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Abstract—Various and unpredictable electronic warfare 

situations drive the development of an integrated 

electronic warfare (EW) simulator that can perform 

electronic warfare modeling and simulation on radar 

threats. This paper introduces the basic components of 

simulation system that enables our agents to be 

operational in EW settings. In various simulation of EW 

environments, our agents can preset their path in the 

existence of enemy radars' surveillance and 

autonomously be aware of radar threats while they 

proceed in their own route. As reversely extrapolating 

radar threats given radio-active parameters received, our 

agents perform an appropriate jamming technique in 

order to deceive the enemy radar keeping track of our 

agents. Based upon the response of the radar threat 

attacked by the jamming techniques, our agents figure out 

the types of the radar threat and verify its identification. 

For the actual and helpful information, real radars with 

the probability of similarity could be prioritized from 

radar database. The integrated EW simulator that we have 

designed and developed in this paper enables our agents 

to perform such capabilities as reverse extrapolation of 

RF threats, its verification using jamming, and 

recommendation of similar radars, and to evaluate their 

autonomous behaviors in a tapestry of realistic scenarios. 

 

Index Terms—Modeling and Simulation of Electronic 

Warfare, Machine Learning, Dempster-Shafer Theory, 

Intelligent Recommendation of Radars. 

 

I.  INTRODUCTION 

Despite of potential danger in electronic warfare (EW) 

environments [1], first of all, our agents need to reversely 

extrapolate and autonomously identify the types of threats 

in order to ensure their continual functionality [2,3]. If 

our agents recognize a situation that a radar threat 

operates in the mode of searching, they should be ready 

to attack it. In progress of the enemy radar's tracking or 

missile attack, they should use jamming techniques to 

avoid its range of attack. To reversely extrapolate the 

types of radar threats, thus, we compile the attributes of 

threats into the possible models using machine learning 

algorithms [4]. Since there are several models for the 

types of radar threats according to a set of algorithms, a 

method is needed to determine a unique model from 

possible models. Towards this end, we investigate the 

method to integrate the reverse extrapolation models 

using Dempster-Shafer theory [5,6]. Our agents then can 

identify the unique type of radar threats given a set of 

models. 

Given the response of radar threats attacked by a 

specific jamming and the comparison of parameter values 

received, this paper provides a method to recommend 

similar radar threats from radar database. To enhance 

their survivability in dynamic EW environments, the 

ultimate goal of our aircraft agents is to recognize the 

actual specification of the threat through their 

extrapolation to threats and verification process by 

jamming. Similarities of radars are defined by the 

attributes of parameters acquired by the receiver and by 

the degree of endurance to a jamming attack as well. We 

quantify the similarities into the difference between 

parameter values received and ones stored in database, 

and at the same time into the characteristic values 

denoting the effectiveness of jamming. The quantification 

of the similarity enables our aircraft agents to prioritize 

similar radars and to estimate one closest to what a 

realistic radar is. 

In this paper, we analyze the components of a 

simulation system to reversely model the types of radar 

threats that emit electromagnetic signals based upon the 

parameters of the electronic information, and to verify the 

reverse extrapolation of radar threats using jamming 

techniques. We have designed and implemented the 

simulator, and have tested our intelligent agents' 

capabilities in various simulated EW settings. The 

simulator consists of the panels of radar threats, the 

electronic receiver detecting the threats, and the scenario 

display showing their interactions. The panel of a radar 
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threat located on a territory includes the radar's view of a 

target, a set of its emitting parameters, two positions of a 

target jammed and a real target for reference, and a H/W 

block diagram of a radar. The panel of the electronic 

receiver which presents information for our aircraft 

agents includes the receiver's view of a radar threat, 

parameters received, types of a radar threat identified, a 

current jamming attack, and a list of radar recommended 

from radar database. 

In the following section, we will describe our work 

while comparing it with related research. Section III 

explains how our aircraft agents with receiver decide the 

unique type of a radar threat and enumerate similar radars 

recommended from database, given the response of the 

radar. Section IV describes the architecture of a unit 

jamming simulator and an integrated EW simulator, 

respectively. Using the EW simulator, in section V, we 

validate our framework empirically, and present the 

experimental results. In conclusion, we summarize our 

results and discuss further research issues. 

 

II.  RELATED WORK 

To iteratively test and verify the capabilities of our 

friendly agents in EW environments, there have been a 

lot of researches on two theoretical backgrounds. From 

situation awareness perspectives, a group of researchers 

[2, 3, 7-9] emphasize on the agents’ way how they 

formulize and model the situation they are encountering. 

These approaches analyze percepts obtained through 

sensors and formulate them into a specific model to 

successfully perform the agents’ task. In our previous 

work [4], we provide a reverse extrapolation technique 

using compilation framework, which enables our agents 

to be fully aware of environments. In this paper, further, 

we integrate reverse models into a unique model by 

unifying several models compiled through different 

learning algorithms. 

From the approaches for modeling and simulation in 

the field of simulated EW settings, they develop a kind of 

simulation system with only particular part of radar 

system, specific jamming technologies, or propagation 

characteristics [10, 11]. However, our current work in this 

paper follows the research on the modeling and 

simulation considering all the essential modules of EW, 

i.e., sending and receiving signals, range and angle 

tracking modules of radar threats, propagation modules of 

electromagnetic waves, jamming modules for electronic 

attacks, and so on. Further, our simulator provides 

additional critical capabilities, which are reversely 

estimating a hostile radar, uniquely determining the threat, 

and recommending a set of radars from database as a 

verification process. Our efforts towards this end will 

complete the fully autonomous agent from situation 

awareness to successful mission accomplishment in 

various EW situations. 

 

 

 

III.  REVERSE EXTRAPOLATION OF RADAR THREATS AND 

THEIR VERIFICATION IN EW SETTINGS 

This paper addresses a suite of methodology as follows; 

(1) how to provide the unique estimation of types of a 

radar threat, and (2) how to recommend a set of radars 

which are similar with the radar threat verified. We will 

start with the integration of multiple reverse models in 

simulated EW environments. 

A.  Integration of Multiple Reverse Models 

Since our aircraft agents are assumed to perceive a 

threatening situation only through their radar receivers in 

EW settings, the RF threats on the land-based platform 

that they can detect are divided into search radar, tracking 

radar, and missile guidance seeker. The signals perceived 

by radar receivers are translated into a set of variables. 

Given the variables, the attributes that can characterize 

the threats should be picked up. The attributes are 

determined to effectively discriminate three threat types 

among all potential threats. The attributes acquired from 

radar sensors are radar frequency, pulse width, pulse 

power, and pulse repetition interval (PRI). Given a set of 

attributes, three threat types are identified, i.e., search 

radar, tracking radar, and missile guidance seeker. 

A set of radar instances is compiled into the individual 

model of RF threats. For our agents to have a reverse 

model of RF threats in a specific situation, we endow 

them with an operational knowledge. The knowledge 

formulated is constructed by compiling the attributes of 

threat systems into the resulting output of models. The 

compiled knowledge accumulated offline can be obtained 

from both supervised and unsupervised machine learning 

algorithms [4]. The various compilations provide our 

agents with a spectrum of approaches to extrapolating 

reverse models under dangerous situations in EW settings. 

In this paper, we expand our previous work to unify those 

models into the unique identification, which is the result 

integrated with reverse extrapolation models by the 

Dempster-Shafer method [5,6]. 

To formulate the decision of the type of RF threats 

from their possible reverse models, we apply the 

Dempster-Shafer theory to a set of results denoting the 

probability of types of a specific radar threat. Among the 

possible outputs of threat types, the combined prediction 

for our agents, 𝛼𝑟𝑛, is defined as follows: 

 

𝛼𝑟𝑛 =
𝛼𝑖

𝑟𝑛×𝛼𝑗
𝑟𝑛

1−((1−𝛼
𝑖
𝑟𝑛)𝛼

𝑗
𝑟𝑛+𝛼

𝑖
𝑟𝑛(1−𝛼

𝑗
𝑟𝑛))

            (1) 

 

where 

 

 𝛼𝑖
𝑟𝑛 and 𝛼𝑗

𝑟𝑛  are the confidence of the possible 

threat types 𝑟𝑛, obtained from revere extrapolation 

models i and j; 

  𝑟𝑛  is an element of the set of search radar, 

tracking radar, and missile guidance seeker; 
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 0 ≤ 𝛼𝑖
𝑟𝑛 and  𝛼𝑗

𝑟𝑛 ≤ 1; 

 ∑ 𝛼𝑖
𝑟𝑛

𝑛 = 1 and also ∑ 𝛼𝑗
𝑟𝑛

𝑛 = 1. 

 

The goal of aggregation is to combine outputs of 

reverse models when each of them estimates the 

probability of types of radar threats for our aircraft agents, 

and to produce a single probability distribution that 

summarizes various threat types. Using Dempster's rule, 

the resulting values of 𝛼𝑟𝑛  indicate the degrees of 

agreement on different reverse models of reliability on 

the types of RF threats, but completely exclude the 

degrees of disagreement or conflict. The advantage of 

using the Dempster's rule for the integration of reverse 

models is that no priors and conditionals are needed. 

 

Example. Let 𝛼𝑖
𝑟𝑛 ={0.75, 0.15, 0.10} and 𝛼𝑗

𝑟𝑛 ={0.80, 

0.12, 0.08}, in case that a model i and a model j are used 

to reversely extrapolate the types of an RF threat 

monitored. Given two sets of probabilities, the combined 

estimation of a radar threat type using (1) can be 

computed as 𝛼𝑟𝑛={0.92, 0.02, 0.01}. Each resulting value 

for types of the radar threat is given 

 

0.75 0.80
0.92

1 (0.75 0.20 0.80 0.25)


=

−  + 
 

 

0.15 0.12
0.02

1 (0.15 0.88 0.12 0.85)


=

−  + 
 

 

0.10 0.08
0.02

1 (0.10 0.92 0.08 0.90)


=

−  + 
 

 

Normalizing the values of 𝛼𝑟𝑛 ={0.92, 0.02, 0.01} 

emphasizes the combined estimation of the radar threat in 

a sense that the threat should be a search radar in the 

resulting form of {0.97, 0.02, 0.01}. The final normalized 

distribution on the types of the threat presents more clear 

identification, compared with two original distributions of 

{0.75, 0.15, 0.10} and {0.80, 0.12, 0.08}. 

B.  Recommendation of Similar Radars 

To seek a realistic specification of an RF threat 

encountered, our aircraft agents compute the distance 

between the threat and a radar instance given database, 

and search for radar instances which are closest to the 

threat. The similarity of radars consists of the attributes of 

parameters acquired by the receiver and the degree of 

endurance to a jamming attack as well. These attributes 

are categorized into nominal or numeric values. 

Depending upon whether or not the value of an 

attribute is discrete, each difference between an attribute 

value of an RF threat and that of a radar instance, 𝛿𝑖, is 

differently taken into account. When the value of an 

attribute i is nominal, the difference can be attributed to 

the similarity as follows:  

 

𝛿𝑖 =  {0   𝑖𝑓 𝑎𝐷
𝑖 = 𝑎𝑇

𝑖

1  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                         (2) 

where 

 

 𝑎𝐷
𝑖  is the value of an attribute i for a radar instance 

from radar database; 

 𝑎𝑇
𝑖  is the value of an attribute i for a specific threat. 

 

In (2), 𝛿𝑖  will be 0 if two discrete values 𝑎𝐷
𝑖  and 𝑎𝑇

𝑖   

are identical. Otherwise, it will be 1. When the value of 

an attribute i is numeric, the 𝛿𝑖 can also be contributed to 

the similarity as follows:  

 

𝛿𝑖 =
√(𝑎𝐷

𝑖 −𝑎𝑇
𝑖 )2

𝑀𝐴𝑋(𝑎𝐷
𝑖 )−𝑀𝐼𝑁(𝑎𝐷

𝑖 )
                       (3) 

 

where 

 

 MAX( 𝑎𝐷
𝑖 ) is the maximum value among 

continuous values of an attribute i for a radar 

instance from radar database; 

 MIN(𝑎𝐷
𝑖 )is the minimum value among continuous 

values of an attribute i for a radar instance from 

radar database. 

 

The denominator in (3) normalizes the different range 

of various attribute values into the range of 0 and 1. Since 

we can calculate each distance between an attribute value 

of an RF threat and that of a radar instance regardless of 

the types of attribute value, we are now ready to represent 

a total distance between the RF threat and the instance 

from radar database. 

The similarity between a specific threat and a radar 

instance, ω, then can be calculated as follows: 

 

𝜔 = 1 −
∑ 𝛿𝑖

𝑛

𝑖=1

𝑛

                            (4) 

 

where n is the number of attributes for a radar instance. In 

(4), if ω is closer to 1, the RF threat is much similar to the 

radar considered. Given a set of radar instances, the 

similarities for all of them are computed and closest 

radars to the specific threat are recommended. 

 

IV.  THE ARCHITECTURE OF SIMULATORS 

We have designed and implemented the simulator for 

the reverse extrapolation of RF threats and their 

verification using jamming techniques. For the 

verification process of the identification of an RF threat 

in simulated EW settings, we have also developed a unit 

simulator and plugged it into the integrated simulator. 

A.  MATLAB Simulator 

For verifying the performance of the proposed reverse 

extrapolation models in various and specific EW 

situations, we have used the EW simulations including 

the functional modules of radar threats, propagation, and 

electronic attacks, as shown in Fig. 1. 
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First, the identification is performed by the reverse 

extrapolation using the collected information for a 

specific radar threat under no jamming situation. Next, 

the appropriate jamming for the identified radar threat is 

selected and transmitted, and then, the radar signal 

influenced by jamming is received in aircraft. If the 

identification of the radar threat is correct, the selected 

jamming is effective to the radar threat, and as a result, 

the received signal and collected information from the 

radar threat change in the way intended by jammer. On 

the contrary, if the identification is incorrect, the 

collected information from the radar threat after jamming 

tends to be different from the way intended by jammer. 

 

 

Fig.1. The block diagram of the verification system of reverse models 
using jamming techniques 

We have implemented a unit simulator which has the 

essential elements of EW, such as detecting and tracking 

radar threats, jamming for electronic countermeasures or 

attacks, propagation of electromagnetic waves, and 

detailed battle scenarios. Fig. 2 shows the input screen of 

the implemented simulator using the software MATLAB 

○R  2017b.  

The functional modules of radar threat including 

antenna, intermediate frequency (IF) conversion, 

automatic gain control (AGC), constant false alarm rate 

(CFAR) detection, range tracking with early/late gates, 

angle tracking using monopulse method, and velocity 

estimation with narrow-band filter banks have been 

considered for a realistic design with reference to the 

theoretical models or the principles of circuit operation 

[12] of radar threats in the MATLAB simulator. In order 

to implement the propagation of electromagnetic waves 

in the MATLAB simulator, we have used the models in 

References [4, 13, 14] for the loss and attenuation of a 

transmitted electromagnetic wave, and those in Reference 

[4] for Doppler and multi-path fading effects which a 

transmitted wave suffers. 

There are generally two types of radar jamming, noise 

and deception. The noise jamming conceals the target 

signal with the intentionally radiated noise-like signal and 

the deception jamming deceives the tracking system of 

radar with the false information about the critical 

intelligence such as range, angle, or velocity of target. In 

the MATLAB simulator, we have implemented the 

functions of noise, range deceptive, velocity deceptive, 

angle deceptive, and noise-deception complex jamming 

[15,16], with consideration for jamming-to-signal power 

ratio (JSR) and burn-through range [15] under the self-

protection scenario [17]. 

Fig. 3 shows the output screen of the MATLAB 

simulator when the complex jamming with barrage noise 

and angle deception jamming is applied. As the 

simulation progresses, the results of the output screen are 

updated according to the processing interval and speed. 

The upper-left and upper-right graphs display the radar 

scope and monopulse angle scope, respectively, those 

provide the range and angle tracking status. The bottom-

left and bottom-right graphs show the received signal and 

its spectrum, respectively. The text boxes in the right side 

report the selected radar and jamming types, 

instantaneous tracking results, and root-mean-squared 

(rms) errors estimated in the whole simulation. The 

tracking results and rms estimation errors are stored 

separately in files, which can be used to investigate or 

analyze the effectiveness of jamming. 

 

 

Fig.2. Input screen of the MATLAB simulator
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Fig.3. Output screen of the MATLAB simulator 

 

Fig.4. Screen capture of the simulator for the reverse extrapolation of radar threats and their verification 

We utilize the MATLAB simulator to investigate how 

accurate the proposed reverse extrapolation model 

identifies the RF threat previously set, and also to 

ascertain how the radar threat responds to various 

electronic attacks. The characteristics of radar responses 

obtained by the simulator are efficiently used to improve 

the identification performance of the proposed reverse 

extrapolation. 

B.  Integrated Simulator for the Identification of Radar 

Threats and Their Verification 

We have implemented the simulator for the reverse 

extrapolation of RF threats and their verification through 

jamming techniques, as depicted in Fig. 4. The simulator 

has been programmed using C# version 4.0, Visual 

Studio ○R  2017 in .NET environment. 

The simulator in Fig. 4 consists of the panels of RF 

threats, the electronic receiver of our aircraft agents, and 

the scenario display. The scenario panel in the middle of 

the screen displays a radar threat, our aircraft equipped 

with receiver, and their interactions according to radar's 

modes of searching, tracking, and missile seeker. The 

right panel of the simulator shows the information from a 

radar threat's perspective. The radar view in its top of the 

panel presents a target, i.e., aircraft, and a target deceived 

in case that a jamming is effective. Below the radar view, 

radio-active parameters emitting from the radar are listed. 

The parameters are frequencies, pulse width, pulse 

repetition interval, and pulse power. The angle estimation 

to the aircraft is shown in the screen of a unit MATLAB 

simulator plugged into the simulator. The bottom of the 

right panel illuminates a specific radar block diagram in 

use. The left panel of the simulator represents information 

received by our aircraft agents. The receiver view on its 

top presents the needle of an aero compass keeping track 

of a radar's location. The parameters acquired by the 

receiver are listed in the same order of radar view. The 

box below denotes whether or not radar signal is received. 
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Using our reverse extrapolation models of radar threats 

and the consolidation method for the unique identification 

of types of a radar, the accuracy of types of a specific 

radar is represented in percentage. Current jamming 

technique is specified in the form of option buttons. The 

left corner of the simulator shows a list of similar radars 

recommended from radar database.  

The events of our simulator within a cycle happen in 

order. In preparation step, the capabilities and system 

block of a radar threat are selected, and our aircraft's path 

and it's jamming technique is preset. As starting 

simulation, our aircraft agent is proceeding in route 

previously defined, and the radar is beginning to search 

possible targets within its range. Our agents receive 

radioactive parameters through sensors, and then 

reversely extrapolate a radar threat given those 

parameters. To verify their extrapolation, they perform a 

jamming technique against the radar. And then, the radar 

simultaneously estimates our agent's position. Finally, our 

agents analyze jamming response and recommend similar 

radars considering the jamming response and a set of 

parameters received. 

 

V.  EXPERIMENTAL RESULTS 

Using the integrated EW simulator, we could perform 

two experiments and measure the performance of (1) the 

unique estimation of types of a radar threat, and (2) the 

recommendation of similar radars. In each experiment, 

we could set up various and realistic EW situations, and 

analyze the improvement of our agents' performance.  

A.  he Combined Prediction for the Types of Radar 

Threats 

To evaluate the performance of reverse extrapolation 

process for threat identification, we generate the 

simulation data using discrete uniform distribution and 

test the compiled models by applying them to simulated 

electronic warfare (EW) settings. For this experiment, we 

use WEKA (Waikato Environment for Knowledge 

Analysis) [18] for supervised machine learning 

algorithms, i.e., decision tree algorithm and naive 

Bayesian classifier, and implement k-means clustering 

algorithm using Euclidean distance and a neural network 

as unsupervised techniques [19]. 

We measure the performance of our agents with 

reverse models in terms of the correct identification of RF 

threats. The performance using each learning algorithm is 

depicted in Fig. 5. The average performance of four 

learning algorithms after 300 trials presents 87.00% for 

search radars, 88.52% for tracking radars, and 92.63% for 

missile seekers. In other words, each performance 

without integration shows ranging from 87% to 93%. 

The average performance of combined predictions, as 

described in (1), using two, three, and four machine 

learning algorithms after 300 trials are shown in Fig. 6, 

Fig. 7, and Fig. 8, respectively. 

 

 

Fig.5. The performance on the types of an RF threat using a machine 
learning algorithm 

 

Fig.6. The combined prediction on the types of an RF threat using two 
machine learning algorithms 

 

Fig.7. The combined prediction on the types of an RF threat using three 
machine learning algorithms
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Fig.8. The combined prediction on the types of an RF threat using four 

machine learning algorithms 

As machine learning algorithms are more combined for 

the reverse extrapolation of types of an RF threat, the 

accuracy of the threat identification is enhanced. The 

performance using four machine learning algorithms, as 

depicted in Fig. 8, presents the best performance such as 

99.98% for search and tracking radars, and 99.84% for 

missile seekers. Given the results of performance, it turns 

out that the performance by a clustering algorithm was 

the worst while the performance using a decision tree 

algorithm was the best in a simulated EW domain. The 

integration of reverse models through Dempster-Shafer 

theory enables our aircraft agents to be almost perfectly 

aware of the types of radars under EW attack. 

B.  Recommendation of Radars from Radar DB 

For the experiment, we assigned 200 instances into a 

radar database, where each instance could be a 

specification of practical radars. In an EW scenario, we 

measured similarities between an RF threat and all of 

radar instances, as described in (4), and obtained the 

average of best similarities given configurations of an RF 

threat over ten predefined scenarios. Since RF threats 

could be jammed by aircraft agents only during the RF 

threats kept tracking of our agents, the type of an RF 

threat was assumed to be a tracking radar or a missile 

seeker. The possible jamming techniques available to our 

aircraft agents were noise, range deceptive, angle 

deceptive, and velocity deceptive jamming. From an RF 

threat's perspective, the tracking type of the threat could 

be a discrete value of {Monopulse, Doppler} and the RF 

threat consisted of a nominal value of {AGC, Limiter} as 

blocks of hardware system. The average of best 

similarities in ten EW scenarios are summarized into 

Table 1. 

For each row of Table 1, ten EW scenarios were tested 

and radar parameters received by our aircraft agents were 

randomly generated. Given threat configuration with 

numeric attributes of radar parameters and the threat 

response to the specific jamming, we could measure the 

similarities between the threat encountered and radar 

instances given database. As far as angle deceptive 

jamming, we implemented only Monopulse tracking 

radars, but no Doppler tracking radars. All of the 

similarities in Table 1 were distributed over 85%, 

regardless of configurations in our experiment. The 

computation of similarity enables our aircraft agents to be 

informed with realistic threat specification, even if EW 

scenarios construct a complex of combinations of RF 

threat components, parameters received, a specific 

jamming, and threat response to the jamming. 

Table 1. The average of best similarities in ten EW scenarios 

Jamming 

Types 

Threat 

Types 

Tracking 

Types 

H/W 

Block 
Similarity 

Noise 

Tracking 

Monopulse 
AGC 

Limiter 
88.01 
88.22 

Doppler 
AGC 

Limiter 

87.21 

89.01 

M seeker 

Monopulse 
AGC 

Limiter 
88.72 
87.51 

Doppler 
AGC 

Limiter 

89.29 

89.57 

Range 

Deceptive 

Tracking 

Monopulse 
AGC 

Limiter 
88.07 
87.08 

Doppler 
AGC 

Limiter 

88.89 

88.57 

M seeker 

Monopulse 
AGC 

Limiter 
88.69 
86.85 

Doppler 
AGC 

Limiter 

88.02 

85.90 

Angle 

Deceptive 

Tracking Monopulse 
AGC 

Limiter 
90.94 
90.32 

M seeker Monopulse 
AGC 

Limiter 

90.60 

88.49 

Velocity 

Deceptive 

Tracking 

Monopulse 
AGC 

Limiter 
87.44 
90.48 

Doppler 
AGC 

Limiter 

88.90 

89.20 

M seeker 

Monopulse 
AGC 

Limiter 

90.43 

88.92 

Doppler 
AGC 

Limiter 

90.88 

88.30 

 

VI.  CONCLUSION 

Using a compilation technique, we generated multiple 

models of reverse extrapolation of RF threats. We 

measured the performance of our aircraft agents with 

reverse models in terms of the correct identification of RF 

threats. For the final decision on the types of the RF 

threat, we applied the Dempster’s rule of combination to 

the accuracies of reverse extrapolation of the RF threat 

types. The performance we measured showed that the 

combined prediction to the threat types was more than 

99%. As a consequence, the representative identification 

of RF threats, in case of several possible alternatives, 

makes our aircraft agents rapidly and effectively respond 

to the fatal condition, and fairly enhance their continual 

survival. 

Our intelligent agents could calculate the similarities 

between the threat and a set of radar instances predefined 

in database, and, based upon the similarities, radar 

instances closest to the threat were recommended to our 

aircraft agents. In this experiment, we could verify that 

the specifications of radars recommended were very 

similar with those of the threats reversely extrapolated; 

more specifically, the values of similarity were larger 

than 85% in all of cases. As the radar database is filled 



Simulation for the Reverse Extrapolation of Radar Threats and their Verification 

8                                                                                                                                                                         Volume 11 (2019), Issue 7 

with plenty of real-world specifications of radars in 

various scenarios, the survivability of our intelligent 

agents could be strengthened to realize their maximum 

potential, when they cope with a real EW situation. 

We implemented a MATLAB simulator to investigate 

the tracking performances of radar threats and to verify 

the performance of the reverse extrapolation models in 

various EW situations. After confirming the estimation of 

hostile radars by using the MATLAB simulator, we 

eventually implemented the integrated EW simulator that 

displays interactions between our aircraft agents with 

receiver and the radar. The development of the EW 

simulator contributes to the advantages of specific 

scenario setup including realistic radar threats, 

performing various jamming techniques, and iterative 

testing and verifying our friendly agents’ capabilities. 

In our framework, we hope to deploy fully autonomous 

aircraft agents in EW simulated settings. We are going to 

expand our framework to decision-making of effective 

countermeasures to threats given situation at hand, based 

upon our efforts of autonomous situation awareness in 

this paper. In parallel, we will also develop a drone of 

agents, and design the testbed to repeatedly test their best 

formations for various types of jamming techniques. 
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