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Abstract—The aim of this research is the study of 

pathogenic signs, prognostically significant for the 

outcome of the disease and restoration of impaired 

functions at various stages of recovery after a stroke. This 

work describes a new method of applying a group of 

artificial neural network algorithms for each of the 

criteria and for each period of rehabilitation, and it is 

aimed at analyzing the structural and functional support 

of motor and higher cognitive functions, including speech 

and language as well as brain plasticity after ischemic 

stroke. The functional magnetic resonance imaging 

(fMRI, DTI) and clinical data machine learning 

algorithms were used. Self-organizing Kohonen and 

probabilistic neural network-based models with different 

structures and parameters were developed and applied for 

each criterion for periods of 3, 6, and 12 months of 

rehabilitation. For correlation analyses and modeling 

additional classifiers, we used: Decision Tree (DT), 

Support Vector Machine (SUM), k-Nearest Neighbor 

(KNN) clustering, and Logistic Regression (LR). In the 

performance evaluation, sensitivity, specificity, accuracy, 

error rate, and f-measure were used. The using of clinical 

parameters and mathematical modeling for analysis of 

brain plasticity mechanisms in stroke patients allowed in 

some cases to predict cognitive functions within the 

accuracy of 85-97%. Moreover, it is shown that the 

functional systems is represented by various brain 

structures, its synchronous activity and structural 

connectivity ensures the rapid and most complete 

restoration of motor and higher cognitive functions, 

including speech and language (effective post-stroke 

plasticity of the brain) after a course of 

neurorehabilitation. 

 

Index Terms—Post-stroke neuroplasticity, functional and 

structural connectivity, brain structures, motor and higher 

cognitive functions, PNN, GRNN, Kohonen neural 

network, correlation analysis, machine learning. 

 

 

I.  INTRODUCTION 

Due to prevalence and consequences of the stroke, it 

falls into the category of socially significant diseases and 

remains the leading cause of disability in the adult 

population [1–3]. New specific therapy methods, such as 

thrombolysis and complex neuroprotection don’t yet 

allow to significantly reduce the high post-stroke 

disability which is observed in 80% of stroke survivors 

cases. 

Aphasic syndromes are observed in from 21% to 38% 

of patients who have had a stroke. According to classical 

conceptions, aphasia is a systemic disorder of the human 

language function which in most cases is accompanied by 

impairments of speech production and comprehension as 

well as reading, writing and counting operations.  

Improving the efficiency and development of new 

post-stroke rehabilitation methods is one of the most 

pressing health issues [4]. New prognostics factors for 

recovering impaired functions can be the basis of 

neurorehabilitation enhancement and new treatment 

methods development [5]. 

At the Center of Pathology of Speech and 

Neurorehabilitation, patients who had their first ischemic 

stroke were examined. The leading risk factors in all 

cases were associated with cardiovascular system 

diseases, while, as a rule, a combination of several risk 

factors was noted [6–8]. 

The early recovery period of the disease (3 months), 

the stroke in the left middle cerebral artery and /or left 

anterior cerebral artery basin and the absence of mental 

disorders and movement disorders (Bartel index ≥ 90 

points) before stroke onset were the inclusion criteria; the 

presence of asymptomatic diffuse atrophic changes 

(according to structural MRI), decompensation of somatic 

pathology and oncological process were the exclusion 

criteria. 

mailto:neurocomp.pro@gmail.com


Neural Network Modeling and Correlation Analysis of Brain Plasticity Mechanisms in Stroke Patients 

Volume 11 (2019), Issue 6                                                                                                                                                                       29 

A range of complex data was analyzed: patients’ 

anamnesis, blood biochemistry, neurological and 

neuropsychological examination, fMRI and DTI data 

were processed. All patients received informed consent to 

conduct the study. 

The novelty and contribution of this research are 

machine learning methods set applying, including 

artificial neural networks and correlation analysis for 

prognosis different clinic criteria at different stages of 

rehabilitation. 

The paper consists of related works literature analysis, 

the data structure description, rehabilitation stages and 

prognostic criteria, applied methods description and 

analysis results, conclusions. On account of the large 

results volume at this paper it is shown only general 

results and some examples of conducted research. The 

further work includes creating a working algorithm for 

predicting the recovery of functions after an ischemic 

stroke.  

 

II.  RELATED WORKS 

In the study [9] of functional brain network (FBN) 

based on functional magnetic resonance imaging (fMRI) 

has proved in depression disorder classification authors 

developed a method to classify fMRI data in 31 patients 

with depression and 29 healthy controls. Authors studied 

discriminative brain areas that contribute to the 

classification of depression disorders, which may help 

understand the pathogenesis of depression disorders. In 

the paper [10] it is mentioned that major depressive 

disorder (MDD) is a mental disorder characterized by at 

least 2 weeks of low mood, which is present across most 

situations. Diagnosis of MDD using resting-state fMRI 

data faces many challenges due to the high 

dimensionality, small samples, noisy, and individual 

variability. Authors performed a data-driving 

classification analysis using the whole brain connectivity 

measures. Effective connectivity measures were extracted 

using spectral Dynamic Causal Modeling (spDCM) and 

transformed into a vectorial feature space. Linear Support 

Vector Machine (linear SVM), non-linear SVM, k-

Nearest Neighbor (KNN), and Logistic Regression (LR) 

were used as the classifiers to identify the differences 

between MDD patients and healthy controls.  Results 

showed that the highest accuracy reached 91.67% (p < 

0.0001) when using 19 effective connections and reached 

89.36% when using 6,650 functional connections. This 

study demonstrated that the effective connectivity 

measures might play a more important role, than 

functional connectivity ones, in exploring the differences 

between patients and health controls, and they afford a 

better mechanistic interpretability. 

In the paper [11] authors describe a convolutional 

neural network architecture for functional connectome 

classification called connectome-convolutional neural 

network (CCNN). The results on simulated datasets and a 

publicly available dataset for amnestic mild cognitive 

impairment classification demonstrate that CCNN model 

can efficiently distinguish between subject groups. 

Autism spectrum disorders (ASD) are diagnosed based 

on early manifesting clinical symptoms, including 

markedly impaired social communication [12]. The 

authors of the study [12] assessed the viability of resting-

state functional MRI (rs-fMRI) connectivity measures as 

diagnostic biomarkers for ASD and studied which 

connectivity features are predictive factors of the 

diagnosis. Rs-fMRI scans from 59 high functioning males 

with ASD and 59 age- and IQ-matched typically 

developing (TD) males were used to build a series of 

machine learning classifiers. Classification features were 

obtained using 3 sets of brain areas. High classification 

accuracy was reached with several rs-fMRI methods 

(peak accuracy 76.67%). However, classification via 

behavioral measures consistently surpassed rs-fMRI 

classifiers (peak accuracy 95.19%). Authors remarks that 

while individuals can be classified as having ASD with 

statistically significant accuracy from their rs-fMRI scans 

alone but this method falls short of biomarker standards. 

The paper [13] describes brain changes in Alzheimer’s 

disease (AD) that is important for patient prognosis and 

for assessing brain deterioration in clinical trials. In this 

diffusion tensor imaging study, authors used a new fiber 

tract modeling method to investigate white matter 

integrity in 50 elderly controls (CTL), 113 people with 

mild cognitive impairment (MCI), and 37 patients with 

AD. After clustering tractography using an ROI atlas, 

authors used a shortest path graph search through each 

bundle’s fiber density map to derive maximum density 

paths (MDPs), which we registered across subjects. We 

calculated the fractional anisotropy (FA) and mean 

diffusivity (MD) for all MDPs and found significant MD 

and FA differences between patients with AD and CTL 

subjects as well as MD differences between CTL and 

subjects with MCI. MD and FA were also associated with 

widely used clinical scores (MMSE). 

The aim of the study [14] was to improve the human 

brain activities based on human brain signal. In the 

experiment level, several iteration processes have been 

done to get above 90% improvement rate of the 

brainwaves. In this research, the improved signal has 

been considered based on the generated brain signal in 

various aspects like human intelligence, memory as well 

as the capability of better sensations. In the paper [15], 

the accuracy of the entropy-based thresholding 

approaches in the detection of brain tumors was studied. 

A framework for brain tumor segmentation is proposed 

with the core process of the image thresholding to 

evaluate the accuracy of the entropies. Five entropies, 

namely, Renyi, Maximum, Minimum, Tsallis and Kapur 

are evaluated. The results show that the maximum 

entropy is the best for brain tumor detection. The paper 

[16] proposed a self-initialization process to K-Means 

method for automatic segmentation of human brain 

Magnetic Resonance Image (MRI) scans. In this paper, 

the method has been proposed to make use of the 

histogram of the gray scale MRI brain images to 

automatically initialize the K-means clustering algorithm.   

The performance of the proposed method is compared 

with the traditional K-Means method. For the IBSR 
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volumes, the proposed method yields 3 to 4 times faster 

results and higher Dice value than traditional K-Means 

method. 

The research work [17] deals with the accurate 

segmentation and detection of tumors in multimodal 

brain MRI, and this work is focused to improve automatic 

segmentation results. This work analyses the 

segmentation performance of existing state-of-art method 

on improved Fuzzy C-Means Clustering. The paper [18] 

presents an increase in the accuracy for detecting brain 

disorders using optimal unification and demonstrates the 

use of a multilateral filter and the applied watershed 

method. In the unification process, the optimal sets of 

segments are divided, and finest merged results are 

considered with the brain areas detected with anomalies. 

In the study [19] the authors developed an extraction of 

shape features form MRI brain tumor image. The 

supervised learning algorithms like Deep Neural Network 

and Extreme Learning Machine are used to classify the 

brain tumor images. The experiment result shows that 

highest average accuracy has got at Zernike Moments up 

to 99%. The proposed predictive analytical framework in 

the study [20] is a combination of Decision Tree, Support 

Vector Machine and Artificial Neural Network which is 

used to gain insights from patients. Parkinson's disease 

voice dataset from UCI Machine learning repository is 

used as input. The experimental results show that early 

detection of disease will facilitate clinical monitoring of 

elderly people. 

 

III.  MATERIALS AND METHODS 

 

For the study of pathogenetic signs that are 

prognostically significant for the outcome of the disease 

and restoration of impaired functions at various stages of 

recovery after a stroke, a set of statistical data and 

evaluation criteria were analyzed (Table 1, Table 2). 

Table 1. Description of criteria 

Number 1 2 3 4 5 
Name of the 

criterion 
Impressive 

speech 
Expressive 

speech 
Non-speech 

impairments 
Holden 

Index 
Bаrthеl 

Index 
 

The aim of the research was the use of a complex of 

machine learning methods for the construction of 

analytical and prognostic models based on the initial data, 

evaluation and selection of the obtained models. The 

following tasks were solved: 

 

• forecast of scores for each of the five scales at the end 

of the rehabilitation period in relation to the initial period; 

• forecast of the results in points at the final month in 

terms of aggregate indicators for a term of two or three 

periods; 

• forecast of the tendency in changes of results in the 

final month in relation to the indicators for the previous 

period (from the third to the sixth months, from the sixth 

to the twelfth months as well as from the third to the 

twelfth months). 

Table 2. Baseline data, their structure and characteristics 

 Clinic fMRI 
Number of parameters after 

preprocessing 
419 163 

Variants of the analysis with additional 

data 
no 

The fMRI was performed 2 times 

per hospitalization - at admission 
and at discharge (file1, file2) 

Periods of rehabilitation The number of surveyed people 

3rd month 93 86 

6th month 38 31 

12th month 41 32 

Total of investigated, pers. 172 278 

 

Taking into account the fact that the initial data is a 

highly discharged matrix with a large amount of data with 

5 criteria for different periods of recovery of mental 

activity of stroke patients, the research concept was 

formulated. The content of the work was machine 

learning data processing of functional magnetic 

resonance imaging (fMRI, DTI) and clinical data of 

neural network-based classification, construction of 

mathematical and prognostic models, creating an 

algorithm for predicting the recovery of functions at 

various stages of recovery after a stroke, developing 

prognostic software, defining and configuring parameters 

of recognition algorithms. 

One of the main tasks was to apply various methods 

for all possible combinations of input data and criteria for 

their evaluation at various periods of rehabilitation. At the 

same time, two groups of analysis were carried out - for 

static data on the prediction of neuropsychological and 

neurological test scores (Table 1) and for dynamic data 

on the prediction of trends (Table 3). At the same time, 

various variants of the initial data combinations were 

analyzed during different periods of rehabilitation. 
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Table 3. Dynamic criteria and output coding for predictive models 

 For 2 months Simplified version for 2 months 

The coding of the 

outputs of 

prognostic models 
by points 

-1 - deterioration of 
condition 

0 - maintenance of 

condition 
1 - improvement of 

condition 

-1 - deterioration or persistence of 
condition 

1 - improvement of condition 

 For 3 months Simplified version for 3 months 

The coding of the 

outputs of 

prognostic 
models, taking 

into account the 

coding for 2 

months 

-1 and -1: (1) 
-1 and 0: (2) 
-1 and 1: (3) 
0 and -1: (4) 
0 and 0: (5) 
0 and 1: (6) 
1 and -1: (7) 
1 and 0: (8) 
1 and 1: (9) 

-1 and -1: (1) 
-1 and 1: (3) 
1 and -1: (7) 
1 and 1: (9) 

 

The standard mathematical approaches to the 

preliminary processing of clinical data were studied. For 

gap processing, the following methods were used: filling 

in unknown values with selective statistics of the 

corresponding variable (mean, median, etc.) and filling in 

unknown values taking into account the correlation 

between variables or the measures of identity between 

observations. Based on a comparative analysis and data 

[21], Random Forest algorithm was selected as the most 

informative in predicting target parameters. Then data 

was normalized to maximum values.  

In accordance with the standard approach to the 

classification of high-dimensional data, several classifiers 

were chosen to be able to compare the classification 

accuracy of different models and obtain a more dispersed 

estimate. To extract signs from primary data and their 

cause-and-effect relationships [22, 23], identify clinical 

factors and adaptive neural network rearrangements by 

neuroimaging data corresponding to the best course of the 

recovery stroke period according to neuropsychological 

assessments and during different periods after a stroke, 

algorithms based on the mathematical apparatus of 

decision trees with information gain criteria [24] were 

developed.  

 

 

Fig.1. Decision tree for forecasting for the twelfth month of criterion 2 according to the data of the third month. Hereafter, _x and _y are the initial 

and final periods of analysis, respectively. 

In example of one of the constructed decision trees 

(Fig. 1) each block is indicated: the name of the 

parameter and its threshold value, the entropy, the 

number of examined, the number of examined in each 

selected subgroup. Subgroups are formed when the 

threshold value of the specified parameter is reached (the 
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dichotomy method). Left arrow corresponds the 

parameter with the unexcited threshold value, and right 

arrow does the parameter with the exceeded one. 

To create prognostic neural network models, neural 

networks with simulations and networks to be trained 

with a teacher were used. 

The functioning of Korhonen’s self-organizing neural 

network is determined by the scheme in Fig. 2. The 

neural network architecture consists of receptor and self-

organizing layers. The ndist block is used to calculate the 

negative Euclidian distance between the input vector P, 

which encodes patient data (Table 3), and the rows of the 

neuron weights matrix [25]. At the output layer winner 

with largest negative distance is forming a cluster. 

Thus, each neuron is forming a cluster with center of 

adjusted weights coefficients. In this study, in the process 

of self-organization the Kohonen network, an algorithm 

for learning in the mode of random representation of 

input was used (weights are adjusted as a result of each 

presentation of a network of random input sequence). The 

weights of the neurons close best matching unit were 

adjusted with the update formula 1 for a neuron v with 

weight vector Wv(s): 

 

𝑊𝑣(𝑠 + 1) = 𝑊𝑣(𝑠) + 𝛩(𝑢, 𝑣, 𝑠) ⋅ 𝛼(𝑠) 

⋅ (𝑃(𝑡) − 𝑊𝑣(𝑠)),                              (1) 

  

where s is the step index, t an index into the training 

sample, u is the index of the best matching unit for P(t),  

α(s) is a learning coefficient, Θ(u, v, s) is the 

neighborhood function which gives the distance between 

the neuron u and the neuron v in step s.  

General mathematical description of the neural 

network functioning is based on combination of Kohonen 

rule with procedure of biases tuning [25]. Biases (b) at 

each neuron are recalculating at each tact of self-

initialization to manage the process of forming new 

clusters. Thus, the Kohonen self-organization rule is a 

recurrent relation that modifies the i-th row of the weights 

matrix of neurons by adding the weighted difference of 

the input vector and the value of this row in the previous 

step. 

 

 

Fig.2. The structure of a neural network with self-organization. 
Blocks ndist are negative Euclidean distance. Outputs are not marked 

because they depends on a predictive model. 

 

In this work T. Kohonen’s set of self-organizing neural 

networks was developed and applied for medical data 

clustering. The committee of neural models were built by 

iterating through the grid-search loop. For each of 5 

criteria and for different periods of 3, 6 and 12 months, a 

group of neural networks with randomly generated 

parameters were adapted for the clinical data and for the 

results of fMRI analysis with the following conditions: 

 

• Number of networks in committee for each task: 

20; 

• network dimension N (N x N): 10 x 10; 

• accuracy of variations N scatter (ε): 5; 

• α = 0.1; 

• variations (ε) of α: ±0.005; 

• learning step Θ = 0.01; 

• variations (ε) of Θ: ±0.005; 

• number of epochs : 70; 

• variations (ε) of number of epochs: ±30, 

 

Since Kohonen's neural networks allow to build 

predictive models only for a part of the identified clusters, 

radial basis neural networks based on the kernel function 

(probabilistic neural networks with Gaussian functions) 

were additionally trained. The heuristics is that the 

observation recorded at a given point in the parametric 

space indicates the presence of a certain probability 

density at thе point. Clusters of closely spaced points 

indicate that there is a large probability density at this 

point. Near observation, there is more confidence in the 

level of density, and as you move away from it, trust 

decreases, tending to zero. Neurons with radial elements 

are assigned to each observation. Each of the neurons 

specifies a Gaussian function with a center in the 

corresponding observation. Each class corresponds to an 

output neuron. Each output neuron is connected to all 

radial neurons relating to its class. The output neuron 

summarizes the responses of all the neurons relating to its 

class. The values of the output signals are obtained 

proportional to the kernel estimates of the probability that 

they relate to the corresponding classes, and the final 

estimates of the probability of relating to the classes are 

calculated with normalization by one. 

 

𝑓(𝑛) =   e-n2
                             (2) 

 

Choosing too small values of the parameter n will lead 

to sharp approximation functions, i.e. the inability of the 

network to properly forecast parameters on which it was 

not trained, and if the deviations are too large, n will lose 

features. The required value of the parameter of the 

Gaussian function was determined for each problem 

empirically, by fitting it so that the test error on the test 

set was as small as possible. For testing of neural 

algorithms cross correlation and simple split to test and 

training set were used. 
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IV.  RESULTS AND DISCUSSION 

This work describes a part of the results of applying a 

set of standard and author's methods that have been 

applied for each of the criteria based on a computer 

program as a logical core of the developed software. 

Algorithms based on linear regression [21] have been 

developed for extracting features from primary data. The 

results were ranked in descending order for each of their 

static and dynamic criteria to identify the most significant 

factors affecting the forecast. As an example, Table 4 

shows the most significant factors that influence the 

prognosis of recovery after a stroke according to one of 

the criteria (here and below, x is the initial, and y is the 

final month in the analysis). 

Table 4. Fragment of one of the lists of factors ranked by significance influencing the course of recovery after a stroke. 

 

Criterion 1 after the 6th month according to 

cumulative clinical data for the 3rd and 6th 
month 

Criterion 1 after 6 months according to the fMRI data of the 

third month 

N Factor name 
Validity 

period 
Brain area Correlated brain area 

1 
The severity of aphasia at the 

21st day after stroke onset 
6 months 

networks.DefaultMode.L

P (R) (47,-67,29) 
atlas.OFusG r (Occipital 

Fusiform Gyrus Right) 

2 AD.IFOF.ILF.right.31.1 6 months 
networks.Visual.Occipita

l (0,-93,-4) 
networks.DefaultMode.MPFC 

(1,55,-3) 

3 
The presence of dysarthria 

immediately after stroke 
6 months 

atlas.Cereb1 r 

(Cerebelum Crus1 Right) 
atlas.MidFG l (Middle Frontal 

Gyrus Left) 

4 MD.CC.splenium.5 3 months 
atlas.LG r (Lingual 

Gyrus Right) 
atlas.Cuneal l (Cuneal Cortex 

Left) 

5 Hb.Stroke (directly after) 6 months 
atlas.FOrb r (Frontal 

Orbital Cortex Right) 
atlas.TP l (Temporal Pole Left) 

6 RD.UF.left.46 3 months 
atlas.iLOC l (Lateral 

Occipital Cortex, inferior 

division Left) 

atlas.AG l (Angular Gyrus 
Left) 

7 FA.IFOF.31.ILF.right.1 6 months 
atlas.Cuneal l (Cuneal 

Cortex Left) 
atlas.PaCiG l (Paracingulate 

Gyrus Left) 
 

During the study, a committees of self-organizing 

T.Kohonen neural networks with various architectures 

were developed and the most successful ones were 

selected. The weights of all networks were initialized 

with random values. The data was mixed at each training 

to become the winners of different neurons. After each 

network was trained, it was tested. For this, a test case 

was fed to the network input, and as a result the neuron 

responsible for the nearest cluster was activated. 

Networks were selected in which the reliability of 

informative clusters was greater than 55%. As the result 

of series of conducted experiments, the best neural 

networks were selected. It was found that vectors with 

diagnostic features could belong to the same cluster. 

Examples of the results of group neural network 

clustering according to fMRI and clinical data are given 

in Table 5 and Table 6, respectively. Reliability given for 

the most informative cluster. 

It is noted that method of self-organizing neural 

modeling gives prognostic results only in particular cases. 

Therefore, modeling brain plasticity mechanisms in 

stroke patients was supplemented with probabilistic 

neural networks PNN, GRNN and other machine learning 

algorithms.   

Measures were used in assessing the effectiveness of 

the Recall / Precision System as well as the Jaccard 

similarity index which corresponds to the classification 

accuracy. To build the model and test, a test set and a 

training sample were applied. 

Table 5. Committee of Kohonen’s networks, trained according to FMRI 

Term and type of analysis Criteria type Reliabi-lity % 

6-month data forecast for 12 months 5 discharge 85.71 

12-month data forecast for 12 months 5 hospitalization 85.71 

12-month data forecast for 12 months 5 discharge 81.25 

3-month data forecast for 3 months 5 hospitalization 79.25 

6-month data forecast for 6 months 5 discharge 78.57 

3-month data forecast for 3 months 5 discharge 77.27 

3-month data forecast for 6 months 5 discharge 72.73 

6-month data forecast for 6 months 5 hospitalization 72.22 

3-month data forecast for 6 months 5 hospitalization 71.43 

3-month data forecast for 6 months 3 hospitalization 67.57 
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Table 6. Committee of Kohonen’s networks trained in clinical data 

Term and type of analysis criteria Reliabi-lity ,% 

3-month data forecast for 6-month points change 3 67.56 

3-month data forecast for 3 months 5 76.08 

3-month data forecast for 6 months 5 81.08 

6-month data forecast for 12-month points change 4 62.16 

3-month data forecast for 6-month points change 5 64.86 

6-month data forecast for 12 months 3 67.56 

3-month data forecast for 12-month points change 4 62.16 

6-month data forecast for 12 months 5 81.08 

6-month data forecast for 6-month points change 3 67.56 

3-month data forecast for 6 months 3 67.56 

6-month data forecast for 12-month points change 4 62.16 

6-month data forecast for 12-month points change 5 81.08 

3-month data forecast for 6 months 4 62.16 

6-month data forecast for 12-month points change 3 67.56 

12-month data forecast for 12 months 5 87.50 

3-month data forecast for 12-month points change 3 67.56 

6-month data forecast for 12-month points change 5 64.86 

6-month data forecast for 12-month points change 5 81.08 

3-month data forecast for 6-month points change 5 81.08 

6-month data forecast for 12-month points change 5 81.08 

3-month data forecast for 6-month points change 4 62.16 

6-month data forecast for 12-month points change 4 62.16 

 

Examples of the results of neural network modeling 

with data separation by 30% and 70% into a test set and a 

training samples with simplified criteria are given in 

Tables 7, 8, and 9. Leave-one-out cross-validation tests 

for GRNN prognostic models are shown in Table 10. 

For comparative analysis and building the final 

prognostic algorithm additional classifiers were used as 

iterative approaches: support vector machine (SVM), K-

Means clustering (KNN) method, and linear regression 

(LR). These additional algorithms were successfully 

applied to all combinations of criteria and each period of 

forecast. 

Table 7. Forecast of the dynamics of changes of points according to 

the data of 3 months for 6 months. Criterion.5 Barthel 

PNN (Jaccard) 0.833 

SVM 75.081 % 

LR 72.553 % 

PNN Precision (classes -1,1, total) 0.9, 0.5, 0.83 

PNN Recall (classes -1,1, total) 0.9, 0.5, 0.83 

PNN f1-score (classes -1,1, total) 0.9, 0.5, 0.83 

Table 8. The forecast of the dynamics of changes of points 

according to 6 months for 12 months Criterion 5 Barthel (30/70) 

PNN (Jaccard) 0.75 

SVM 75.081 % 

LR 72.553 % 

PNN Precision (classes -1,1, total) 0.89, 0.33, 0.80 

PNN Recall (classes -1,1, total) 0.80, 0.50, 0.75 

PNN f1-score (classes -1,1, total) 0.84, 0.40, 0.77 
 

 
 

 

Table 9. The forecast of the dynamics of changes of points according to 

the data of 3 months for the 12th month Criterion. 3 (30/70) 

PNN (Jaccard) 0.75 

KNN 97.297 % 

PNN Precision (classes -1,1, total) 0.00,0.82,0.68 

PNN Recall (classes -1,1, total) 0.00,0.90,0.75 

PNN f1-score (classes -1,1, total) 0.00,0.86,0.71 

Table 10. GRNN forecasting of leave-one-out  

cross-validation scores 

Period of 

forecast 

(month) 
Criteria number MAE Std 

3 4 0.035 0.058 
6 5 0.012 0.024 
3 3 0.065 0.108 

12 3 0.003 0.008 
6 4 0.03 0.059 
6 3 0.036 0.072 
6 2 0.014 0.03 
3 2 0.064 0.122 

12 2 0.003 0.013 
3 1 0.023 0.049 

 

To solve prognostic tasks that can be reduced to binary 

classification of clinical data, neural network models 

were constructed and trained with the cross-validation 

method [26]. Two criteria were used: the deterioration or 

maintenance of condition after a certain period and the 

improvement of condition after a certain period. In cross-

validation, the neural network was trained through a pass-

through test, with a window size equal to one. 
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Table 11 shows some examples of trained neural 

network binary classifiers. The parameter of the neural 

network, which is responsible for the width of the 

Gaussian function n, was used as the threshold of the 

algorithm. 

Table 11. Examples of the results of neural network modeling by PNN neural networks on leave-one-out cross-validation 

Type of analysis Criteria n Accuracy Sensitivity Specificity 
3-month data 

forecast for 6 

months 

2. Expres-sive 
speech 

0.9 56.78 % 83.3 % 31.58 % 

6-month data 

forecast for 12-

month points change 
4. Holden index 1.0 70.27 % 60.87 % 85.71 % 

3-month data 

forecast for 12-

month points change 
4. Holden  index 1.4 70.27 % 65.22 % 78.57 % 

 

As a result of proven research, it was found that taking 

into account the specifics of the initial statistical data, 

their processing by various neural network and machine 

learning techniques makes it possible to talk about the 

possibility of predicting the course of recovery after a 

stroke at various stages of rehabilitation in different cases. 

For example, the accuracy of the forecast of Criterion 5 

for 12 months from hospitalization reaches 85%, and the 

forecast of trend for 6 months of criterion 5 reaches 76%. 

At the same time, it was possible to predict the tendency 

of changes of points in the results of mental tests at 12 

months after stroke onset according to clinical data of the 

third month (Holden index with leave-one-out cross-

validation and accuracy of 70%). At some cases KENN, 

LR and SVM methods predicted with accuracy up to 97% 

(for example the forecast of the dynamics of changes of 

points according to the data of 3 months for the 12th 

month for criterion 3). Predictions based on the 

developed models are possible both by fMRI data and 

clinical data. 

 

V.  CONCLUSIONS 

This project is aimed at analyzing the structural and 

functional support of motor and higher cognitive 

functions, including language and speech, brain plasticity 

in normal conditions and in focal lesions of the brain 

hemispheres due to ischemic stroke. The topic of research 

is the functional systems represented by various brain 

structures [27,28], the joint activity of which ensures the 

rapid and most complete restoration of motor and higher 

cognitive functions, including language and speech 

(effective post-stroke plasticity of the brain) after a 

course of neurorehabilitation. 

The correlation of standardized measures of various 

health outcomes assessment during post-stroke recovery, 

including quantification of the nervous system, functional 

outcome, and quality of life [29,30] were discussed in 

several systematic reviews. A systematic review of 

prognostic studies [30] showed that the age and severity 

of the musculoskeletal system were important prognostic 

parameters, while gender and the presence of vascular 

risk factors were not. The use of simple models gives a 

good prognosis for the restoration of patients' health 

(accuracy 70.4-72.9% [31]. Adding more clinical 

parameters to relatively simple models improved 

prediction accuracy (83.9% [32]). A complex model 

based on a large number of parameters, such as age, 

severity of stroke when admitted according to a 

standardized health scale, time from stroke to reception, 

glucose level etc. exceeded the forecasts of experienced 

doctors [33]. Changes in the health status assessment of 

health status in the framework of traditional Chinese 

medicine during the first 5 days after a stroke predicted a 

90-day course of the disease [34]. As motor functions and 

movement are generally at the heart of the rehabilitation 

process, several studies have focused on predicting the 

recovery of these functions and special models have been 

created for this application [35]. 

The neuroimaging data used in our work is widely 

used in clinical work with stroke patients. Image 

processing provides valuable insights into the 

pathophysiology of stroke and the extent of the pathology 

as well as the potential to improve the accuracy of 

predicting the outcome of a stroke. However, more 

research is needed to establish which biomarkers are the 

best predictors of functional recovery after a stroke [36]. 

Current evidence suggests that adding neuroimaging data 

to models containing clinical predictors improves 

prediction accuracy [37]. 

The practical value of representing the brain as a 

structural brain network for predicting the course of 

injuries and diseases has been widely demonstrated in a 

number of studies [38–41]. The possibility of predicting 

the overall neurological health of an infants at 6 months 

after birth was shown on the basis of information 

obtained from diffusion-weighted images using the 

support vectors method [42]. A similar support vector 

machine was also used to predict the development of the 

neuromotor functions 18 months after the initial 

examination of premature infants with disorders acquired 

immediately after birth [43]. 

Although the use of neural networks for image analysis 

is well suited for many clinical applications, their use in 

neurology has recently become the most popular. Neural 

networks have been used to segment brain damage in 

patients with multiple sclerosis [44], brain tumors in 

multimodal MRI and for the classification of various 

types of cerebellar ataxia. Various deep learning 

architectures have also been used to predict the 

development of Alzheimer's disease stages and disease 

progression [45]. Similarly, a deep network of trust was 
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used to study the diversity of variations in the condition 

of Alzheimer's patients [46]. However, the networks in 

these studies were trained with standard MR images as 

opposed to graphical or network representations of the 

brain structure. Thus, machine learning methods, 

including artificial neural networks, were used to study 

the mechanisms of plasticity of the brain of patients who 

had a stroke and identify options that correspond to the 

rapid recovery of impaired functions. 

Very few works have used artificial neural networks to 

examine brain connectivity data. In Munsell et al. a deep 

auto-encoder was used to extract features (features) from 

the connectome, but the full brain structure was not fully 

considered [40]. A deep network of trust was used for a 

variety of classification tasks for functional magnetic 

resonance images and standard magnetic resonance brain 

data, but the spatial resolution of each image was not 

taken into account [47].  

The totality of the results of our mathematical analysis 

performed is served to create research and the final 

algorithms for predicting the course of rehabilitation at 

various stages and consists in applying the most reliable 

models and methods based on the results. For machine-

learning algorithms the clinical data and the results of 

fMRI and DTI analysis were used. Using neural networks, 

developed and selected on the basis of computational 

experiments, prognostic models were constructed for 

combinations of all criteria, terms and methods.  

Additionally, calculations were carried out on the 

application of decision trees, linear regression, KNN and 

SVM algorithms. 

Thus, machine learning methods, including artificial 

neural networks, were used to study the mechanisms of 

plasticity of the brain of patients who had a stroke and 

identify options that correspond to the rapid recovery of 

impaired functions. 

In this paper, we obtained confirmation of the presence 

of correlations for in-depth studies. The accuracy, 

sensitivity, and specificity of developed and applied 

methods has showed the possibility of forecast. 

The developed complex of computer programs is 

configured to process biomedical data on all the tasks of 

predicting the course of stroke treatment, taking into 

account the available clinical factors. A new collected 

statistical data at the Center Pathology of Speech and 

Neurorehabilitation or other medical institute can be 

further investigated by algorithms developed and tested in 

this work. The high social significance of the recovery of 

patients after a stroke (including language and speech 

function), the complex of rehabilitation measures as well 

as the developed predictive mathematical models and 

software makes this research relevant and perspective for 

modern health care. 
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