the modern DNN algorithms, matrix multiplication
is an essential building block and constitutes 70-80% of
the work-load for the DNN training process because it is
carried out for more number of times during the training
of DNN. As the matrix multiplication supports data
parallelism, it can be done very efficiently by
implementing it parallel using CUDA and executing on
GPU [10]. In our previous work, we have used fast
Winograd’s matrix multiplication, fast parallel
Winogard’s matrix multiplication, and parallel blocked
matrix multiplication with collapse clause for efficient
training of DNN algorithms. This paper aims to prove
experimentally that the matrix multiplication on GPU via
CUDA is dawn of computing among various Standard
(Sequential), CBLAS library subroutine on CPU, and
CUBLAS library subroutine on GPU for matrix
multiplication. The same paper proposes to modify
Backpropagation Algorithm (BPA) and Boltzmann
Machine Algorithm (BMA) by using CUDA parallel
matrix multiplication to accelerate the learning of DNN
on many-core GPU system.

The remainder of the paper is structured as outlined
below. The relevant related work is reviewed in section 2.
Section 3 illustrates the implementation of matrix
multiplication using Standard algorithm, ATLAS
CBLAS library subroutine for CPU and NVIDIA
CUBLAS library subroutine, CUDA algorithm for GPU.
Section 4 explains our implementation of BPA and BMA
with parallel matrix multiplication using CUDA for
NVIDIA GPU. Experimental observations are presented
in section 5. Finally, section 6 summarizes the
conclusions and directions for future enhancement of the
paper.

II. RELATED WORK

To enhance the performance of compute intensive
algorithms and to exploit the capabilities of modern
many-core processors, recently many researchers started
implementing them using CUDA and executing on GPU.
Sivakumar Selevarasu et al. have implemented MMDBM
classifier with quick sort and radix sort techniques in
both CPU and GPU computing and tested on medical
database [11]. In this paper, the authors have compared
the results of GPU to the CPU computing and showed
that GPU quick sort and radix sort algorithms provide
rapid and exact results with minimum execution time
than same CPU algorithms for the MMDBM classifier.
Shunlu Zhang et al. proposed a parallel Neural Network

(NN) training technique using CUDA on GPUs [12].
Their results showed that the proposed technique
achieves higher efficiency than traditional CPU
implementation of Backpropagation NN training. Teng
Li et al. have described an efficient GPU implemented
Deep Belief Network (DBN) with Pre-training and Fine-
tuning processes [13]. The authors have showed in their
results that GPU implemented methods achieves
significant speedup in both processes. Moreover they
have proved that these results are superior to that of the
OpenBLAS on the CPU and CUBLAS on the GPU. A.S.
Al-Hamoudi and A.A. Biyalani have parallelized two
kinds of data mining algorithms (KNN and Decision tree)
on two different platforms (CUDA on GPU & OpenMP
on Dual-Core) [14]. Authors have used UCI Machine
Learning datasets for testing of the KNN and Decision
tree algorithms. They reported average performance with
OpenMP and remarkable performance with CUDA.

Nowadays due to exponential growth of data to be
sorted, the applications are demanding fast information
processing. Some authors modified known sorting
algorithms such as Bubble sort, Quick sort, and Shell sort
for effective use on CUDA platform [15, 16]. They have
developed parallel programs for sorting the data and
compared the performance with the sequential
implementation and found that the reduced execution
time with GPU implementation. T. Kalaiselvi et al. have
proposed Per-Pixel Threading (PPT) and Per-Slice
Threading (PST) and implemented some of the advanced
image pre-processing algorithms for accelerating the
computer aided diagnosis (CAD) systems in MRI volume
analysis [17]. Authors have collected the image dataset
from Whole Brain Atlas (WBA) maintained by Harvard
Medical School and used for testing purpose. Their
experiments showed that the GPU-based implementation
achieved speedup of 3-338 times for PPT model and up
to 30 times for PST model compared to conventional
CPU process. Teja U. Naik and Nitesh Guinde have
implemented the Gauss Seidel algorithm for solving
Eigen values of symmetric matrices with CUDA on GPU
and noticed that the speedup of GPU is better than CPU
[18]. Keh Kok Yong et al. have compared the
performance of three compression techniques (Huffman
coding, LZSS, and Block-sorting) experimentally by
implementing them using CUDA on GPU [19]. Among
the above three algorithms, authors have proved that
CUDA implemented Huffman coding has given the best
performance in terms of compression ratio and
compression speed.

III. MATRIX MULTIPLICATION

The product of two square matrices A and B is a
square matrix C whose elements are commonly defined
as

..
1 ,,, ∑ =

=
n
k jkkiji bac (1)

Accelerating Training of Deep Neural Networks on GPU using CUDA

20 Volume 11 (2019), Issue 5

Where jia , , jib , , and jic , are the elements in the thi row

and thj column, for the matrices A, B, and C,
respectively and n is the size of the square matrix.

A. Standard Matrix Multiplication Algorithm

The standard (sequential) matrix multiplication
algorithm has the structure of triple nested loops (il - i
loop, jl - j loop, and kl - k loop) with cubic complexity. It
is well known, well researched, and well understood
algorithm. Listing 1 below shows the source code for the
direct implementation of (1).

void seqMatMult(double* A, double* B, double* C, int width)
 {
 for (int il = 0; il < width; il++)
 for (int jl = 0; jl < width; jl++) {
 double Csum = 0;
 for (int kl = 0; kl < width; kl++) {
 double x = A[il * width + kl];
 double y = B[kl * width + jl];
 Csum += x * y;
 }
 C[il * width + jl] =Csum;
 }
 }

Listing 1. Source code for Standard Matrix multiplication

B. CBLAS Matrix Multiplication Algorithm

BLAS is a collection of low level matrix and vector
arithmetic operations such as multiply a vector by a
scalar, multiply two matrices etc. LAPACK is built on
top of the BLAS. LAPACK is a collection of high level
linear algebra operations such as matrix factorizations
that are used to find Eigen values of a matrix, singular
value of a matrix, or to solve a linear system of equations
etc. A portable high performance BLAS library with a
CBLAS interface for the CPU is being provided by
ATLAS Package. At present, it provides FORTRAN 77
and C interfaces to a portably efficient BLAS
implementation as well as a few routines from LAPACK.
Listing 2 shows how matrix multiplication is
implemented using CBLAS.

void cblasMatMult(double *A, double *B, double *C, int width)
 {

double alpha = 1.0;
double beta = 0.0;

cblas_dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans,
width, width, width, alpha, A, width, B, width, beta, C, width);

}

Listing 2. Source code for Matrix multiplication using CBLAS

C. CUBLAS Matrix Multiplication Algorithm

BLAS library consists of set of implementations for
matrix multiplication such as GEMM with single
precision and double precision. While the reference
BLAS implementation is not especially quick, there are
number of third party optimized implementations like
MKL from Intel, ACML from AMD, and CUBLAS from

NVIDIA for the GPU [20]. The source code for
multiplication of two matrices on GPU device with
CUBLAS is shown in Listing 3.

void cublasMatMult(double *A, double *B, double *C, int width)
 {
 int da = width, db = width, dc = width;
 double alfa= 1;
 double bta = 0;
 double *alpha = &alfa;
 double *beta = &bta;
 //create a handle for CUBLAS
 cublasHandle_t handle;
 cublasCreate(&handle);
 // Do the actual multiplication

cublasDgemm(handle,CUBLAS_OP_N, CUBLAS_OP_N, width,
width, width, alpha, A, da, B, db, beta, C, dc);
 // Destroy the handle

cublasDestroy(handle); }
Listing 3. Source code for Matrix multiplication using CUBLAS

D. CUDA Matrix Multiplication Algorithm

Data parallelism refers to the program property
whereby many arithmetic operations are carried out
perfectly on required data structure simultaneously. The
concept of data parallelism is applied to typical matrix
multiplication. As shown CUDA Matrix multiplication in
Listing 4, the output matrix C is produced by performing
a dot product between the rows of first matrix A and the
columns of second matrix B. These dot product
operations for finding different elements of output matrix
C can be performed on the GPU in a simultaneous
manner without affecting results of each other.

__global__ void kernelMatMult(double* A, double* B, double* C,
int width)

{
int tx = threadIdx.x + blockDim.x * blockIdx.x;
int ty = threadIdx.y + blockDim.y * blockIdx.y;
double Cvalue = 0;
 for (int kl = 0; kl < width; kl++) {
 double Adelement = A[ty * width + kl];
 double Bdelement = B[kl * width + tx];
 Cvalue += Adelement * Bdelement;
 }
 C[ty * width + tx] = Cvalue;
 }

Listing 4. Source code for Matrix multiplication using CUDA

IV. CUDA IMPLEMENTATION OF DNN ALGORITHMS

Accelerating time consuming DNN training algorithms
such as BPA and BMA is still an open problem that is
being investigated widely. To achieve significant
acceleration of DNN training algorithms, one has to use
the remarkable computing power provided by modern
many-core GPU devices by implementing algorithms
using CUDA [21].

A. CUDA Backpropagation Algorithm (CUBPA)

Backpropagation is an algorithm that has been broadly
used for training shallow neural networks with single
hidden layer for its simplicity of implementation and

Accelerating Training of Deep Neural Networks on GPU using CUDA

Volume 11 (2019), Issue 5 21

efficiency. However, the efficiency of Backpropagation
Algorithm (BPA) decreases greatly when it is used to
train DNN with multiple hidden layers [22]. As
mentioned in introduction, matrix multiplication task is
carried out for a huge number of times and thus it
constitutes major portion of the work-load of BPA
training process. CUDA programming makes it possible
to accelerate the training of BPA by dividing the entire
matrix multiplication task into the smaller tasks and
running them simultaneously on a large number of cores
available on the GPU. So as to decrease the high
convergence time, the classic BPA gets adjusted by using
CUDA kernel matrix multiplication algorithm as
summarized in algorithm 1. A DNN consists of eight
layers (Input, Output, and Six hidden) for
experimentation is shown in Fig. 1.

Fig.1. A multilayer Deep Neural Network

We use the following notations in order to describe the
CUDA implementation of Backpropagation Algorithm
(BPA). Here

D is a set of training patterns with target values.
X is a training pattern.

jT is target output at neuron j in the output layer.

jA is the actual output at neuron j .

jiw , is the connecting weight between neuron j of the
current layer from neuron i of the previous layer.

jE is the error of neuron j in the output/hidden layer.
η is the learning rate.

The BPA works as given under. The small random
values are assigned to weights and biases to initialize the
network. The input pattern is then applied and the net
input, jI , is calculated as sum of weighted input
according to (2).

jii ijj AwI θ+=∑ (2)

The actual output at each neuron, jA , for the obtained

net input, jI , is calculated by using the following
sigmoid function (3).

jIj
e

A
−+

=
1

1

(3)

The error, jE , of the neuron in the output layer is

computed by subtracting the actual output value from the
target value and this difference is multiplied by the
derivative of sigmoid function as shown in (4).

))(1(jjjjj ATAAE −−= (4)

Similarly the error of the neuron in the hidden layer is

calculated as the product of weighted sum of the
propagated errors and derivative of sigmoid function as
shown in (5).

jkK kjjj wEAAE ∑−=)1((5)

Having obtained the error for hidden layer units, the

weights are updated according to (6) and (7), where
jiw ,∆ is the change in weight ., jiw

ijij AEw)(η=∆ (6)

ijijij www ∆+= (7)

Similarly biases are changed according to (8) and (9),
where jθ∆ is the change in bias jθ .

jj E)(ηθ =∆ (8)

jjj θθθ ∆+= (9)

The training process stops when the error is below

some specified threshold or a pre-specified number of
iterations have expired.

Algorithm 1: CUDA implementation of BPA
1. Allocate CPU memory for weights (w) and biases

(θ);
2. Allocate GPU memory for weights (d_w) and

output (d_A);
3. InitializeWeights and InitializeBiases;
4. for itr=1 to numIterartions do {
5. for ptrn=1 to numPaterns do {
6. for each inputLayerUnit j {
7. ;jj IA =
8. for each hidden or outputLayerUnit j {

9. cudaMemcpy);_(,...1,,...1 jnijni wwd ==
10. cudaMemcpy);_(...1,...1 nini AAd ==

Accelerating Training of Deep Neural Networks on GPU using CUDA

22 Volume 11 (2019), Issue 5

11. >>><<<= numThreadsnelMatMultNet j ker
);__(...1,,...1 nijni Adwd ==
12. ;jjj θ+= NetI

13.
jIj

e
A

−+
=

1

1 ; }

14. for each unit j in the outputLayer
15.);)(1(jjjjj ATAAE −−=
16. for each unit j in the hiddenLayers, from the

last to first hiddenLayer {
17. cudaMemcpy);_(...1,...1 nknk EEd ==
18. cudaMemcpy);_(...1,,...1, nkjnkj wwd ==
19. >>><<<= numThreadsnelMatMultNetk ker
);__(...1,,...1 nkjnk wdEd ==
20. };)1(kjjj NetAAE −=
21. for each weight ijw in network {
22. ;)(jjij AEw η=∆
23. ; + w= w ijijij w∆ }
24. for each bias jθ in the network. {
25. ;)(j jEηθ =∆
26. ;jjj θθθ ∆+= }
27. }
28. }
29. }

B. CUDA Boltzmann Machine Algorithm (CUBMA)

Structurally, a Restricted Boltzmann Machine (RBM)
is a shallow neural network that consists of a set of
visible units, v, and a set of hidden units, h, and
connections between units are symmetrically weighted
and bidirectional [23] as depicted in Fig. 2.

Fig.2. Model of RBM

Training a Deep Boltzmann Machine (DBM) is a
computationally time consuming task that involves
training a stack of several RBMs as shown in Fig. 3 and
requires certain high amount of training time. Moreover,
as the dimensionality and quantity of data increases, the
computing load of training a DBM increases rapidly [24].

Fig.3. DBM: A stack of RBMs

So as to decrease the long training time, the classic
BMA gets adjusted by using CUDA kernel matrix
multiplication algorithm as explained in algorithm 2. We
use the following notations in order to describe CUDA
implementation of BMA. Here

iv = set of visible units where1 ni =

jh = set of hidden units where1 nj =
vb = visible bias unit.
hb = hidden bias unit.

jiw , = the weight on the connection from iv to jh .
j

hiddenw = the hidden node jh weight vector.
j

visiblew = the visible node jv weight vector.

All the visible units are assumed to be conditionally

independent of hidden vector H for an RBM network i.e.

).|()|(
1∏=

=
n

i i HvPHVP (10)

Similarly all the hidden units are assumed to be

conditionally independent of visible vector V i.e.

).|()|(
1∏=

=
n

i i VhPVHP (11)

The conditional distribution of hidden and visible unit

j is given by (12) and (13).

))*(()|1(VwhbVhp j
hiddenjj +== σ (12)

))*(()|1(HwvbHvp j

visiblejj +== σ (13)

Accelerating Training of Deep Neural Networks on GPU using CUDA

Volume 11 (2019), Issue 5 23

Where σ is the logistic or sigmoid function as shown in
(14).

x-e1

1x
+

=)(σ (14)

Algorithm 2: CUDA implementation of BMA
1. Allocate CPU memory for visible vector (V),

hidden vector (H), weights (w) and biases
(hbvb,);

2. Allocate GPU memory for visible vector (d_V),
Hidden vector (d_H) and weights (d_w);

3. InitializeWeights and initializeBiases;
4. Initialize the visible units states to the training

data;
5. Positive phase: Reconstruction of hidden units

using positive statistics (jE) is given by
cudaMemcpy);_(, hidden

j
hidden

j wwd

cudaMemcpy(d_V, V);

sum=kernelMatmult<<<numThreads>>>
)__(, vdwd hidden

j

))(1

1)/1(sumhbj
je

VhP
+−+

==

6. Negative phase: Reconstruction of visible units
using negative statistics (jE) is given by
cudaMemcpy);_(,, visible

j
visible

j wwd

cudaMemcpy(d_H, H);

sum = kernelMatMult<<<numThreads>>>
)__(, Hdwd visiblej

)(1

1)/1(sumvbj
je

HvP
+−+

==

7. Update phase:

));()((jj
old
ijij EnegativeEpositiveww −+= η

Iterate with all training vectors till the error is
below some specified threshold

V. RESULTS AND DISCUSSIONS

The performance of proposed methods was compared
against classic methods by measuring the convergence
time consumption of DNN training process. All the
programs were developed using C/C++/CUDA, then
tested on many-core GPU system and the execution time
was measured. So as to assess the performance of our
implementations, testing was conducted on a computer
(HP Compaq, Intel Core I7-2600 3.40 GHz Processor, 4
Cores, 8 Threads, 64 Bit, 8 MB Cache, 4GB RAM with a
GPU accelerator NVIDIA Quadro K620, 384 CUDA
cores, 2GB RAM) running Ubuntu operating system
(Linux 4.4.0-57) with software version gcc/g++ 5.4.0.,
and nvcc V7.5.17. A similar domain was used for all
examinations that were completed for this paper. All the
programs were executed for five times and the mean
execution time was computed.

A. Matrix multiplication on GPU via CUDA: The Dawn
of Computing

For simple understanding, we have used the square
matrices with a size that is a power of 2. With cautious
implementation, the investigations can also be conducted
to non square matrices. The elements of matrices are
generated by a random function and type casted into
desired type of data.

The execution times of all four algorithms for matrix
multiplication are furnished in the Table 1. From the
Table, it was observed that the Standard algorithm
performs more slowly mainly due to its sequential nature.
Among the four Algorithms, CUDA algorithm is
showing the tremendous performance than other three
algorithms. It is clearly appeared in Fig. 4 that the
execution time taken by CUDA algorithm is almost
negligible compared to all other algorithms, thus the
matrix multiplication on GPU using CUDA is the dawn
of computing. Fig. 5 shows the speedup of CUDA over
Standard, CBLAS, and CUBLAS implementations for
matrix multiplication.

Table 1. Execution time comparison of four matrix multiplication algorithms

Matrix
Dimension

Elapsed time (Secs) Speedup of CUDA over
Standard CBLAS CUBLAS CUDA Standard CBLAS CUBLAS

4 0.000001 0.000002 0.000267 0.000013 0.08 0.15 20.54
8 0.000011 0.000002 0.000269 0.000013 0.85 0.15 20.69
16 0.000071 0.000005 0.000437 0.000013 5.46 0.38 33.62
32 0.000560 0.000026 0.000430 0.000014 40.00 1.86 30.71
64 0.002971 0.000210 0.000303 0.000003 990.33 70.00 101.00

128 0.017985 0.000887 0.000648 0.000005 3597.00 177.40 129.60
256 0.123594 0.003768 0.002033 0.000004 30898.50 942.00 508.25
512 0.995183 0.021060 0.011976 0.000008 124397.88 2632.50 1497.00
1024 10.885084 0.160893 0.093565 0.000010 1088508.40 16089.30 9356.50

Accelerating Training of Deep Neural Networks on GPU using CUDA

24 Volume 11 (2019), Issue 5

Fig.4. Performance of CUDA matrix multiplication vs Standard,
CBLAS ksubroutine on CPU and CUBLAS subroutine on GPU

Fig.5. Speedup trends of CUDA matrix multiplication over Standard,

CBLAS subroutine on CPU and CUBLAS subroutine on GPU

B. Performance Comparison of BPA and CUBPA

The classification of odd and even numbers was
chosen for the performance analysis of Backpropagation
training algorithm as it is simple problem to implement.
The number of units in the input layer is equal to the size
of training pattern (binary form of given number).
Number of units is equal in input and all hidden layers
except output layer. One output unit is employed to
represent two different classes where the output 1
represents odd class, and the output 0 represents even
class. The training patterns are produced using random
function. The small random values varying from -1.0 to
1.0 are assigned to weights and biases. The observations
are recorded after training the Deep Neural Network
(DNN) for pre-specified 30,000 epochs.

Table 2 exhibits that proposed CUDA implementation
(CUBPA) shows significant improvement in reducing
DNN convergence time compared to direct
implementation (BPA). Moreover, from the Table, it is
evident that our GPU-based CUDA implementation
(CUBPA) achieved a significant performance speedup
and in addition the speedup achieved increases further
with increasing the size of training pattern. From the Fig.
6, it is crystal clear that the training time for CUBPA has
reached lowest and almost stable there from the pattern
size 40 even though the size of training pattern is

increasing where as the training time for BPA is
increasing as the size of the training pattern is increasing.

Table 2. Training time comparison of BPA and CUBPA

Pattern
Size

Elapsed time (Secs)
Speedup

BPA CUBPA
10 0.87249 1.26188 0.69
20 6.48486 1.59640 4.06
30 20.38150 2.47829 8.22
40 50.48880 0.10349 487.85
50 93.12040 0.10333 901.24
60 160.77000 0.10344 1554.18
70 256.47700 0.10331 2482.57
80 392.08200 0.10334 3793.99
90 544.53800 0.10331 5270.79

100 758.84900 0.10242 7409.44

Fig.6. Performance of BPA vs CUBPA

Table 3. Training time comparison of BMA and CUBMA

Pattern
Size

Elapsed time (Secs)
Speedup

BMA CUBMA
10 1.3897 2.15814 0.64
20 11.0734 2.73395 4.05
30 34.9284 4.26819 8.18
40 85.4838 0.17219 496.46
50 159.8400 0.17219 928.26
60 275.7080 0.17201 1602.88
70 440.4230 0.17195 2561.32
80 672.0940 0.17201 3907.34
90 934.8770 0.17209 5432.61

100 1302.9900 0.17209 7571.66

Fig.7. Performance of BMA vs CUBMA

Accelerating Training of Deep Neural Networks on GPU using CUDA

Volume 11 (2019), Issue 5 25

C. Performance Comparison of BMA and CUBMA

A DBM with six RBM layers is constructed to
generate the original binary pattern for a given incorrect
pattern as input. The observations are recorded after
learning the Deep Neural Network (DNN) for pre-
specified number of epochs (30,000) in both forward and
backward directions for each layer. Table 3 exhibits that
proposed CUDA implementation (CUBMA) indicates
significant improvement in reducing DNN learning time
in comparison with direct BMA implementation.
Moreover, from the Table, it is evident that our GPU-
based CUDA implementation (CUBMA) achieved a
significant performance speedup and in addition the
speedup achieved increases further with increasing the
size of training pattern. From the Fig. 7, it is totally
evident that the training time for CUBMA has reached
lowest and almost stable there from the pattern size 40
even though the size of training pattern is increasing
where as the training time for BMA is increasing as the
size of the training pattern is increasing.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we examined and implemented Standard
subroutine, CPU-based ATLAS-optimized CBLAS
library subroutine, GPU-based NVIDIA-optimized
CUBLAS library subroutine, and CUDA subroutine for
computing matrix multiplication. By the evidence of
results, it is crystal clear that CUDA matrix
multiplication performs very much faster than other three
implementations. The reason for using the state-of-the-art
highly optimized CBLAS library and CUBLAS library
matrix multiplication subroutines in addition to Standard
matrix multiplication is for fair comparison. Then it has
been proposed to use CUDA matrix multiplication to
modify BPA and BMA. After our experiments, we found
that the proposed methods (CUBPA and CUBMA) have
achieved exponential speedup in training Deep Neural
Networks than existing standard methods.

For the future work, the existing algorithms will be
revisited and examined in the areas of Cryptography,
Image Processing, video Frames, Bio-Informatics, and
Weather Forecasting for possible implementation and
thus performance improvement by exploiting the
capabilities of modern multi-core CPU-based and many-
core GPU-based systems via CUDA and other parallel
programming models and paradigms.

REFERENCES

[1] I-Hsin Chung et al., “Parallel Deep Neural Network
Training for Big Data on Blue Gene/Q” IEEE
Transactions on Parallel and Distributed Systems, vol. 28,
no. 6, pp. 1703-1714, 2017. DOI:
10.1109/TPDS.2016.2626289.

[2] Canping Su et al., “An Efficient Deep Neural Networks
Training Framework For Robust Face Recognition”, IEEE
International Conference on Image Processing (ICIP),
Beijing, China, pp. 3800-3804, 2017.

[3] Anala M.R. et al., “Comparative Study of
Computationally Intensive Algorithms on CPU and GPU”,

International Journal of Applied Engineering Research
ISSN 0973-4562, vol. 11, no. 5, pp. 2996-2999, 2016.

[4] Mouna Afif, Yahia Said, and Mohamed Atri, “Efficient
2D Convolution Filters Implementations on Graphics
Processing Unit Using NVIDIA CUDA”, I.J. Image,
Graphics and Signal Processing, no. 8, pp. 1-8, 2018.

[5] Mohammad Usman Ashraf, Fadi Fouz, and Fathy
Alboraei Eassa, “Empirical Analysis of HPC Using
Different Programming Models”, I.J. Modern Education
and Computer Science, no. 6, pp. 27-34, 2016.

[6] Sunitha N.V., Raju K., and Niranjan N. Chiplunkar,
“Performance Improvement of CUDA Applications by
Reducing CPU-GPU Data Transfer Overhead”,
International Conference on Inventive Communication
and Computational Technologies, Coimbatore, India, pp.
211-215, 2017.

[7] Arun Kumar Parakh, M.Balakrishnan, and Kolin Paul,
“Performance Estimation of GPUs with Cache” IEEE 26th
international Parallel and Distributed Processing
Symposium Workshops & Ph D Forum, Shanghai, China,
pp. 2384-2393. 2012. DOI: 10.1109/IPDPSW.2012.328

[8] Sapna Saxena and Neha Kishore, “PRDSA: Effective
Parallel Digital Signature Algorithm for GPUs”, I.J.
Wireless and Microwave Technologies. No. 5, pp. 14-21,
2017.

[9] Ke Yan, Junming Shan, and Eryan Yang, “CUDA-based
Acceleration of the JPEG Decoder”, Ninth International
Conference on Natural Computation (ICNC), Shenyang,
China, pp. 1319-1323, 2013.

[10] Musab COSKUN et al., “An Overview of Popular Deep
Learning Methods”, European Journal of Technic, vol. 7,
no. 2, pp. 164-175. 2017. DOI: 10.23884/ejt.2017.7.2.11

[11] Sivakumar Selvarasu, Ganesan Periyanagounder, and
Sundar Subbiah, “A MMDBM Classifier with CPU and
CUDA GPU Computing in Various Sorting Procedures”,
The International Arab Journal of Information
Technology, vol. 14, no. 6, pp. 897-906, 2017.

[12] Shunlu Zhang, Pavan Gunupudi, and Qi-Jun Zhang,
“Parallel Back-Propagation Neural Network Training
Technique Using CUDA on Multiple GPUs”, IEEE MTT-
S International Conference on Numerical
Electromagnetic and Multiphysics Modeling and
Optimization (NEMO), Ottawa, Canada, pp. 1-3, 2015.

[13] Teng Li et al., “Optimized Deep Belief Networks on
CUDA GPUs”, International Joint Conference on
Neural Networks (IJCNN), Killarney, Ireland, pp. 1-8,
2015.

[14] Adwa S. Al-Hamoudi, and A. Ahmed Biyabani,
“Accelerating Data Mining with CUDA and Open MP”,
IEEE/ACS 11th International Conference on Computer
Systems and Applications (AICCSA), Doha, Qatar, pp.
528-535, 2014.

[15] Bakulev Aleksandr Valerievich et al., “The
implementation on CUDA Platform Parallel Algorithms
Sort the Data”, 6th Mediterranean Conference on
Embedded Computing (MECO), Bar, Montenegro, pp. 1-4,
2017.

[16] Neetu Faujdar, and Satya Prakash Ghrera, “A Practical
Approach of GPU Bubble Sort with CUDA Hardware”,
7th International Conference on Cloud Computing, Data
Science & Engineering - Confluence, Noida, India, pp. 7-
12, 2017.

[17] T. Kalaiselvi, P. Sriramakrishnan, and K. Somasundraram,
“Performance of Medical Image Processing Algorithms
Implemented in CUDA running on GPU based Machine”,

Accelerating Training of Deep Neural Networks on GPU using CUDA

26 Volume 11 (2019), Issue 5

I.J. Intelligent Systems and Applications, no. 1, pp. 58-68,
2018.

[18] Teja U. Naik and Nitesh Guinde, “Implementing the
Gauss Seidel Algorithm for Solving Eigenvalues of
Symmetric Matrices with CUDA”, IEEE International
Conference on Computing Methodologies and
Communication, Erode, India, pp. 922-925, 2017.

[19] Keh Kok Yong, Meng Wei Chua, and Wing Kent Ho,
“CUDA Lossless Data Compression Algorithms: A
Comparative Study”, IEEE Conference on Open Systems
(ICOS), Langkawi, Malaysia, pp. 7-12, 2016.

[20] Pai-Wei Lai et al., “Accelerating Strassen-Winograd’s
Matrix Multiplication Algorithm on GPUs”, 20th Annual
International Conference on High Performance
Computing, Bangalore, India, pp. 139-148, 2013.k

[21] Zhilu Chen et al., “A Fast Deep Learning System Using
GPU”, IEEE International Symposium on Circuits
and Systems (ISCAS), Melbourne VIC, Australia, pp.
1552-1555, 2014.

[22] Javier A. Cruz-lopez, Vincent Boyer, and Didier El-Baz,
“Training Many Neural Networks in Parallel via Back-
Propagation”, IEEE International Parallel and
Distributed Processing Symposium Workshops, Lake
Buena Vista, FL, USA , pp. 501-509, 2017. DOI:
10.1109/IPDPSW.2017.72

[23] Lei Jin et al., “Training Large Scale Deep Neural
Networks on the Intel Xeon Phi Many-core Coprocessor,”
IEEE 28th International Parallel & Distributed
Processing Symposium Workshops, Phoenix, AZ, USA,
pp. 1622-1630, 2014. DOI: 10.1109/IPDPSW.2014.194

[24] Noel Lopes, Bernardete Ribeiro, and Joao Goncalves,
“Restricted Boltzmann Machines and Deep Belief
Networks on Multi-Core Processors”, WCCI 2012 IEEE
World Congress on Computational Intelligence, Brisbane,
QLD, Australia, pp. 1-7, 2012.

Authors’ Profiles

D.T.V. Dharamajee Rao is currently
working as Professor in the Department of
Computer Science and Engineering at Aditya
Institute of Technology and Management,
Tekkali, Srikakulam, Andhra Pradesh, India.
He received B.Tech. degree in Computer
Science and Engineering in 1993 and

M.Tech. degree in Computer Science and Technology in 2001
from Andhra University, Visakhapatnam, Andhra Pradesh,
India. He is pursuing Ph.D. in the Department of Computer
Science and Engineering, JNT University, Kakinada, Andhra
Pradesh, India. He got published more than 12 papers in
International and National, Conferences and Journals. His
current research interests include Data Mining, Neural
Networks, Parallel Computing and Linear Algebra Techniques.

K.V. Ramana received B.Tech. degree in
Electronics and Communication Engineering
from JNT University, Hyderabad. Telangana,
India in 1986, M.Tech. degree in Computer
Science and Engineering from University of
Hyderabad, Hyderabad, Telangana, India in
1990, and Ph.D. in Computer Science and
Engineering from Rayalaseema University,

Kurnool, Andhra Pradesh, India in 2011. He is working as
Professor in the Department of Computer Science and

Engineering, JNTUK College of Engineering, JNTUK
University, Kakinada, Andhra Pradesh, India. He got published
more than 20 papers in International and National, Conferences
and Journals. His research interests include Data Warehousing
and Mining, Neural Networks, Image Processing, and Pattern
Recognition.

How to cite this paper: D.T.V. Dharmajee Rao, K.V. Ramana,
"Accelerating Training of Deep Neural Networks on GPU using
CUDA", International Journal of Intelligent Systems and
Applications(IJISA), Vol.11, No.5, pp.18-26, 2019. DOI:
10.5815/ijisa.2019.05.03

