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Abstract—The development of fast and efficient training 
algorithms for Deep Neural Networks has been a subject 
of interest over the past few years because the biggest 
drawback of Deep Neural Networks is enormous cost in 
computation and large time is consumed to train the 
parameters of Deep Neural Networks. This aspect 
motivated several researchers to focus on recent 
advancements of hardware architectures and parallel 
programming models and paradigms for accelerating the 
training of Deep Neural Networks. We revisited the 
concepts and mechanisms of typical Deep Neural 
Network training algorithms such as Backpropagation 
Algorithm and Boltzmann Machine Algorithm and 
observed that the matrix multiplication constitutes major 
portion of the work-load for the Deep Neural Network 
training process because it is carried out for a huge 
number of times during the training of Deep Neural 
Networks. With the advent of many-core GPU 
technologies, a matrix multiplication can be done very 
efficiently in parallel and this helps a lot training a Deep 
Neural Network not consuming time as it used to be a 
few years ago. CUDA is one of the high performance 
parallel programming models to exploit the capabilities 
of modern many-core GPU systems. In this paper, we 
propose to modify Backpropagation Algorithm and 
Boltzmann Machine Algorithm with CUDA parallel 
matrix multiplication and test on many-core GPU system. 
Finally we discover that the planned strategies achieve 
very quick training of Deep Neural Networks than classic 
strategies. 
  
Index Terms—Deep Neural Networks, Matrix 
multiplication, CUDA, Many-core GPU systems. 
 

I.  INTRODUCTION 

In the recent years, Deep Neural Networks (DNN) are 
widely used in many domains such as Handwriting 
recognition, Image identification, Object identification, 
Data classification, Pattern recognition, Speech and 
Natural Language processing etc. In any case, one 
drawback of DNN is that training stays terribly slow, 

particularly in compute intensive algorithms involving 
plenty of complex data sets [1]. Hence DNN needs a 
huge computational power for significant speedup of the 
training of DNN which were not available a few years 
ago. Researchers worked out the way to train DNN 
practically. The reason DNN has turned out to be 
extremely well known is training it effectively became 
possible and researchers used them to dominate the state 
of the art approaches [2]. 

As the need to train computationally intensive DNN 
algorithms is on rise, the convergence time involved in 
training these algorithms must reduce. This is 
accomplished with the upcoming many-core GPU 
technologies and high performance parallel programming 
models such as NVIDIA CUDA, AMD Brook+, OpenGL, 
and DirectX [3]. GPU (Graphics Processing Unit) is seen 
as compute device that is a coprocessor/accelerator to 
Central Processing Unit or host machine with its own 
memory and runs several parallel threads. The GPU is 
particular for large data compute-intensive parallel 
applications [4]. Significantly more circuitry is dedicated 
to data processing instead of data storage and flow 
management. CUDA is a development platform intended 
for composing and executing general purpose programs 
on the NIVIDIA GPU. Similar to graphics and animation 
algorithms and applications, CUDA algorithms and 
applications can also be quickened by data parallel 
computation of more number of parallel threads [5]. An 
instance of kernel is called thread, namely a program 
executing on the GPU. A collection of threads running 
physically in parallel is called Warp. A collection of 
threads that execute together by sharing memory on a 
GPU is called Thread Block. A collection of thread 
blocks that execute a single CUDA program in parallel is 
called a Grid [6]. 

A computing system comprises of a conventional CPU 
(Host) and at least one GPU (Device). The GPUs are 
massively parallel coprocessors/accelerators furnished 
with an extensive number of arithmetic execution units 
[7]. A CUDA source code comprises of various stages 
that are executed either on the CPU (Host) or a GPU 
(device). The stages that show almost no data parallelism 
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are executed on the CPU. The stages with rich amount of 
data parallelism are executed on the GPU [8]. CUDA 
threads are significantly lighter weight than the CPU 
threads. It implies that the generation cost, resource 
utilization, and switching cost of GPU threads is much 
smaller than CPU threads. Due to efficient hardware 
support, CUDA threads take only a few cycles to create 
and schedule of threads where as CPU threads need 
thousands of clock cycles. When kernel function is 
invoked or launched, all the threads that are created take 
advantage of data parallelism [9]. 

In the modern DNN algorithms, matrix multiplication 
is an essential building block and constitutes 70-80% of 
the work-load for the DNN training process because it is 
carried out for more number of times during the training 
of DNN. As the matrix multiplication supports data 
parallelism, it can be done very efficiently by 
implementing it parallel using CUDA and executing on 
GPU [10]. In our previous work, we have used fast 
Winograd’s matrix multiplication, fast parallel 
Winogard’s matrix multiplication, and parallel blocked 
matrix multiplication with collapse clause for efficient 
training of DNN algorithms. This paper aims to prove 
experimentally that the matrix multiplication on GPU via 
CUDA is dawn of computing among various Standard 
(Sequential), CBLAS library subroutine on CPU, and 
CUBLAS library subroutine on GPU for matrix 
multiplication. The same paper proposes to modify 
Backpropagation Algorithm (BPA) and Boltzmann 
Machine Algorithm (BMA) by using CUDA parallel 
matrix multiplication to accelerate the learning of DNN 
on many-core GPU system. 

The remainder of the paper is structured as outlined 
below. The relevant related work is reviewed in section 2. 
Section 3 illustrates the implementation of matrix 
multiplication using Standard algorithm, ATLAS 
CBLAS library subroutine for CPU and NVIDIA 
CUBLAS library subroutine, CUDA algorithm for GPU. 
Section 4 explains our implementation of BPA and BMA 
with parallel matrix multiplication using CUDA for 
NVIDIA GPU. Experimental observations are presented 
in section 5. Finally, section 6 summarizes the 
conclusions and directions for future enhancement of the 
paper. 

 

II.  RELATED WORK 

To enhance the performance of compute intensive 
algorithms and to exploit the capabilities of modern 
many-core processors, recently many researchers started 
implementing them using CUDA and executing on GPU. 
Sivakumar Selevarasu et al. have implemented MMDBM 
classifier with quick sort and radix sort techniques in 
both CPU and GPU computing and tested on medical 
database [11]. In this paper, the authors have compared 
the results of GPU to the CPU computing and showed 
that GPU quick sort and radix sort algorithms provide 
rapid and exact results with minimum execution time 
than same CPU algorithms for the MMDBM classifier. 
Shunlu Zhang et al. proposed a parallel Neural Network 

(NN) training technique using CUDA on GPUs [12]. 
Their results showed that the proposed technique 
achieves higher efficiency than traditional CPU 
implementation of Backpropagation NN training. Teng 
Li et al. have described an efficient GPU implemented 
Deep Belief Network (DBN) with Pre-training and Fine-
tuning processes [13]. The authors have showed in their 
results that GPU implemented methods achieves 
significant speedup in both processes. Moreover they 
have proved that these results are superior to that of the 
OpenBLAS on the CPU and CUBLAS on the GPU. A.S. 
Al-Hamoudi and A.A. Biyalani have parallelized two 
kinds of data mining algorithms (KNN and Decision tree) 
on two different platforms (CUDA on GPU & OpenMP 
on Dual-Core) [14]. Authors have used UCI Machine 
Learning datasets for testing of the KNN and Decision 
tree algorithms. They reported average performance with 
OpenMP and remarkable performance with CUDA. 

Nowadays due to exponential growth of data to be 
sorted, the applications are demanding fast information 
processing. Some authors modified known sorting 
algorithms such as Bubble sort, Quick sort, and Shell sort 
for effective use on CUDA platform [15, 16]. They have 
developed parallel programs for sorting the data and 
compared the performance with the sequential 
implementation and found that the reduced execution 
time with GPU implementation. T. Kalaiselvi et al. have 
proposed Per-Pixel Threading (PPT) and Per-Slice 
Threading (PST) and implemented some of the advanced 
image pre-processing algorithms for accelerating the 
computer aided diagnosis (CAD) systems in MRI volume 
analysis [17]. Authors have collected the image dataset 
from Whole Brain Atlas (WBA) maintained by Harvard 
Medical School and used for testing purpose. Their 
experiments showed that the GPU-based implementation 
achieved speedup of 3-338 times for PPT model and up 
to 30 times for PST model compared to conventional 
CPU process. Teja U. Naik and Nitesh Guinde have 
implemented the Gauss Seidel algorithm for solving 
Eigen values of symmetric matrices with CUDA on GPU 
and noticed that the speedup of GPU is better than CPU 
[18]. Keh Kok Yong et al. have compared the 
performance of three compression techniques (Huffman 
coding, LZSS, and Block-sorting) experimentally by 
implementing them using CUDA on GPU [19]. Among 
the above three algorithms, authors have proved that 
CUDA implemented Huffman coding has given the best 
performance in terms of compression ratio and 
compression speed.  

 

III.  MATRIX MULTIPLICATION 

The product of two square matrices A and B is a 
square matrix C whose elements are commonly defined 
as 
 

..
1 ,,, ∑ =

=
n
k jkkiji bac                       (1) 
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Where jia , , jib , , and jic ,  are the elements in the thi  row 

and thj  column, for the matrices A, B, and C, 
respectively and n  is the size of the square matrix. 

A.  Standard Matrix Multiplication Algorithm 

The standard (sequential) matrix multiplication 
algorithm has the structure of triple nested loops (il - i 
loop, jl - j loop, and kl - k loop) with cubic complexity. It 
is well known, well researched, and well understood 
algorithm. Listing 1 below shows the source code for the 
direct implementation of (1). 
 

void seqMatMult(double* A, double* B, double* C, int width) 
            { 
 for (int il = 0; il < width; il++) 
     for (int jl = 0; jl < width; jl++)  { 
  double Csum = 0; 
  for (int kl = 0; kl < width; kl++)  { 
        double x = A[il * width + kl]; 
        double y = B[kl * width + jl]; 
        Csum += x * y;  
       }  
  C[il * width + jl] =Csum; 
     } 
 } 

Listing 1. Source code for Standard Matrix multiplication 

B.  CBLAS Matrix Multiplication Algorithm 

BLAS is a collection of low level matrix and vector 
arithmetic operations such as multiply a vector by a 
scalar, multiply two matrices etc. LAPACK is built on 
top of the BLAS. LAPACK is a collection of high level 
linear algebra operations such as matrix factorizations 
that are used to find Eigen values of a matrix, singular 
value of a matrix, or to solve a linear system of equations 
etc. A portable high performance BLAS library with a 
CBLAS interface for the CPU is being provided by 
ATLAS Package. At present, it provides FORTRAN 77 
and C interfaces to a portably efficient BLAS 
implementation as well as a few routines from LAPACK. 
Listing 2 shows how matrix multiplication is 
implemented using CBLAS. 
 

void cblasMatMult(double *A, double *B, double *C,  int width) 
 { 
 
double alpha = 1.0; 
double beta = 0.0; 
 
cblas_dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, 
width, width, width, alpha, A, width, B, width, beta, C, width); 
 
} 

Listing 2. Source code for Matrix multiplication using CBLAS 

C.  CUBLAS Matrix Multiplication Algorithm 

BLAS library consists of set of implementations for 
matrix multiplication such as GEMM with single 
precision and double precision. While the reference 
BLAS implementation is not especially quick, there are 
number of third party optimized implementations like 
MKL from Intel, ACML from AMD, and CUBLAS from 

NVIDIA for the GPU [20]. The source code for 
multiplication of two matrices on GPU device with 
CUBLAS is shown in Listing 3. 
 

void cublasMatMult(double *A, double *B, double *C, int width) 
 { 
 int da = width, db = width, dc = width; 
 double alfa= 1; 
 double bta = 0; 
 double *alpha = &alfa; 
 double *beta = &bta; 
   //create a handle for CUBLAS 
  cublasHandle_t handle; 
 cublasCreate(&handle); 
                                  // Do the actual multiplication 

cublasDgemm(handle,CUBLAS_OP_N, CUBLAS_OP_N, width, 
width, width, alpha, A, da, B, db, beta, C, dc);          
     // Destroy the handle           

cublasDestroy(handle);          } 
Listing 3. Source code for Matrix multiplication using CUBLAS 

D.  CUDA Matrix Multiplication Algorithm 

Data parallelism refers to the program property 
whereby many arithmetic operations are carried out 
perfectly on required data structure simultaneously. The 
concept of data parallelism is applied to typical matrix 
multiplication. As shown CUDA Matrix multiplication in 
Listing 4, the output matrix C is produced by performing 
a dot product between the rows of first matrix A and the 
columns of second matrix B. These dot product 
operations for finding different elements of output matrix 
C can be performed on the GPU in a simultaneous 
manner without affecting results of each other. 
 

__global__ void kernelMatMult(double* A, double* B, double* C, 
int width) 

{ 
int tx = threadIdx.x + blockDim.x * blockIdx.x; 
int ty = threadIdx.y + blockDim.y * blockIdx.y; 
double Cvalue = 0; 
       for (int kl = 0; kl < width; kl++)  { 
 double Adelement = A[ty * width + kl]; 
 double Bdelement = B[kl * width + tx]; 
 Cvalue += Adelement * Bdelement;        
 } 
      C[ty * width + tx] = Cvalue;    
     } 

 
Listing 4. Source code for Matrix multiplication using CUDA 

 

IV.  CUDA IMPLEMENTATION OF DNN ALGORITHMS 

Accelerating time consuming DNN training algorithms 
such as BPA and BMA is still an open problem that is 
being investigated widely. To achieve significant 
acceleration of DNN training algorithms, one has to use 
the remarkable computing power provided by modern 
many-core GPU devices by implementing algorithms 
using CUDA [21].  

A.  CUDA Backpropagation Algorithm (CUBPA)  

Backpropagation is an algorithm that has been broadly 
used for training shallow neural networks with single 
hidden layer for its simplicity of implementation and 
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efficiency. However, the efficiency of Backpropagation 
Algorithm (BPA) decreases greatly when it is used to 
train DNN with multiple hidden layers [22]. As 
mentioned in introduction, matrix multiplication task is 
carried out for a huge number of times and thus it 
constitutes major portion of the work-load of BPA 
training process. CUDA programming makes it possible 
to accelerate the training of BPA by dividing the entire 
matrix multiplication task into the smaller tasks and 
running them simultaneously on a large number of cores 
available on the GPU. So as to decrease the high 
convergence time, the classic BPA gets adjusted by using 
CUDA kernel matrix multiplication algorithm as 
summarized in algorithm 1. A DNN consists of eight 
layers (Input, Output, and Six hidden) for 
experimentation is shown in Fig. 1. 
 

 
Fig.1. A multilayer Deep Neural Network 

We use the following notations in order to describe the 
CUDA implementation of Backpropagation Algorithm 
(BPA). Here 

 
D is a set of training patterns with target values. 
X is a training pattern. 

jT  is target output at neuron j  in the output layer. 

jA  is the actual output at neuron j . 

jiw ,  is the connecting weight between neuron j of the 
current layer from neuron i of the previous layer. 

jE  is the error of neuron j  in the output/hidden layer. 
η is the learning rate. 
 

The BPA works as given under. The small random 
values are assigned to weights and biases to initialize the 
network. The input pattern is then applied and the net 
input, jI , is calculated as sum of weighted input 
according to (2). 
 

jii ijj AwI θ+=∑                        (2) 

 
The actual output at each neuron, jA , for the obtained 

net input, jI , is calculated by using the following 
sigmoid function (3). 
 

jIj
e

A
−+

=
1

1

                             
(3) 

 
The error, jE , of the neuron in the output layer is 

computed by subtracting the actual output value from the 
target value and this difference is multiplied by the 
derivative of sigmoid function as shown in  (4). 

 
))(1( jjjjj ATAAE −−=                      (4) 

 
Similarly the error of the neuron in the hidden layer is 

calculated as the product of weighted sum of the 
propagated errors and derivative of sigmoid function as 
shown in (5). 
 

jkK kjjj wEAAE ∑−= )1(                     (5) 

 
Having obtained the error for hidden layer units, the 

weights are updated according to (6) and (7), where 
jiw ,∆  is the change in weight ., jiw  

 

ijij AEw )(η=∆                              (6) 
 

ijijij www ∆+=                              (7) 
 

Similarly biases are changed according to (8) and (9), 
where jθ∆ is the change in bias jθ . 

 
jj E)(ηθ =∆                                  (8) 

 
jjj θθθ ∆+=                                (9) 

 
The training process stops when the error is below 

some specified threshold or a pre-specified number of 
iterations have expired. 
 

Algorithm 1: CUDA implementation of BPA 
1. Allocate CPU memory for weights (w) and biases 

(θ ); 
2. Allocate GPU memory for weights (d_w) and 

output (d_A); 
3. InitializeWeights and InitializeBiases;         
4. for itr=1 to numIterartions do           { 
5. for ptrn=1 to numPaterns do          { 
6. for each inputLayerUnit j          { 
7. ;jj IA =  
8. for each hidden or outputLayerUnit j           { 

9. cudaMemcpy );_( ,...1,,...1 jnijni wwd ==  
10. cudaMemcpy );_( ...1,...1 nini AAd ==  
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11. >>><<<= numThreadsnelMatMultNet j ker  
         );__( ...1,,...1 nijni Adwd ==  
12. ;jjj θ+= NetI  

13. 
jIj

e
A

−+
=

1

1  ;       } 

14. for each unit j in the outputLayer 
15. );)(1( jjjjj ATAAE −−=  
16. for each unit j  in the hiddenLayers, from the 

last to first hiddenLayer { 
17. cudaMemcpy );_( ...1,...1 nknk EEd ==  
18. cudaMemcpy );_( ...1,,...1, nkjnkj wwd ==  
19. >>><<<= numThreadsnelMatMultNetk ker    
        );__( ...1,,...1 nkjnk wdEd ==                           
20. };)1( kjjj NetAAE −=  
21. for each weight ijw in network     { 
22. ;)( jjij AEw η=∆  
23. ;  +  w= w ijijij w∆   } 
24. for each bias jθ in the network.          { 
25. ;)(j jEηθ =∆   
26. ;jjj θθθ ∆+=    } 
27.              } 
28.        } 
29. } 

B.  CUDA Boltzmann Machine Algorithm (CUBMA)  

Structurally, a Restricted Boltzmann Machine (RBM) 
is a shallow neural network that consists of a set of 
visible units, v, and a set of hidden units, h, and 
connections between units are symmetrically weighted 
and bidirectional [23] as depicted in Fig. 2.  
 

 
Fig.2. Model of RBM 

Training a Deep Boltzmann Machine (DBM) is a 
computationally time consuming task that involves 
training a stack of several RBMs as shown in Fig. 3 and 
requires certain high amount of training time. Moreover, 
as the dimensionality and quantity of data increases, the 
computing load of training a DBM increases rapidly [24].  
 

 
Fig.3. DBM: A stack of RBMs 

So as to decrease the long training time, the classic 
BMA gets adjusted by using CUDA kernel matrix 
multiplication algorithm as explained in algorithm 2. We 
use the following notations in order to describe CUDA 
implementation of BMA. Here 
 

iv = set of visible units where .......1 ni =  

jh = set of hidden units where .......1 nj =  
vb = visible bias unit. 
hb = hidden bias unit. 

jiw , = the weight on the connection from iv to jh . 
j

hiddenw  = the hidden node jh weight vector. 
j

visiblew = the visible node jv weight vector. 
 
All the visible units are assumed to be conditionally 

independent of hidden vector H for an RBM network i.e. 
 

).|()|(
1∏=

=
n

i i HvPHVP                   (10) 

 
Similarly all the hidden units are assumed to be 

conditionally independent of visible vector V i.e. 
 

).|()|(
1∏=

=
n

i i VhPVHP                   (11) 

 
The conditional distribution of hidden and visible unit 

j is given by (12) and (13). 
 

))*(()|1( VwhbVhp j
hiddenjj +== σ             (12) 

 
))*(()|1( HwvbHvp j

visiblejj +== σ             (13) 
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Where σ is the logistic or sigmoid function as shown in 
(14). 

 

x-e1

1x
+

=)(σ                            (14) 

 
Algorithm 2: CUDA implementation of BMA 
1. Allocate CPU memory for visible vector (V), 

hidden vector (H), weights (w) and biases 
( hbvb, ); 

2. Allocate GPU memory for visible vector (d_V), 
Hidden vector (d_H) and weights (d_w); 

3. InitializeWeights and initializeBiases; 
4. Initialize the  visible units states to the training 

data; 
5. Positive phase: Reconstruction of hidden units 

using positive statistics ( jE ) is given by  
cudaMemcpy );_( , hidden

j
hidden

j wwd  

cudaMemcpy(d_V, V); 

sum=kernelMatmult<<<numThreads>>>
)__( , vdwd hidden

j  

                                      
))(1

1)/1( sumhbj
je

VhP
+−+

==  

6. Negative phase: Reconstruction of visible units 
using negative statistics ( jE ) is given by 
cudaMemcpy );_( ,, visible

j
visible

j wwd  

cudaMemcpy(d_H, H); 

sum = kernelMatMult<<<numThreads>>>
)__( , Hdwd visiblej   

                                
)(1

1)/1( sumvbj
je

HvP
+−+

==  

7. Update phase: 

));()(( jj
old
ijij EnegativeEpositiveww −+= η  

Iterate with all training vectors till the error is 
below some specified threshold 

 

V.  RESULTS AND DISCUSSIONS 

The performance of proposed methods was compared 
against classic methods by measuring the convergence 
time consumption of DNN training process. All the 
programs were developed using C/C++/CUDA, then 
tested on many-core GPU system and the execution time 
was measured. So as to assess the performance of our 
implementations, testing was conducted on a computer 
(HP Compaq, Intel Core I7-2600 3.40 GHz Processor, 4 
Cores, 8 Threads, 64 Bit, 8 MB Cache, 4GB RAM with a 
GPU accelerator NVIDIA Quadro K620, 384 CUDA 
cores, 2GB RAM) running Ubuntu operating system 
(Linux 4.4.0-57) with software version gcc/g++ 5.4.0., 
and nvcc V7.5.17. A similar domain was used for all 
examinations that were completed for this paper. All the 
programs were executed for five times and the mean 
execution time was computed. 

A.  Matrix multiplication on GPU via CUDA: The Dawn 
of Computing 

For simple understanding, we have used the square 
matrices with a size that is a power of 2. With cautious 
implementation, the investigations can also be conducted 
to non square matrices. The elements of matrices are 
generated by a random function and type casted into 
desired type of data. 

The execution times of all four algorithms for matrix 
multiplication are furnished in the Table 1. From the 
Table, it was observed that the Standard algorithm 
performs more slowly mainly due to its sequential nature. 
Among the four Algorithms, CUDA algorithm is 
showing the tremendous performance than other three 
algorithms. It is clearly appeared in Fig. 4 that the 
execution time taken by CUDA algorithm is almost 
negligible compared to all other algorithms, thus the 
matrix multiplication on GPU using CUDA is the dawn 
of computing. Fig. 5 shows the speedup of CUDA over 
Standard, CBLAS, and CUBLAS implementations for 
matrix multiplication. 
 
 

Table 1. Execution time comparison of four matrix multiplication algorithms 

Matrix 
Dimension 

Elapsed time (Secs) Speedup of   CUDA over 
Standard CBLAS CUBLAS CUDA Standard CBLAS CUBLAS 

4 0.000001 0.000002 0.000267 0.000013 0.08 0.15 20.54 
8 0.000011 0.000002 0.000269 0.000013 0.85 0.15 20.69 
16 0.000071 0.000005 0.000437 0.000013 5.46 0.38 33.62 
32 0.000560 0.000026 0.000430 0.000014 40.00 1.86 30.71 
64 0.002971 0.000210 0.000303 0.000003 990.33 70.00 101.00 

128 0.017985 0.000887 0.000648 0.000005 3597.00 177.40 129.60 
256 0.123594 0.003768 0.002033 0.000004 30898.50 942.00 508.25 
512 0.995183 0.021060 0.011976 0.000008 124397.88 2632.50 1497.00 
1024 10.885084 0.160893 0.093565 0.000010 1088508.40 16089.30 9356.50 
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Fig.4. Performance of CUDA matrix multiplication vs Standard, 
CBLAS ksubroutine on CPU and CUBLAS subroutine on GPU 

 
Fig.5. Speedup trends of CUDA matrix multiplication over Standard, 

CBLAS subroutine on CPU and CUBLAS subroutine on GPU 

B.  Performance Comparison of BPA and CUBPA 

The classification of odd and even numbers was 
chosen for the performance analysis of Backpropagation 
training algorithm as it is simple problem to implement. 
The number of units in the input layer is equal to the size 
of training pattern (binary form of given number). 
Number of units is equal in input and all hidden layers 
except output layer. One output unit is employed to 
represent two different classes where the output 1 
represents odd class, and the output 0 represents even 
class. The training patterns are produced using random 
function. The small random values varying from -1.0 to 
1.0 are assigned to weights and biases. The observations 
are recorded after training the Deep Neural Network 
(DNN) for pre-specified 30,000 epochs. 

Table 2 exhibits that proposed CUDA implementation 
(CUBPA) shows significant improvement in reducing 
DNN convergence time compared to direct 
implementation (BPA).  Moreover, from the Table, it is 
evident that our GPU-based CUDA implementation 
(CUBPA) achieved a significant performance speedup 
and in addition the speedup achieved increases further 
with increasing the size of training pattern. From the Fig. 
6, it is crystal clear that the training time for CUBPA has 
reached lowest and almost stable there from the pattern 
size 40 even though the size of training pattern is 

increasing where as the training time for BPA is 
increasing as the size of the training pattern is increasing. 

Table 2. Training time comparison of BPA and CUBPA 

Pattern   
Size 

Elapsed time (Secs) 
Speedup 

BPA CUBPA 
10 0.87249 1.26188 0.69 
20 6.48486 1.59640 4.06 
30 20.38150 2.47829 8.22 
40 50.48880 0.10349 487.85 
50 93.12040 0.10333 901.24 
60 160.77000 0.10344 1554.18 
70 256.47700 0.10331 2482.57 
80 392.08200 0.10334 3793.99 
90 544.53800 0.10331 5270.79 

100 758.84900 0.10242 7409.44 
 

 
Fig.6. Performance of BPA vs CUBPA 

Table 3. Training time comparison of BMA and CUBMA 

Pattern      
Size 

Elapsed time (Secs) 
Speedup 

BMA CUBMA 
10 1.3897 2.15814 0.64 
20 11.0734 2.73395 4.05 
30 34.9284 4.26819 8.18 
40 85.4838 0.17219 496.46 
50 159.8400 0.17219 928.26 
60 275.7080 0.17201 1602.88 
70 440.4230 0.17195 2561.32 
80 672.0940 0.17201 3907.34 
90 934.8770 0.17209 5432.61 

100 1302.9900 0.17209 7571.66 
 

 
Fig.7. Performance of BMA vs CUBMA 
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C.  Performance Comparison of BMA and CUBMA 

A DBM with six RBM layers is constructed to 
generate the original binary pattern for a given incorrect 
pattern as input. The observations are recorded after 
learning the Deep Neural Network (DNN) for pre-
specified number of epochs (30,000) in both forward and 
backward directions for each layer. Table 3 exhibits that 
proposed CUDA implementation (CUBMA) indicates 
significant improvement in reducing DNN learning time 
in comparison with direct BMA implementation.  
Moreover, from the Table, it is evident that our GPU-
based CUDA implementation (CUBMA) achieved a 
significant performance speedup and in addition the 
speedup achieved increases further with increasing the 
size of training pattern. From the Fig. 7, it is totally 
evident that the training time for CUBMA has reached 
lowest and almost stable there from the pattern size 40 
even though the size of training pattern is increasing 
where as the training time for BMA is increasing as the 
size of the training pattern is increasing. 

 

VI.  CONCLUSIONS AND FUTURE WORK 

In this paper, we examined and implemented Standard 
subroutine, CPU-based ATLAS-optimized CBLAS 
library subroutine, GPU-based NVIDIA-optimized 
CUBLAS library subroutine, and CUDA subroutine for 
computing matrix multiplication. By the evidence of 
results, it is crystal clear that CUDA matrix 
multiplication performs very much faster than other three 
implementations. The reason for using the state-of-the-art 
highly optimized CBLAS library and CUBLAS library 
matrix multiplication subroutines in addition to Standard 
matrix multiplication is for fair comparison. Then it has 
been proposed to use CUDA matrix multiplication to 
modify BPA and BMA. After our experiments, we found 
that the proposed methods (CUBPA and CUBMA) have 
achieved exponential speedup in training Deep Neural 
Networks than existing standard methods. 

For the future work, the existing algorithms will be 
revisited and examined in the areas of Cryptography, 
Image Processing, video Frames, Bio-Informatics, and 
Weather Forecasting for possible implementation and 
thus performance improvement by exploiting the 
capabilities of modern multi-core CPU-based and many-
core GPU-based systems via CUDA and other parallel 
programming models and paradigms. 
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