
I.J. Intelligent Systems and Applications, 2020, 3, 27-34
Published Online June 2020 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2020.03.04

This work is open access and licensed under the Creative Commons CC BY 4.0 License. Volume 12 (2020), Issue 3

Collision-free Random Paths between

Two Points

Mohammad Ali H. Eljinini
Faculty of Information Technology, Isra University, Amman, Jordan

E-mail: ma.eljinini@iu.edu.jo

Ahmad Tayyar
Department of Computer Science, Jarash University, Amman, Jordan

E-mail: ahmad.tayyar@jpu.edu.jo

Received: 31 July 2019; Revised: 20 August 2019; Accepted: 12 September 2019; Published: 08 June 2020

Abstract—This paper proposes a collision-free path

planning algorithm based on the generation of random

paths between two points. The proposed work applies to

many fields such as education, economics, computer

science and AI, military, and other fields of applied

sciences. Our work has spanned several phases, where in

the first phase a novel computer algorithm to generate

random paths between two points in space has been

developed. The aim was to be able to generate paths

between two points in real-time that cannot be predicted

in advance. In the second phase, we have developed an

ontology that describes the domain of discourse. The aim

was two folds; firstly, to provide an optimized generation

of best points that are closer to the target point. Secondly,

to provide sharable, reusable ontological objects that can

be deployed to other projects. We reinforced our solution

by the initiation of several case studies that have been

designed using and extending our work. One problem that

we have faced in some cases is the existence of some

obstacles between the starting and the ending point. For

example, in our work towards the automation of a

navigation system for drones, we faced some obstacles

like trees, no flying zones, and buildings. This problem is

also applicable to mobile robots and other unmanned

vehicles, where fee-collision mobility is necessary. In

this phase, we have reworked the algorithm to generate

random paths between two points P0(x0, y0), Pn(xn, yn)

with obstacles. Our generated random paths are placed

within circles that are centered in Pn: c1, c2, …, cn-1,

which passes thru the points P1, P2, …, Pn-1 respectively.

Point Pi may approach Pn if it takes any position within

circle c centered in Pn with radius PiPn and satisfies

some constraints, discussed in detail in the paper, which

insure that the selected paths do not fall within obstacles

and reach the target point. we also classified the

generated paths based on given properties such as the

longest path, shortest path, and paths with some given

costs. The resulted algorithms were very encouraging and

leading to the applicability of real-life cases.

Index Terms—Random Paths, Obstacles, Mobile Robots,

Ontology, Graph Theory.

I. INTRODUCTION

In the first phase of our work, we have developed a

novel computer algorithm to generate random paths

between two points in space [1]. A random path consists

of a finite number of connected points that are generated

randomly and satisfy the condition: L(PiPn) < L(Pi-1Pn).

Where L(P1Pn) is the length of the path between the two

connected points P1 and Pn. The aim was to be able to

generate paths between two points in real-time that

cannot be predicted in advance. Our work applies to

many fields such as education, economics, computer

science, AI, military, industry, and other fields of applied

sciences. In the second phase, we have developed an

ontology that describes the domain of discourse. The aim

was two folds; firstly, to provide an optimized generation

of best points that are closer to the target point. Secondly,

to provide sharable, reusable ontological objects that can

be deployed to other projects [2].

We reinforced our solution by the initiation of several

projects that have been designed using and extending our

work. One problem that we have faced is the existence of

obstacles in some cases between the starting point and the

ending point. For example, in our work towards the

automation of a navigation system for drones, we faced

some obstacles like trees, no flying zones, buildings,

among other obstacles. In this phase of our work, we

have reworked the algorithm to generate random paths

between two points P0(x0, y0), Pn(xn, yn) with obstacles.

Also, we have classified the generated paths based on

given properties such as the longest path, shortest path,

and paths with some given costs. The resulted algorithms

were very encouraging and leading to the applicability of

real-life cases. The following section presents related

work. Section 3 discusses the structures and algorithm

used in our work. In section 4, we provide a discussion

on the assessment and evaluation of our work. The work

is concluded in section 5, and future work is presented.

Collision-free Random Paths between Two Points

28 Volume 12 (2020), Issue 3

II. RELATED WORK

The generation of paths between two points is also

called path planning, and increasingly being employed in

the navigation of mobile robots and unmanned vehicles.

Mobile robots are used in many automated environments

such as servicing older adults, transferring goods in large

factories, agriculture and farming, transportation, and

military applications [3]. Researchers have worked on

and proposed many algorithms for path planning in recent

years. The task of generating free-collision, suitable paths

in real-time is computationally challenging. Most early

works reduced the problem into the two-dimensional grid,

and transformed obstacles into blocked cells; graph-

searching algorithms are then used on the resulted map to

find suitable paths between the starting point and the

target point [4, 5]. In many cases, Dijkstra’s algorithm, a

well-known, greedy-based algorithm, has been used to

find the shortest path between the starting point and the

target point. The computation cost of Dijkstra's algorithm

becomes O(N2), where N is the number of nodes. Less

efficient pathfinding algorithms, in this case, may run as

high as O(2n) [6, 7]. Early approaches became

inefficient with more complex and dynamic environments.

Other approaches utilize sensor-based models found in

mobile robots equipped with cameras and other sensors.

The movement is performed in a straight line toward the

target point until an obstacle is confronted. Then, it tries

to move around the edge of the obstacle, in an attempt of

finding another suitable path. This approach works with

unknown static environments. However, it becomes

difficult when confronted with moving obstacles. Another

problem is finding the optimal path when required. Later,

researchers turned into evolutionary approaches such as

Genetic Algorithms, Ant Colony Optimization, and

Particle Swarm Optimization [8, 9, 10]. Evolutionary

approaches model biological behavior found in insects,

birds, and mammals. In recent years, hybrid models are

being used where more than one approach is often

combined to overcome their drawbacks. The system

starts with the most straightforward approach, for

example, moving towards the target point in a straight

line. The system then steps up to another approach based

on the current situation until reaching the target point.

This is accomplished efficiently by the usage of

hierarchal structures, where the higher level provides

general directions (i.e., the location of the target point),

and the lower level deals with obstacles, besides

following the instructions from the higher level [11].

In our work, all points between the starting point and

the target point are dynamically generated in real-time by

a random function. We used a biased approach were

each generated point is tested and validated base on some

constraints, such as its location in relation with the target

point and the existence of obstacles, which we will

describe in detail in the following section.

In phase two of our work as described in [2], we have

designed an Intelligence Consultation Unit (ICU) that

guides the process of generating random paths between

the starting point and the target point. We have used the

Object-Oriented Paradigm and UML (Unified Modeling

Language) to build our model.

In this phase, we have extended our model to provide

descriptions of which condition to consider based on the

following criteria:

1. L(PiPn) < L(Pi-1Pn) , For i = 1, 2, …, n-1

2. Pi Zi, where Zi is the set of points inside an

obstacle.

3. L(Pi Pi+1) does not pass through an obstacle.

Let P0 and Pn be two points. Initially, we generate a

random displacement at the point P0; the ICU considers

the endpoint of that displacement is P1 if it was

acceptable. It means that our ICU decides if this

displacement satisfies the above constraints and

converges to Pn. Otherwise, a new random displacement

is generated. The process is repeated at point P1 to obtain

the next point P2, and so on until a point with a specific

distance from Pn is reached. When applying this scenario

to mobile robots, points become the footsteps to follow

one at a time. Once the robot reached a point, the

remaining distance is re-evaluated, and a new decision

that satisfies the above constraints are taken. The process

of generating the paths is very fast and works well in

complex and dynamic environments.

III. THE GENERATION OF RANDOM PATHS WITH

OBSTACLES

In this section, we present the main contribution of this

paper. We have extended our work to handle the

existence of obstacles in order to provide collision-free

paths. We have built a UML model that defines the

various concepts that describe the domain of discourse.

We have used geometrical entities like points, lines,

circles, and squares.

Our generated random paths are placed within circles

that are centered in Pn: c1, c2, …, cn-1, which passes thru

the points P1, P2, …, Pn-1 respectively. Point Pi may

approach Pn if it takes any position within circle c

centered in Pn with radius PiPn and satisfies the following

constraints:

1. L(PiPn) < L(Pi-1Pn) , For i = 1, 2, …, n-1

2. Pi zi, where zi is the set of points inside an

obstacle.

3. L(Pi Pi+1) does not pass through an obstacle.

The position of Pi is generated randomly based on the

following equations:

x += random(2*L+1) - L; (1)

y += random(2*L+1) - L; (2)

A random displacement is generated at point Pi(xi,yi)

within a square with the length of sides equal to (2L),

and point Pi+1 as the endpoint of that displacement if it

Collision-free Random Paths between Two Points

Volume 12 (2020), Issue 3 29

was located within the circle ci. The generation process

is repeated at Pi+1, and within the Circle ci+1 centered in Pn

with radius Pi+1Pn to obtain new point P2. This iteration

comes to a halt when reaching a point with a specific

distance from Pn. This process will result in obtaining a

set of points P1, P2… Pn, which satisfies the first

constraint, and can also be written as the following:

L(Pn-1Pn) < L(Pn-2Pn) < . . . < L(P1Pn) < L(P0Pn) (3)

Circles and squares play an important role in directing

the generated paths to reach the target point. The length

of the side of the square limits the distance between the

accepted points.

The second constraint guarantees that the generated

point does not belong to the set of points falling inside an

obstacle. Obstacles are transformed into geometrical

shapes. Treating an obstacle as a geometrical entity

allows us to compute the points that lay inside its

boundaries; therefore, we can quickly check that line

PiPi+1 does not pass through an obstacle. An acceptable

shape we used in our work is a circle. The assumption

that an obstacle falls inside the boundaries of a circle

allows us to generate collision-free paths with low

computational cost as will be shown below.

Figure 1 presents our extended higher-level model,

which uses the object-oriented paradigm, where the ICU

unit, the generated path, and all shapes that we use are

instantiated objects. We begin by initializing the starting

point P0, the ending point Pn, L, and d. Then we create

new objects for the path and for the ICU. The iteration

starts with generating the first random point. The new

point is then sent to the ICU unit to check for the

constraints. If the point is accepted, we update our path,

and a new random point is generated. We iterate through

the process until the target point is reached.

Fig.1. Path generation model

The ICU is a rule-based engine that is used to decide

which points to accept based on certain thresholds that

are explained previously.

Our extended algorithm consists of the following steps:

1. Initialize x0, y0, xn, yn, L, d

2. Let P(x, y) be current position, then x←x0, y←y0

3. Calculate distance L1(P, Pn) between P and Pn

4. Generate a random displacement at P(x, y) within a

square centered in P and its side length is 2L,

so x ←x + Dx and y ←y +Dy

5. Calculate the new distance L2(P, Pn)

6. If (L2<L1 and P(x,y) does not belong to any obstacle)

then

a. Link the points P and P0

b. Rename the new position by P0(x0←x,y0←y)

c. Consider L1=L2

7. If L2<d then stop

8. Go to step number 4

To test the algorithm, we have implemented a system

in C-Sharp. In the implementation of the proposed

algorithm, to ensure that our code is structured, we placed

steps 4 to 7 inside a do-while loop, with the condition

(L2>=d). For experimentations, the initial values for the

starting point and the target point are entered by the user

at the beginning of the run. In addition, the user may

insert any number of obstacles and sets their sizes and

locations.

We have performed our testing and evaluations in two

sets; the first set was done without obstacles and the

Collision-free Random Paths between Two Points

30 Volume 12 (2020), Issue 3

second set with obstacles.

A. Testing without obstacles

In this set, we have tested the algorithm using 9 cases,

where we generate random paths in groups of 10, 100,

1000, 10000, 20000, 40000, 60000, 80000, and 100000

iterations. We recorded all the results in table 1. Figure 2

shows the graphs of the generated random paths without

obstacles for the first four cases.

We have chosen the locations for P0(x0,y0) to be (300,

300) and for Pn(xn,yn) to be (1000, 300) during all tests in

this set. This is to ensure objectivity when performing

the comparisons. In these experiments, we have used the

Cartesian Plane with the point (0,0) located in the top left

corner, and the units used are in pixels. Therefore, the

distance between P0 and Pn is equal to 700, based on the

following equation:

2 2
0 0 0(,) () ()n n nDistance P P X X Y Y= − + − (4)

We computed the length of each random path, in

addition to the minimum, the maximum, and the average

distance for each case as shown in table 1.

Table 1. Length Of Each Path With Different Iterations

Case
Number of

Iterations

Length of Straight

Path

Length of Min Generated

Path

Length of Max

Generated Path

Length of Average

Generated Path

1 10 700 809 1339 1066

2 100 700 871 1403 1049

3 1000 700 803 1542 1056

4 10000 700 794 1536 1054

5 20000 700 780 1566 1055

6 40000 700 780 1592 1055

7 60000 700 761 1606 1056

8 80000 700 742 1627 1056

9 100000 700 733 1633 1055

The most important observation in this table is that the

greater the number of iterations, the length of the shortest

path is approaching the value of 700 which represents the

straight path between P0 and Pn. Also, the length of the

longest path is going above 1600.

Case 1

Case 2

Case 3

Case 4

Fig.2. Four cases of random paths without obstacles

The plotted path in figure 3 represents the results with

no obstacles, where we can also see the average with the

higher number of iterations is converging to around the

1000 line, and the minimum distance, with the larger

number of iterations, is approaching the 700 lines.

Fig.3. Results with no Obstacles

Collision-free Random Paths between Two Points

Volume 12 (2020), Issue 3 31

B. Testing with obstacles

We have tested the algorithm using a different number

of obstacles, sizes, and locations, and recorded all the

results. Figure 4 shows 4 cases, where each case presents

a set of obstacles and many generated paths, connecting

the starting point with the target point. Obstacles are

presented as yellow circles.

To ensure the generation of %100 collision-free paths,

we have placed safe zones around each obstacle, which

are shown in red. In theory, where well-defined

mathematical principles are used, the safe zone can be

eliminated. However, in real life with mobile objects, for

example, robots, drones, and moving obstacles, a safe

zone may become a lifesaver.

In the first two cases, we have set the distance between

adjacent points to 10, while in the third and fourth cases,

we have set the distance between adjacent points to 50.

The generated paths in the first two cases are smoother,

more focused, and shorter in comparison with the last two

cases. In all cases, the generated paths converged to the

target point, avoiding all obstacles. Moreover, the

condensation of the paths, shown in a darker color, have

shown that most paths favored the shortest path between

the starting point and the target point. The time

complexity of our algorithm is O(n), running one loop

equal to the number of the generated points between the

starting point and the target point. Most of the operations

done in this algorithm is generating points, calculating

distances, and deciding which one is closer to the target

point that satisfies the constraints described above. The

analysis of our algorithm is presented in detail in the next

section.

We chose the same locations for P0(x0,y0) to be (300,

300) and for Pn(xn,yn) to be (1000, 300) during all tests.

The actual distance between P0 and Pn is also equal to 700.

We calculated the length of every edge and path for

every case. The results are shown in Table 2. The

maximum path length shown in the table is close to 1500,

and the minimum is close to 1000, where the average is

approximately 1170.

Case 1

Case 2

Case 3

Case 4

Fig.4. Four cases of random paths with obstacles

Table 1. Results obtained from the four cases

 Case 1 Case 2 Case 3 Case 4

Number of Paths 50 50 100 100

Starting Point 300,300 300,300 300,300 300,300

Target Point 1000,300 1000,300 1000,300 1000,300

L(Pi Pi+1) 10 10 50 50

Actual length 700 700 700 700

Shortest path 943 919 880 892

Longest path 1164 1106 1469 1396

Average Length 1019 1004 1118 1102

We took one case this time and tested the algorithm

again with the distance between two points is 50. This

time we randomly generated paths in groups of 1, 10, 100,

1000, and 10000 iterations. We computed the length of

each random path, in addition to the average, the

minimum, and the maximum distance for each group as

shown in Table 3.

Table 2. Length of each path with different iterations

Number of

Iterations

Length of

path
Average Max Min

1 700 1013 1013 1013

10 700 995 1131 884

100 700 1069 1308 878

1000 700 1075 1441 825

10000 700 1074 1507 789

Looking at table 3, we see that the average stayed in

the range of 995 and 1075, while the minimum distance

ranged from 789 to 1013. The plotted path in figure 5

Collision-free Random Paths between Two Points

32 Volume 12 (2020), Issue 3

presents our findings, where we can see the average

stayed around 1000, and the minimum distance, with the

larger number of iterations, is converging towards the

distance of 700.

Fig.5. Results with Obstacles

IV. DISCUSSION AND EVALUATION

The main objective of this work is the addition of

obstacles and the generation of free-collision random

paths. We have tested the algorithm with many cases;

each has a different set of constraints with a variety of

obstacles. Our obstacles have different sizes and locations.

Moreover, we have generated random paths up to one

hundred thousand paths, covering many possibilities. In

all cases, the generated paths converged to the target

point, avoiding all obstacles. Moreover, tests have shown

that paths favored the average-length path between the

starting point and the target point.

From the literature review shown in section 1, the time

complexity of all the algorithms that we have reviewed

ranged from O(n2) to O(2n). The time complexity of our

algorithm is O(n), running one loop equal to the number

of the generated points between the starting point and the

target point. Most of the operations done in this algorithm

are generating points, calculating distances, and deciding

which one is closer to the target point that satisfies the

constraints described above. The analysis of our

algorithm is follows:

Steps of the Algorithm Running Time

Initialize x0, y0, xn, yn, L, d C0

Let P(x, y) be current position, then

x←x0, y←y0
C1

Calculate distance L1(P, Pn) between

P and Pn
C2

LOOP (while L2> d) BEGIN:

Generate random displacement at P(x,

y) within square centered in P and side

length is 2L, so x ←x + Dx, y ←y +Dy

3n + C3

Calculate the new distance L2(P, Pn) n + C4

If (L2<L1 and P(x,y) does not belong

to any obstacle) then

a. Link the points P and P0

3n + C5

b. Rename the new position by

P0(x0←x,y0←y)

END OF LOOP

T(n) 7n + C

As presented above, the sum of all constants C0 to C5 is

equal to C, a constant. Thus, the time complexity of our

novel algorithm yields to O(n).

V. CONCLUSION AND FUTURE WORK

We have proposed and implemented an algorithm,

described in section 2, for generating collision-free

random paths between two points (P0, Pn). We have

tested the algorithm under all possible constraints, and the

generated paths were able to converge to the target point

avoiding all obstacles, which have different sizes and

locations. The algorithm is very fast, with time

complexity of O(n).

This work can be applied in many cases. During the

second phase of our work, as described in [2], we have

initiated several projects utilizing the algorithm.

Extending the work to deal with obstacles was very

helpful in solving problems faced us in some of these

projects, as described in the following subsections.

A. Towards the Automation of Drone Navigation Systems

Unmanned aircraft (Drones) are becoming very

popular these days. This is due to their low cost and the

various applications they provide for humanity in many

fields like farming, industry, transporting products,

research, and military.

Most drones today use pilot-controlled navigation

systems. Current technologies for automating the drone

navigation systems is still in its infantry stages and open

for research [12, 18, 19, 20].

Probably, one of the most faced challenges, in the task

of automating the navigation of drones is dealing with

obstacles such as buildings, trees, and other objects. This

becomes much harder with moving obstacles, such as

vehicles, and other drones. Planning such paths in a

complex and dynamic environment becomes

computationally very costly.

Over the last few years, due to its low cost and low risk

of casualties, many countries around the world are

utilizing drones in their military and civil operations.

While it is easy to remotely pilot a single drone,

controlling many drones while conducting various tasks

becomes a major objective.

Current-generation drones face the limitations of flying

at low altitudes and slow speed compared to manned

aircraft. In hostile zones, flying drones from one point to

another in straight lines are vulnerable to anti-air defense

systems and therefore are easy targets.

The generation of random paths between two points in

real-time, which cannot be predicted in advance, can be

of great value to flying drones. This method would

greatly minimize the loss of drones over disputed regions.

Collision-free Random Paths between Two Points

Volume 12 (2020), Issue 3 33

Due to the limitations of the current-generation drones,

most countries are using them for surveillance purposes

only.

To the authors’ knowledge, all current-generation

drones are remotely piloted drones. While some

developed counties are advancing the state-of-the-art

drone technology in many directions, the development of

self-piloted drones is still in its infant stage.

This research can be valuable work in this direction.

We are applying our research findings towards the

automation of drone navigation systems.

B. Crawling the World-Wide-Web

The World-Wide-Web is a huge dynamic digraph.

Vertices in the graph are webpages, where each may

contain textual data, images, and other multimedia

elements. Hyperlinks are the edges that connect

webpages together. Search engines use crawlers that

traverse the web collecting and processing all types of

data. Crawlers use breadth-first graph traversal algorithm

to collect data and store it in databases.

Is it possible to crawl the web in random order? What

kind of results may we get? Can we consider unwanted

webpages as obstacles? How can we set up a starting

webpage and a target webpage within this large dynamic

graph?

These are some questions that we are working on in

this project. One problem we are facing is dealing with

geometrical shapes like circles and squares, which we

have used to move closer to the target point. In this

research, we are using costs instead, which are generated

from some properties of the webpages.

Some scholars are using random walk theories to

visualize subsets of the web and collect information in

order to study web properties. Crawling the web in

random order is an unbiased process, while our algorithm

is biased because we must converge to the target point.

Random walk models have been used in biology, physics,

ecology, medicine, computer science, and other scientific

disciplines [15, 16, 17].

REFERENCES

[1] A. Tayyar, “Generating Random Paths between Two

Points in Space: Proposed Algorithm”. Proceedings of the

International Conference on Computer Science, Computer

Engineering, and Social Media, Thessaloniki, Greece,

2014.

[2] A. Tayyar, M.A. Eljinini, “Ontology-Based Generation of

Random Paths between Two Points”. Journal of Applied

and Theoretical Information Technology, vol. 96, no. 15,

pp. 4984-4905, 2018.

[3] P. Raja, S. Pugazhenthi, “Optimal Path Planning of

Mobile Robots: A Review”. International Journal of

Physical Sciences, vol. 7, no. 9, pp. 1314-1320, 2012.

[4] D. Payton, J. Rosenblatt, D. Keirsey, “Grid-based

mapping for autonomous mobile robot”. Journal of

Robotics and Autonomous Systems, vol. 11, no. 1, pp. 13-

21, 1993.

[5] O. Hachour, “Path planning of autonomous mobile robot”.

International Journal of Systems Applications,

Engineering and Development, vol. 4, no. 2, pp. 178-190,

2008.

[6] P. Frana, “An Interview with Edsger W. Dijkstra”.

Communications of the ACM, vol. 53, no. 8, pp. 41–47,

2010.

[7] W. Huijuan, Y. Yuan, Q. Yuan. “Application of Dijkstra

Algorithm in robot path planning”. Proceedings of the

Second International Conference on Mechanical

Automation and Control Engineering, pp. 1067-1069,

2011.

[8] I. Al-Taharwa, A. Sheta, M. Al-Weshah, “A mobile robot

path planning using genetic algorithm in static

environment”. Journal of Computer Science, vol. 4, no. 4,

pp. 341-344, 2008.

[9] M. Garcia, O. Montiel, O. Castillo, R. Sepulveda, P.

Melin, “Path planning for autonomous mobile robot

navigation with ant colony optimization and fuzzy cost

evaluation”. Journal of Applied Soft Computing, vol. 9, pp.

1102-1110, 2009.

[10] Q. Zhang, G. Gu, “Path planning based on improved

binary particle swarm optimization algorithm”.

Proceedings of the IEEE International Conference on

Robotics, Automation and Mechatronics, China, pp. 462-

466, 2008.

[11] Y. Zhu, T. Zhang, J. Song, X. Li, “A new hybrid

navigation algorithm for mobile robots in environments

with incomplete knowledge”. The Journal of Knowledge–

Based Systems, vol. 27, pp. 302–313, 2012.

[12] T. Krajn´ık, V. Vonasek, D. Fi śer, J. Faigl. “AR-drone as

a platform for robotic research and education”. Proc.

Research and Education in Robotics: EUROBOT, 2011.

[13] L. Kleinrock, Queueing Systems. John Wiley & Sons,

1975.

[14] L. Allen, G. Jackson, J. Ross, S. White, “What counts is

how the game is scored: One way to increase achievement

in learning mathematics”. Simulation & Games, vol. 9, pp.

371-389, 1978.

[15] EA. Codling, MJ. Plank, s. Benhamou, “Random walk

models in biology”. Journal of the Royal Society Interface,

vol 5, no. 25, pp. 813–834, 2008.

[16] PM. Kareiva, N. Shigesada, “Analyzing insect movement

as a correlated random walk”. Oecologia. vol. 56, pp.

234–238, 1983.

[17] A. Okubo, S. Levin, Diffusion and Ecological Problems:

Modern Perspectives. Springer Science & Business Media,

New York, 2nd Ed., 2013.

[18] D. Floreano, R.J. Wood, “Science, technology and the

future of small autonomous drones”. Nature, vol. 521, pp.

460–466, 2015.

[19] M. Hassanalian, A. Abdelkefi, “Classifications,

applications, and design challenges of drones: A review”.

Progress in Aerospace Sciences, vol. 91, pp. 99-131, 2017.

[20] M. Funk, “Human-drone interaction: let's get ready for

flying user interfaces. Interactions”. Interactions, ACM,

New York, vol. 25, no. 3, pp. 78-81, 2018.

Authors’ Profies

Mohammad Ali H. Eljinini was born in

Amman, Jordan in 1961. He received B.Sc.

and M.Sc. degrees from the USA, in 1990

and 1992, respectively. In 1992, he worked

with UNITEL Inc. in the USA, as a Systems

Director. In 1996, he joined the Faculty of

Information Technology at Isra University, in

Amman, Jordan, as an Instructor of Computer Science.

Collision-free Random Paths between Two Points

34 Volume 12 (2020), Issue 3

He received the Ph.D. degree in Health Informatics from City

University, in the UK, in 2007. He spent the 2007-2012

academic years as the chair of the department of the Computer

Information Systems at Isra University. He served as the Dean

of the Faculty of Information Technology during the 2013-2016

academic years.

He is currently an Associate Professor at the Department of

Computer Information Systems, in the faculty of Information

Technology, at Isra University, Amman, Jordan. He has

published over twenty refereed journals and conference papers

in the areas of E-Health, E-Learning, Ontology and Knowledge

Representation, and the Semantic Web. In addition, he has

authored several books in Computer Science.

Ahmad Tayyar was born in Aleppo, Syria,

in 1954. He received B.Sc. from Aleppo

University, Aleppo, Syria in 1981. He

received the Ph.D. degree from Hute Alsace

University, in Mulhouse, France, in 1991.

He worked at Tichreen University, Aleppo

University, and Isra University during the

years of 1991 to 2004, as Assistant Professor.

He worked at Isra University and Aleppo University as

Associate Professor during the academic years of 2004 to 2016.

He moved to Jarash University in 2016, where he still there to

this date.

During his career in academia, he authored several books in

computer science. He also published many scientific research

articles in refereed journals and conference proceedings. He

also supervised many Masters and Ph.D. students. His research

interests include Algorithms, Graphics, Shortest Paths, and

Random Trajectories.

How to cite this paper: Mohammad Ali H. Eljinini, Ahmad

Tayyar, "Collision-free Random Paths between Two Points",

International Journal of Intelligent Systems and

Applications(IJISA), Vol.12, No.3, pp.27-34, 2020. DOI:

10.5815/ijisa.2020.03.04

