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Abstract—Water quality prediction is very important for 

both water resource scheduling and management. Simple 

linear regression analysis and artificial neural network 

models cannot accurately forecast water quality because 

of complicated linear and nonlinear relationships in the 

water quality dataset. An adaptive neuro-fuzzy inference 

system (ANFIS) that can integrate linear and nonlinear 

relationships has been proposed to address the problem. 

However, the ANFIS model can only work in scenarios 

where input and target parameters have strong 

correlations. In this paper, a fuzzy model integrated with 

a time series data analysis method is proposed to address 

the water quality prediction problem when the correlation 

between the input and target parameters is weak. The 

water quality datasets collected from the Las Vegas Wash 

between the years 2005 and 2010, and the Boulder Basin, 

Nevada-Arizona from the years 2011 to 2016 are used to 

test the proposed model. The prediction accuracy of the 

proposed model is measured by three different statistical 

indices: mean average percentage error, root mean square 

error, and coefficient of determination. The experimental 

results have proven that the ANFIS model combined with 

a time series analysis method achieves the best prediction 

accuracy for predicting electrical conductivity and total 

dissolved solids in the Las Vegas Wash, with the testing 

value of coefficient of determination reaching 0.999 and 

0.997, respectively. The fuzzy time series analysis has the 

best performance for dissolved oxygen and electrical 

conductivity prediction in the Boulder Basin, and 

dissolved oxygen prediction in the Las Vegas Wash, with 

testing value of coefficients of determination equal to 

0.990, 90975, and 0.960, respectively. 

 

Index Terms—Water quality prediction, Artificial neural 

networks, Adaptive neuro-fuzzy inference system, Fuzzy 

time series, Time series analysis. 

 

I.  INTRODUCTION 

Water resources are vital for all living organisms on 

earth. Plants and animals need high quality and large 

quantity water to maintain basic living. However, the 

quality of water continues to degrade due to the ever 

increasing industrial and recreational effluents, which 

strongly threaten human health and ecosystem stability 

[1]. Effective measures should be taken to evaluate and 

model the quality of water before it is used as a drinking 

water resource. In the past, scientists regularly sampled 

the water in water quality monitoring stations, and 

assessed the components in the water sample in a lab. 

However, this process takes a long time, and thus, the 

detected results are not timely. 

In recent decades, many machine learning techniques, 

like multivariate linear regression (MLR) and artificial 

neural network (ANN) model, have been proposed to 

address the problem [2-5]. A water quality dataset is a 

type of time series dataset that usually contains both 

linear and nonlinear patterns. Although machine learning 

techniques can save time in water quality evaluation, the 

prediction results of these models are not reliable, due to 

complex linear and nonlinear relationships hidden in the 

water quality dataset. Adaptive neuro-fuzzy inference 

systems (ANFIS) have been proven can accurately 

formulate the complicated nonlinear relationships hidden 

in the collected dataset [6]. The ANFIS model has 

already been used to predict water quality in many studies, 

and the experimental results are good. In [7], the ANFIS 

model shows much a higher accuracy than ANN models 

in the prediction of parameter dissolved oxygen (DO). 

Intelligence algorithms are integrated with the ANFIS 

model to improve the prediction performance and achieve 

more reliable results [8]. 
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Although the ANFIS model can achieve good 

performance in water quality prediction, it has some 

limitations. Firstly, the size of training dataset should be 

not less than the number of training parameters required 

in the model [9]. In [7], though the ANFIS model 

receives higher prediction accuracy, which results in 

unreliable prediction. Secondly, the samples in the testing 

dataset should be able to gain insight from the training 

dataset. In some scenarios, especially when the input data 

has a large value range and there exist some extreme data 

value points, it is likely to have out-of-range errors. 

Unlike regular errors in the MLR or ANN models, out-of-

range errors may cause abnormal prediction results, 

which are extremely large or small compared to the 

observed values. The model can have a very large testing 

error even though the model can accurately predict most 

of the data samples. As in [10], the ANFIS model has 

substandard performance in the testing stage of the 

experiment because the limited dataset is not sufficient to 

build a robust and reliable model in the training stage. A 

stratified sampling strategy has been proposed to address 

the constraint of uneven distributions of datasets [11]. 

Lastly, an ANFIS model requires that there exists strong 

correlation between input and target parameters. If the 

correlation is weak, the ANFIS model cannot accurately 

formulate the hidden relationships and out-of-range errors 

are likely to occur in the testing stage. 

Meanwhile, as the fuzzy time series (FTS) model is an 

accurate and reliable model to forecast time series data. It 

has been widely used to solve the time series dataset 

prediction problem [12-15]. In this paper, both ANFIS 

and FTS models are employed to predict water quality 

when the input and output parameters have weak 

correlations. The time series analysis method is used to 

preprocess the water quality dataset to figure out 

appropriate input parameters. A stratified sampling 

strategy is employed to evenly partition the whole dataset 

for training and testing purposes. 

The organization of the remainder of the paper is as 

follows: Related work to review the water quality 

prediction model is given in Section 2. The study area, 

water quality parameters, and methodologies used are 

introduced in Section 3. In Section 4, the proposed water 

quality prediction system is described. Section 5 presents 

the experimental configuration and results. The last 

section concludes this paper and discusses future work. 

 

II.  RELATED WORK 

Generally, the quality of water resources has been 

manually quantized by engineers in a lab. Though this 

method can achieve the most accurate water quality result, 

it requires that professional engineers spend much time 

and energy with testing equipment to quantize each water 

quality parameter. Therefore, a linear regression model 

has been proposed by researchers to expedite this process 

[2,3]. As a water quality dataset is a type of time series 

data, which likely consists of a complicated linear and 

nonlinear relationship, the linear regression model is not 

reliable to address this problem, as reflected in 

experimental results [2]. 

With the emergence of ANN, various ANN models 

have been used to predict water quality in different 

scenarios. A two-layer ANN model has been applied to 

predict the DO concentration in the Mathura River [16], 

and the experimental result showed that the ANN model 

worked well. Four types of ANNs were investigated to 

predict the water temperature in [4], and the experimental 

result proved that all ANN models outperformed the K-

nearest neighbor approach. In [17], wavelet 

transformation was applied to the ANN model to improve 

the prediction accuracy of a variety of ocean water 

quality parameters. A time series prediction model, 

namely the autoregressive integrated moving average, 

was integrated with the ANN model to improve the 

prediction performance. The experimental result showed 

that the hybrid model provided better accuracy than 

ARIMA and ANN models [5]. 

Although it can accurately predict water quality in 

some scenarios, the ANN model also has shortcomings. 

For example, ANN models are unable to formulate a 

nonlinear relationship hidden in a dataset when the input 

parameters are ambiguous. The ANFIS model, which can 

integrate the advantages of both linear and nonlinear 

models, outperforms the ANN model in this type of 

scenario. In [7], the ANFIS model was found to have 

better prediction results than the ANN model for DO 

prediction. The ANFIS model has also been applied to 

estimate the biochemical oxygen demand in the Surma 

River [18]. The testing results confirmed that the ANFIS 

model could accurately formulate the hidden relationship. 

However, building a reliable ANFIS model requires a 

large number of data samples, and each data sample 

needs to have enough strongly correlated parameters for 

the target parameter. As most water quality monitoring 

stations can only sample water monthly, the size of a 

water quality dataset is usually not large. When there are 

insufficient data samples, the ANN model tends to have 

better prediction performance than the ANFIS model 

[10,19]. 

The Fuzzy time series (FTS) model was first proposed 

by Song and Chissom in 1993 to address an enrollment 

prediction problem [20]. Chen improved this model by 

replacing complicated max-min composition operations 

with simplified arithmetic operations [21]. Later, the FTS 

model was incorporated, with trend-weighting, to 

improve stock price prediction accuracy [22]. The FTS 

model has proved to be an accurate and reliable time 

series data prediction model in recent years [22,23]. 

Several researchers have applied the FTS model to water 

quality prediction problems. In [13], a Heuristic Gaussian 

cloud transformation was integrated with an FTS model 

to forecast water quality. The experimental results 

showed that the proposed model significantly improved 

the prediction accuracy. However, there were only 520 

water quality samples available to build the cloud, and 

thus, the model was not reliable or robust. As water 

quality dataset is typical time series data, the FTS model 

should be used for solving the water quality prediction 

problem with an adequate dataset. 
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In this study, fuzzy models and a time series analysis 

method are integrated to accurately predict water quality 

when the correlation between parameters is weak. 

 

III.  MATERIALS AND METHODS 

A.  Study Area 

Lake Mead is the largest reservoir in the United States 

in terms of water capacity and provides sustenance to 

nearly 20 million people, as well as a large area of 

farmland in Arizona, California, and Nevada. The Las 

Vegas Wash (LVW) is a 12-mile-long channel carrying 

most of the Las Vegas Valley’s excess water to Lake 

Mead each day. Running an average flow of 200 million 

gallons per day, the LVW contributes approximately 

1.5% of the total flow to the lake. The flow in the wash 

consists of highly treated wastewater, urban runoff, 

shallow ground water, and storm water, where 90% of the 

component is wastewater effluent and industrial 

discharge. Therefore, it is vitally important to timely and 

effectively monitor and assess the wastewater quality 

before it discharged into Lake Mead. 

Along the LVW, many organizations have built water 

quality monitoring stations. Six locations are selected by 

nearly all organizations because of their geographical 

advantages. These six water quality monitoring stations 

are labeled in Fig 1, and their geographical distribution is 

given. 

 

LW11.0

LW8.85

LW6.05

LW3.7

LW3.4

LW0.55

 

Fig.1. The geographical distribution of the six water quality monitoring 
stations in the Las Vegas Wash 

 

Fig.2. Location of Boulder Basin water quality monitoring station 

There are three basins occupied by the Lake Mead 

Reservoir, with the Boulder Basin (BB) as the most 

western one. It lies within the boundaries of Clark County, 

Nevada and Mohave County, Arizona and provides 

drinking water resources for the people living there. The 

water in the BB finally joins the Lake Mead. The 

geographical distribution of the BB in Lake Mead is 

depicted in Fig. 2. 

B.  Water Quality Parameters 

In the current study, the water quality datasets 

collected from the LVW and BB are adopted because of 

high sampling frequency.  LW3.4 is the key monitoring 

station at which if the system determines the water 

quality parameter exceeds the regulation limit, the water 

still can be treated before it is discharged into Lake Mead. 

The water quality datasets monitored at LW3.4 between 

2005 and 2010 by LVW Coordination Committee are 

used to evaluate the model. There are five water quality 

parameters, temperature (T), pH, EC, DO, total dissolved 

solids (TDSs) in the collected dataset. Table 1 lists the 

statistical properties of these parameters. The statistical 

measurement of parameters, depth, pH, T, EC, and DO, 

in the dataset collected from the BB between 2011 and 

2016 are given in Table 2. The first and second columns 

list the parameter label and corresponding unit, while the 

third column to the sixth column show the statistical 

properties of each parameter. The last column lists the 

maximum contaminant levels (MCLs) permitted by 

national drinking water regulations [24].  

EC is used to measure the water’s ability to carry 

electric, and TDSs is the combination of items that are 

dissolved in the water. The two parameters are major 

indicators that quantify the quality of water. Further, DO 

is a necessity for all living organisms in the water. In this 

paper, these three parameters are selected as target 

parameters. 

Table 1. Statistical measure of water quality parameters at LW3.4 

Name Unit Min Mean Max S. D. MCLs 

T C 0.9 54.49 111.2 32.38 N/A 

pH unit 5.27 8.20 8.79 0.29 6.5~9.2 

EC uS/cm 1569 2463.59 2921 178.90 2000 

DO mg/L 2.42 8.28 17.95 1.80 5~14 

TDSs mg/L 1000 1580 1870 110 500 

Table 2. Statistical measure of water quality parameters at BB 

Name Unit Min Mean Max S. D. MCLs 

Depth m 0.9 54.49 111.2 32.38 N/A 

T C 11.1 14.24 31.5 3.74 N/A 

EC uS/cm 810 927.6 1160 51.81 2000 

DO mg/L 2.30 7.63 11.30 1.17 5~14 

pH unit 6.90 7.91 9.40 0.25 6.5~9.2 

C.  Stratified  Sampling 

Most of the water quality monitoring stations were 

constructed in the past several decades, and each 

monitoring station may sample water every half month, 

one month, or one season. Meanwhile, the chemical 

parameters require much time and human effort to 
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quantize. Therefore, the size of the water quality dataset 

and the number of parameters in each data sample tend to 

be small. However, the water quality dataset has 

completely different patterns when the water condition 

changes. Traditional random sampling of a small dataset 

could easily generate an uneven distribution of training 

and testing datasets. Then the data samples in the testing 

dataset would not be able to find clues from the training 

model, and thus, inaccurate predictions are likely. 

Stratified sampling is a sampling method widely used in 

classification problems to avoid uneven distribution of 

training and testing datasets in each category [11]. It 

splits the full dataset into many small strata with the same 

proportion of each category. This method enables the 

training and testing datasets to cover all of the different 

categories fully and evenly. In this study, the data 

samples are proportionally partitioned into small groups 

according to the quantized value of the target parameter. 

For each group, 75% and 25% of the data samples are 

selected for training and testing purposes, respectively. 

D.  Input Parameter Selection 

Selecting the appropriate input parameters to build a 

model is fundamental to receiving accurate prediction 

results. It can be seen in Tables 1 and 2 that the value of 

each parameter has a different order of magnitude, and 

some have a very large range. Instead of using raw data 

as the input, feature scaling is adopted to normalize the 

value into range [0, 1]. The process can be defined as:  

 

' min

max min

i
i

x x
x

x x

−
=

−
                          (1) 

 

where ix is the observed value, minx and maxx represent the 

minimum and maximum value of this kind of parameter, 

and 
'

ix  is the normalized observed value. 

The ANFIS model requires that the input parameters 

have strong correlations with the target parameters. 

Pearson correlation is used to calculate the correlation 

between parameters. Tables 3 and 4 list the correlation 

values between parameters in the dataset collected from 

the LVW and BB. 

Table 3. Pearson Correlation between water quality parameters in LVW 

 T EC PH DO TDS 

T 1 -0.22655 0.126015 -0.4488 -0.22628 

EC -0.22655 1 0.208367 0.15019 0.999247 

PH 0.126015 0.208367 1 -0.09475 0.208139 

DO -0.4488 0.15019 -0.09475 1 0.14924 

TDS -0.22628 0.999247 0.208139 0.14924 1 

Table 4. Pearson Correlation between water quality parameters in BB 

 Depth T EC pH DO 

Depth 1 0.029396 -0.02194 -0.013 -0.05289 

T 0.029396 1 0.508715 0.1725 -0.63209 

EC -0.02194 0.508715 1 -0.03386 -0.29121 

pH -0.013 0.1725 -0.03386 1 0.109696 

DO -0.05289 -0.63209 -0.29121 0.109696 1 

As shown in the two tables, the correlation between 

parameters is very weak, except for parameters TDS and 

EC from the LVW. As discussed in Section 1, the ANFIS 

model is not applicable for cases with parameters of fairly 

low correlation levels. Water quality data is a type of time 

series data. Therefore, in this study, the timing effect of 

the dataset has been taken into account. When calculating 

the correlation between the parameters, data collected 

in 1t − , 2t − and 3t −  are also taken into account. The 

new correlation between the parameters in the LVW and 

BB are given in Tables 5 and 6, respectively. The bold 

value in Tables 5 and 6 are the three strongest correlation 

value to the parameter named in each column. For 

example, to the parameter DO in Table 5, the value of 

DO in t  has the top three correlation with the value of 

DO collected in 1t − , 2t − and 3t − . Compared with 

Table 3, in which no qualified correlation pair exists for 

parameter DO, each parameter in Table 6 can find out the 

appropriate input for itself. The FTS and ANFIS models 

were used to model the prediction of water quality with 

the new dataset. 

E.  Fuzzy Time Series 

FTS models are widely used in business and 

environmental forecasting. Compared to conventional 

time series analysis models, in which each intermediate 

output has only one real value, there is a fuzzy set to 

represent the intermediate output in the FTS model  [20]. 

A brief definition of an FTS model is given below. 

Definition 1: fuzzy time series 

Let ( )( ...,0,1,2,...)w t t = be the water quality dataset, 

which is a subset of R , the universe of discourse in which 

fuzzy sets ( )( 1,2,3,...)if t i = are defined. Assume 

that ( )F t  is a subset of ( )( 1,2,3,...)if t i = , then ( )F t is 

called a fuzzy time series based on ( )( ...,0,1,2,...)w t t = . 

In Definition 1, ( )F t can be treated as a linguistic 

variable, and ( )if t is one of the possible linguistic values 

of ( )F t , where ( )if t are represented by fuzzy sets. With 

the changing of the universe of discourse in different 

times, the value of ( )F t also changes. 

Definition 2: fuzzy time series relationship 

Let ( )F t and ( 1)F t − be two fuzzy sets expressed in 

time series. Assuming that ( )F t is only caused 

by ( 1)F t − , then the fuzzy logical relationship between 

the current state and the next state can be represented 

as ( ) ( 1)* ( , 1)F t F t R t t= − − , where * stands for an 

operator. 

Let ( 1) iF t A− = and ( ) jF t A= ; the fuzzy logical 

relationship between the current state and the next state 

can be denoted as i jA A→ . The steps to predict water 

quality with the FTS model are as follows: 
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Step 1: Define the universe of discourse and intervals 

based on the collected water quality dataset, which can be 

represented as: [min,max]U = . The variable min and 

max are the minimum and maximum values of the target 

parameter. 

Step 2: Define the fuzzy sets according to U and 

fuzzify the historical data of the target parameter. 

Step 3: Fuzzify the observed rules of the target 

parameter. 

Step 4: Establish fuzzy logic relationships, and group 

them according to the current state of the target parameter. 

For example, there is a fuzzy time series, 1A , which has 

three fuzzy logic relationships: 1 2A A→ , 1 3A A→ , 

1 4A A→ . The fuzzy logic relationships can be grouped to: 

1 2 3 4, ,A A A A→ . 

Step 5: Predict the target parameter in the testing 

dataset. There are two scenarios. Scenario 1: If there is 

only one fuzzy logic relationship: i jA A→ , then the 

prediction value of ( )F t is jA . Scenario 2: If there exist 

more than one fuzzy logic relationships: 

, ,...,i a b nA A A A→ , the prediction value of ( )F t is equal 

to the mean value of  , ,...,a b nA A A .  

Table 5. Pearson Correlation of water quality parameters in LVW with time series analysis 

LVW pH(t) EC(t-3) EC(t-2) EC(t-1) EC(t) DO(t-3) DO(t-2) DO(t-1) DO(t) TDS(t-3) TDS(t-2) TDS(t-1) TDS(t) 

T(t-3) 0.1045 -0.2266 -0.2326 -0.2389 -0.2456 -0.4489 -0.4463 -0.4427 -0.4392 -0.2263 -0.2326 -0.2389 -0.2456 

T(t-2) 0.1095 -0.2317 -0.2265 -0.2326 -0.2388 -0.4453 -0.4489 -0.4463 -0.4426 -0.2315 -0.2262 -0.2325 -0.2388 

T(t-1) 0.1164 -0.2379 -0.2316 -0.2265 -0.2325 -0.4426 -0.4452 -0.4489 -0.4463 -0.2376 -0.2314 -0.2262 -0.2325 

T(t) 0.1260 -0.2442 -0.2379 -0.2316 -0.2264 -0.4386 -0.4425 -0.4452 -0.4488 -0.2440 -0.2376 -0.2314 -0.2262 

EC(t-3) 0.1825 1 0.8501 0.7318 0.6310 0.1501 0.1468 0.1457 0.1454 0.9992 0.8493 0.7319 0.6307 

EC(t-2) 0.1902 0.8501 1 0.8499 0.7315 0.1476 0.1503 0.1470 0.1459 0.8497 0.9992 0.8492 0.7316 

EC(t-1) 0.1995 0.7318 0.8499 1 0.8497 0.1440 0.1477 0.1505 0.1472 0.7311 0.8495 0.9992 0.8490 

EC(t) 0.2082 0.6310 0.7315 0.8497 1 0.1460 0.1441 0.1479 0.1507 0.6300 0.7308 0.8493 0.9992 

pH(t-3) 0.8795 0.2084 0.1962 0.1850 0.1737 -0.0947 -0.0968 -0.0953 -0.0940 0.2082 0.1958 0.1846 0.1733 

pH(t-2) 0.9145 0.1997 0.2084 0.1961 0.1849 -0.0950 -0.0947 -0.0968 -0.0952 0.1997 0.2081 0.1958 0.1845 

pH(t-1) 0.9532 0.1903 0.1996 0.2083 0.1960 -0.0974 -0.0949 -0.0947 -0.0967 0.1902 0.1996 0.2080 0.1957 

pH(t) 1 0.1825 0.1902 0.1995 0.2082 -0.0950 -0.0974 -0.0949 -0.0947 0.1826 0.1901 0.1995 0.2079 

DO(t-3) -0.0957 0.1501 0.1476 0.1440 0.1460 1 0.9584 0.9399 0.9341 0.1492 0.1468 0.1431 0.1452 

DO(t-2) -0.0974 0.1468 0.1503 0.1477 0.1441 0.9584 1 0.9584 0.9399 0.1459 0.1494 0.1469 0.1433 

DO(t-1) -0.0949 0.1457 0.1470 0.1505 0.1479 0.9399 0.9584 1 0.9584 0.1449 0.1460 0.1496 0.1471 

DO(t) -0.0947 0.1454 0.1459 0.1472 0.1507 0.9341 0.9399 0.9584 1 0.1446 0.1451 0.1462 0.1497 

TDS(t-3) 0.18269 0.9992 0.8497 0.7311 0.6300 0.1492 0.1459 0.1449 0.1446 1 0.8490 0.7312 0.6301 

TDS(t-2) 0.19017 0.8493 0.9992 0.8495 0.7308 0.1468 0.1494 0.1460 0.1451 0.8490 1 0.8488 0.7309 

TDS(t-1) 0.19952 0.7319 0.8492 0.9992 0.8493 0.1431 0.1469 0.1496 0.1462 0.7312 0.8488 1 0.8486 

TDS(t) 0.20797 0.6307 0.7316 0.8490 0.9992 0.1452 0.1433 0.1471 0.1497 0.6301 0.7309 0.8486 1 

Table 6. Pearson Correlation of water quality parameters in BB with time series analysis 

BBMS T(t) EC(t-3) EC(t-2) EC(t-1) EC(t) pH(t-3) pH(t-2) pH(t-1) pH(t) DO(t-3) DO(t-2) DO(t-1) DO(t) 

Depth(t) 0.0343 -0.0217 -0.0212 -0.0202 -0.0206 -0.0130 -0.0080 -0.0096 -0.0059 -0.0532 -0.0528 -0.0511 -0.0496 

T(t-3) 0.9924 0.5086 0.5077 0.5072 0.5073 0.1726 0.1725 0.1725 0.1725 -0.6320 -0.6330 -0.6357 -0.6368 

T(t-2) 0.9930 0.5073 0.5086 0.5078 0.5072 0.1727 0.1727 0.1725 0.1725 -0.6291 -0.6320 -0.6332 -0.6358 

T(t-1) 0.9961 0.5062 0.5073 0.5086 0.5078 0.1725 0.1728 0.1727 0.1725 -0.6261 -0.6291 -0.6322 -0.6332 

T(t) 1 0.5058 0.5063 0.5074 0.5087 0.1729 0.1727 0.1729 0.1729 -0.6213 -0.6262 -0.6292 -0.6322 

EC(t-3) 0.5058 1 0.9964 0.9947 0.9941 -0.0337 -0.0346 -0.0351 -0.0353 -0.2910 -0.2916 -0.2929 -0.2936 

EC(t-2) 0.5063 0.9964 1 0.9964 0.9947 -0.0340 -0.0337 -0.0347 -0.0352 -0.2900 -0.2911 -0.2917 -0.2931 

EC(t-1) 0.5074 0.9947 0.9964 1 0.9964 -0.0343 -0.0341 -0.0338 -0.0348 -0.2891 -0.2901 -0.2912 -0.2918 

EC(t) 0.5087 0.9941 0.9947 0.9964 1 -0.0341 -0.0344 -0.0342 -0.0340 -0.2876 -0.2892 -0.2903 -0.2914 

pH(t-3) 0.1729 -0.0337 -0.0340 -0.0343 -0.0341 1 0.96742 0.9483 0.9350 0.1094 0.1062 0.1029 0.1015 

pH(t-2) 0.1727 -0.0346 -0.0337 -0.0341 -0.0344 0.9674 1 0.9673 0.9482 0.1076 0.1091 0.1057 0.1024 

pH(t-1) 0.1729 -0.0351 -0.0347 -0.0338 -0.0342 0.9483 0.9673 1 0.9673 0.1064 0.1073 0.1087 0.1054 

pH(t) 0.1729 -0.0355 -0.0352 -0.0348 -0.0340 0.9350 0.9482 0.9673 1 0.1077 0.1061 0.1069 0.1084 

DO(t-3) -0.6213 -0.2910 -0.2900 -0.2891 -0.2876 0.1094 0.1076 0.1064 0.1077 1 0.9902 0.9845 0.9836 

DO(t-2) -0.6262 -0.2916 -0.2911 -0.2901 -0.2892 0.1062 0.1091 0.1073 0.1061 0.9902 1 0.9902 0.9845 

DO(t-1) -0.6292 -0.2929 -0.2917 -0.2912 -0.2903 0.1029 0.1057 0.1087 0.1069 0.9845 0.9902 1 0.9902 

DO(t) -0.6322 -0.2936 -0.2931 -0.2918 -0.2914 0.1015 0.1024 0.1054 0.1084 0.9836 0.9845 0.9902 1 
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Step 6: De-fuzzify. Apply the “Centroid” method to 

calculate the final prediction result [22]. 

F.  Adaptive Neuro-Fuzzy Inference System 

The ANFIS is a hybrid learning model, which 

integrates the neural network and fuzzy logic into an 

integrity system. The system can achieve high 

performance in formulating nonlinear relationships and 

forecasting chaotic time series. It can construct a reliable 

and accurate input-output mapping relationship based on 

the fuzzy if-then rules. The ANFIS model used in this 

study is generated based on the fuzzy model proposed in 

[25]. Given two input parameters, x and y , and one 

output function f ,  the rule set built upon the model can 

be expressed as follows:  

 

1 1 1 1 11Rule 1 : if  x is A and y   f = a x+is B then b y+c    (2) 

 

2 2 2 2 2 2Rule 2 : if  x is A and y   f = a x+is B then b y+c   (3) 

 

where 1A , 2A , 1B and 2B represent four input membership 

functions for input parameters x and y . In this example, 

each input has two membership functions. The value of 

the consequent parameters ia , ib and ic  are calculated by 

the least square error method. 
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Fig.3. The architecture of ANFIS model with a two-input first-order 

Sugeno fuzzy model with two rules 

The data flow in Fig. 3 illustrates the process of 

deriving the output from two inputs by the fuzzy 

reasoning mechanism and neural network strategy. The 

Gaussian, triangular, trapezoidal, sigmoid, spline, and 

generalized bell shaped input membership functions are 

used, and the number of each membership function 

corresponding to each input is configured under the 

constraint of the size of the available dataset. 

G.  Wavelet Transform 

Wavelet Transform (WT) is widely used in the analysis 

of time series signals. According to the way the scale 

parameter is discretized, it is classified into continuous or 

discrete WT. As continuous WT requires a large number 

of data samples, discrete WT is selected as the de-noising 

technique in this study. Discrete WT decomposes the 

input signal into a mutually orthogonal set of wavelets by 

using a discrete set of the wavelet scales and translations. 

Compared to continuous WT, it requires much less 

computation time and is simpler to develop. Given a 

limited number of the highest coefficients of the discrete 

WT spectrum, an inverse transform can be performed 

with the same wavelet basis to remove the noise hidden 

in the true signal. The corresponding wavelet 

transformation can be defined as: 

 

*1
( , , ) ( )x mm

t nb
WT a b f t dt

aa
 

+

−

− 
=  

 
             (4) 

 

where the variables n and m are integers that control the 

wavelet dilation and translation, a is the scale index 

parameter and b is the time shifting parameter (a.k.a. 

translation parameter). All of the points that can be 

represented as m m(a , na b) are included in the subset of the 

wavelet scales and translations. ( )t  is a continuous 

function in both time and frequency domain called 

mother wavelet, and ( )f t is the input signal or time series. 

H.  Evaluation Metrics 

There are many evaluation metrics available to 

examine the performance of the proposed model. In this 

study, the mean average percentage error (MAPE), root 

mean square error (RMSE), and coefficient of 

determination (R2) are adopted to compare the 

performance of different models. MAPE is to represent 

the difference between the predicted value and true value 

in percentage form. RMSE is the value calculated by 

rooting the square of the mean of the residuals between 

the true value and the predicted value. R2 is an indicator 

to show how close the data are to the fitted regression line. 

The mathematical definition of each evaluation metric is 

given below: 

 

2
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i
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                     (7) 

 

where index i represents the position of the element in the 

vector, truey is a vector holding all of the observed value, 

meany  stands for the average value of vector truey , predy is a 

vector storing all the forecasting value, and n is the size 

of the dataset.   
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IV.  RESULTS AND DISSCUSSION 

A.  Water Quality Dataset 

The water quality dataset collected from the LVW 

between 2005 and 2010, and the BB between 2011 and 

2016, are used to measure and compare the performance 

of different models. There are 4869 and 7502 data 

samples available in the two water quality datasets, 

respectively. The observed value of parameters of EC, 

TDS, and DO, obtained from the water quality dataset in 

LVW, are given in Fig. 4. It can be seen from the figure 

that only parameters EC and TDS have strong correlation. 

Fig. 5 presents the observed value of the two parameters, 

EC and DO, collected at the BB water quality monitoring 

station. The value of EC has been divided by 1000 and 

100 in the LVW and BB data, respectively, for 

visualization convenience. The whole dataset is split into 

two parts by 75% and 25% for training and testing 

purposes, which is the general data division percentage in 

data driven research experiments. 

 

 

Fig.4. The observed value of five parameters in LVW between  
2005 and 2010 

 

Fig.5. The observed value of four parameters in BB between  

2011 and 2016 

B.  Experimental Configuration 

Four different kinds of models, ANN with a time-series 

dataset (ANN-TS), FTS, ANFIS with an original dataset, 

and ANFIS a with time-series analysisi dataset (ANFIS-

TS) are implemented to investigate the prediction 

performance of each model. The ANN model built in this 

study is based on the model proposed in [2]. In the three-

layer neural network, the input layer has three nodes and 

the hidden layer has four nodes. The activation function 

used is the linear activation function. Gradient descent is 

used to minimize the root mean square error between the 

true value and the prediction value in each iteration. The 

TensorFlow machine learning library is used to 

implement the ANN models. The FTS model is 

developed by the weighted FTS model proposed in [22]. 

The ANFIS model and wavelet transformation are 

developed by the MATLAB toolbox. A stratified 

sampling strategy is employed to split the collected 

dataset into the training and the testing subsets. The 

experimental results of the ANFIS and ANFIS-TS models 

are compared to verify the effectiveness of the time series 

analysis method in a dataset with weak correlation. 

C.  Performance Evaluation 

The experimental results of parameters EC, DO, and 

TDS prediction from the LVW are given in Tables 7, 8 

and 9. The top three correlation coefficients of parameter 

EC in t include TDS in t, EC in t-1 and TDS in t-1, which 

are used as the input parameters to predict EC. The 

experimental result from Table 7 shows that the ANFIS-

TS model has the best performance, which had the 

smallest training and testing errors, 6.73 and 4.70 

measured by RMSE, respectively. Table 5 shows that the 

three strongest correlation inputs of parameters DO are 

the data itself, collected in the past three time units. In 

this scenario, the FTS model has a much higher 

prediction accuracy than the other three models, 

achieving 0.23 and 0.17 in RMSE in the training and 

testing stages, respectively. Compared to the other three 

models, even the most accurate one has training and 

testing errors of 0.37 and 0.73 in RMSE, respectively. 

The parameter TDS has a similar correlation pattern with 

parameter EC. It has a stronger correlation with the value 

of EC in t, EC in t-1 and TDS in t-1. The experimental 

results show that the ANFIS-TS model also has the best 

training performance, and the ANFIS has the smallest 

testing error, which is 0.0063, compared with 0.0064 of 

ANFIS-TS. 

The correlation coefficients between the water quality 

parameters from BB are presented in Table 6. Each 

parameter obviously has stronger correlation with its 

historical record than the other parameters. This 

correlation pattern is similar to the correlation of 

parameter DO from the LVW. The aforementioned four 

water quality prediction models are implemented to 

investigate the prediction performance with the selected 

input and target parameters. The experimental results are 

listed in Tables 10 and 11. The FTS model has the 

smallest testing error, which could greatly reduce the 

prediction error. In the prediction of parameter EC from 

the BB dataset, the FTS model achieves the best testing 

performance, even though the ANFIS-TS model has a 

smaller training error. It shows that the FTS model is 

more reliable than the ANFIS-TS model in the testing 

stage. For parameter DO, the FTS model has the smallest 

error in both training and testing stages. This 

experimental result proves that the FTS model works 

better than the ANFIS and ANFIS-TS if the target 

parameter only has strong correlation with its historical 

data. 
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Table 7. The training and testing performance of different models for parameter EC in LVW 

Models 

EC 

Training Testing 

RMSE MAPE R2 RMSE MAPE R2 

ANN-TS 32.92 1.321 0.966 53.67 2.114 0.909 

FTS 35.00 0.977 0.959 44.91 1.310 0.911 

ANFIS 7.48 0.159 0.998 5.12 0.164 0.999 

ANFIS-TS 6.73 0.160 0.999 4.70 0.160 0.999 

Table 8. The training and testing performance of different models for parameter DO in LVW 

Models 

DO 

Training Testing 

RMSE MAPE R2 RMSE MAPE R2 

ANN-TS 0.68 7.290 0.856 0.90 8.018 0.746 

FTS 0.23 2.015 0.987 0.17 1.909 0.960 

ANFIS 1.49 11.398 0.315 1.52 11.503 0.284 

ANFIS-TS 0.37 2.721 0.954 0.73 3.275 0.834 

Table 9. The training and testing performance of different models for parameter TDS in LVW 

Models 

TDS 

Training Testing 

RMSE MAPE R2 RMSE MAPE R2 

ANN-TS 0.020 1.242 0.970 0.035 2.173 0.903 

FTS 0.022 0.998 0.961 0.0279 1.334 0.916 

ANFIS 0.004 0.158 0.999 0.0063 0.169 0.997 

ANFIS-TS 0.003 0.162 0.999 0.0064 0.175 0.997 

Table 10. The training and testing performance of different models for parameter EC in BB 

Models 

EC 

Training Testing 

RMSE MAPE R2 RMSE MAPE R2 

ANN-TS 11.57 1.060 0.952 11.35 1.061 0.954 

FTS 4.03 0.358 0.993 4.70 0.391 0.975 

ANFIS 36.99 3.089 0.510 37.85 3.163 0.488 

ANFIS-TS 3.89 0.228 0.994 11.34 0.267 0.954 

Table 11. The training and testing performance of different models for parameter DO in BB 

Models DO 

 Training Testing 

 RMSE MAPE R2 RMSE MAPE R2 

ANN-TS 0.418 4.428 0.687 0.629 6.102 0.293 

FTS 0.053 0.551 0.995 0.075 0.655 0.989 

ANFIS 0.406 3.623 0.705 0.408 3.655 0.702 

ANFIS-TS 0.095 0.764 0.984 0.126 0.814 0.972 

 

The predicted values of the parameters EC, DO, and 

TDS from the LVW using ANFIS-TS and FTS models vs. 

the observed values are depicted in Fig. 6. The left part is 

the testing result obtained by the ANFIS-TS model, and 

the right part is the testing result obtained by the FTS 

model. For parameters EC and TDS, which have strong 

correlation with other parameters, the experimental 

results from Tables 7 and 9 show that the ANFIS-TS 

model is a better choice in this kind of scenario. The 

observed value and the predicted value of the ANFIS-TS 

model are very close to the regression line, except for a 

few errors. The parameter DO only has strong correlation 

with itself. The training and testing data are split in a time 

manner. The FTS model achieved the best performance 

as compared to the other three models. The prediction 

result of the FTS model fluctuates around the observed 

value, which proves that this model is accurate and 

reliable in this scenario.  

Similar to the scenario of the DO of the LVW, the DO 

and EC from the BB only have strong correlations with 

themselves. The training and testing results from Tables 

10 and 11 furtherly prove that the FTS model can 
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perform accurate prediction for this type of parameter. 

Fig. 7 shows that the predicted value fluctuates around 

the observed value except in some extreme scenarios. 

Compared to the ANFIS-TS model which has a few out-

of-range errors, the FTS model is more accurate in this 

scenario. 

 

 

 

 

Fig.6. The coefficient of determination value of ANFIS-TS and FTS 
model in testing dataset of parameter EC, DO and TDS from LVW 

 

 

Fig.7. The coefficient of determination value of ANFIS-TS and FTS 

model in testing dataset of parameter EC and DO from BB 

V.  CONCLUSIONS 

For getting more clear result, track initiation will be 

The ANFIS model can accurately formulate hidden linear 

and non-linear relationships in the dataset. However, The 

ANFIS model has strict requirements for the dataset, such 

as the size of the dataset and the correlation between the 

parameters in the dataset. If the dataset cannot meet the 

requirements, the prediction result is likely to be 

unreliable. As a water quality dataset is a kind of time-

series dataset, the time series impact must be considered, 

and thus, the number of input parameters of the original 

dataset scaled to four times. For each target parameter, 

the input parameter is selected based on the correlation 

relationship, built upon the scaled dataset. 

Two water quality datasets are used to evaluate the 

prediction accuracy of ANN-FS, ANFIS, ANFIS-TS and 

FTS models. It can be seen from the experimental results 

that the FTS model could accurately predict the value of a 

target parameter when the target parameter has strong 

correlation with its historical record. It can be seen that 

the parameter DO from the LVW, and the parameters DO 

and EC from the BB belong to this category, with the 

results proving that FTS model had the best performance 

overall for the four models. On the other hand, when the 

target parameter has a strong correlation with other 

parameters, except itself, like parameters EC and TDS 

from the LVW, the ANFIS-TS model achieved better 

prediction accuracy over other models. This demonstrates 

that using the FTS and ANFIS models, integrated with 

time-series analysis, is an effective and reliable tool to 

model water quality, even when the correlation between 

the original parameters is weak. 
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