
I.J. Intelligent Systems and Applications, 2021, 1, 34-44
Published Online February 2021 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2021.01.03

This work is open access and licensed under the Creative Commons CC BY 4.0 License. Volume 13 (2021), Issue 1

An Enhanced Adaptive k-Nearest Neighbor

Classifier Using Simulated Annealing

Anozie Onyezewe
Department of Computer Science, Ahmadu Bello University, Zaria, Nigeria

E-mail: aonyezewe@gmail.com

Armand F. Kana, Fatimah B. Abdullahi and Aminu O. Abdulsalami
Department of Computer Science, Ahmadu Bello University, Zaria, Nigeria

E-mail: {donfackkana, zeeh429, lecturer34}@gmail.com

Received: 02 November 2019; Revised: 23 December 2019; Accepted: 13 January 2020; Published: 08 February 2021

Abstract: The k-Nearest Neighbor classifier is a non-complex and widely applied data classification algorithm which

does well in real-world applications. The overall classification accuracy of the k-Nearest Neighbor algorithm largely

depends on the choice of the number of nearest neighbors(k). The use of a constant k value does not always yield the

best solutions especially for real-world datasets with an irregular class and density distribution of data points as it totally

ignores the class and density distribution of a test point’s k-environment or neighborhood. A resolution to this problem

is to dynamically choose k for each test instance to be classified. However, given a large dataset, it becomes very

tasking to maximize the k-Nearest Neighbor performance by tuning k. This work proposes the use of Simulated

Annealing, a metaheuristic search algorithm, to select optimal k, thus eliminating the prospect of an exhaustive search

for optimal k. The results obtained in four different classification tasks demonstrate a significant improvement in the

computational efficiency against the k-Nearest Neighbor methods that perform exhaustive search for k, as accurate

nearest neighbors are returned faster for k-Nearest Neighbor classification, thus reducing the computation time.

Index Terms: Adaptive Algorithms, Classification, Heuristic Learning, k-Nearest Neighbor (kNN), Parameter

Optimization.

1. Introduction

The kNN algorithm is one of the simplest classification algorithms and one of the most used learning algorithms due

to its simplicity, ease of implementation and non-parametric principle. Before the rule was introduced for classification in

Cover and Hart [1], the NN rule was mentioned in Nilsson [2] as “minimum distance classifier” and Sebestyen [3] as

“proximity algorithm”. The kNN method is an instance-based learning algorithm [4] which performs classification on a
data point by determining parameter k (number of nearest neighbors), calculating the distance between the test instance

and all the training examples and sorting the distance to determine nearest neighbors based on the kth minimum

distance, gathering the class of the nearest neighbors and using the majority of the class of nearest neighbors as the

prediction value of the test instance. The kNN algorithm are termed instance-based, or lazy learners because they make

decisions by comparing the training set with the test set for each classification they perform. They simply store the

instances and they do not do any work on instances until it is given a test tuple. Other methods for classification such as

rule-based classification, Decision Tree induction, Classification by Back-propagation, Bayesian classification, and

Support Vector Machines (SVM) are examples of non-instance-based learners, otherwise known as eager learners

[4,5,6].

The success of the kNN algorithm greatly depends on the choice of parameter k. If k is too large, large classes will

overpower smaller classes. On the flip side, if k is too small, the result will be influenced by only a small number of
neighbors. To proffer a solution to this problem, Li [10] proposed the use of different k values for different classes

against the use of constant k value for all classes.

Most practical datasets have uneven density and class distribution. The density distribution can be considered as

dense if the distance between data points is very close, and sparse if data points are farther apart. Euclidean distance

function is popularly used by most kNN algorithms to find the distance between data points. Due to the variations in

density, using different k values for different points will be very useful as a simple intuition will be to consider more

neighbors in a dense neighborhood and fewer neighbors in a sparse neighborhood as using a constant k value will lead

to bias on larger classes. Thus, for kNN variants which finds optimal k (1 ≤ 𝑘 ≤ size of dataset) dynamically, finding

optimal k can become a very challenging, computationally expensive task.

An Enhanced Adaptive k-Nearest Neighbor Classifier Using Simulated Annealing

Volume 13 (2021), Issue 1 35

Many techniques have been put forward in order to enhance the kNN computation time. One of such method is

reducing the number of training points without trading-off precision. Zhou, using this approach, proposed a fast KNN

text classification approach based on trimming the training data [7]. Another method is to adopt the fast algorithm using

a fitness function as proof of classification correctness. A traditional way to achieve this is by indexing the training set

using kdtree [8] which stores a set of points in k-dimensional space, where k is the number of attributes. In this paper,

we propose the EACKER method which adopts the Simulated Annealing (SA), a metaheuristic search algorithm, to

return nearest points to a test instance faster than kNN methods that perform an exhaustive search for optimal k, without

trading off accuracy.

2. Related Works

In recent years, the traditional kNN algorithm has been enhanced for better performance using hyperparameter

tuning techniques, hybridization, or both.

Berchtold et al. [9] Proposed a Voronoi cells-based method which gives high efficiency for uniformly distributed

as well as for real datasets to overcome the problem of traditional kNN’s memory limitation. Traditional kNN use too

much memory in searching ‘k’ nearest neighbors of a test instance when high dimensional datasets are fed to it.

Li et al. [10] proposed an enhanced kNN method, where different values of k are used for different classes, against

the use of a constant k for all classes. Additional instances were employed to decide if a test instance should be

classified to classes that have more instances in the training set

Jiang et al. [11] proposed a dynamic kNN Naïve Bayes with Attribute weighted algorithm. In their work, lazy

learning and eager learning techniques were combined to improve the efficiency of the kNN classifier. Their method
learns the optimal ‘k’ value eagerly during the training period of the model.

Yang et al. [12] proposed the use of metaheuristic method for finding closest points to a test point quickly.

Inverted array was used to index instances while Simulated Annealing algorithm was employed to search the expected

neighbors faster. Their method demonstrates the introduction of metaheuristic search algorithms in reducing the

computation time of kNN classification and their experimental results show a substantial enhancement in computational

efficiency compared to the conventional k-NN.

Sun and Huang [13] brought forward an adaptive k-nearest neighbor algorithm (AdaNN) that resolves the

limitation of the kNN. Best value of k is searched from 1-NN to 9-NN. If the correct class label of a training sample

cannot be found by using 1-NN to 9-NN, the algorithm makes 9 its optimal value for k.

Liu & Chawla [14] Defined a class confidence weighting strategy to handle imbalanced datasets. It uses the

probability of attribute values of given class labels to weight samples in kNN. It reduces the biasing towards majority
class prediction in the traditional kNN.

Kuhkan [15] proposed an algorithm that is centered on dynamic weighting to improve the kNN algorithm’s

classification. Based on the importance of features, certain weights are assigned to these features so as to avoid similar

effect of all features during classification. The results show substantial enhancement of the classification accuracy when

compared with some other classification algorithms on 10 different datasets.

Mullick et al. [16] Proposed AdaKNN to find optimal k and handle classs imbalance. For each training point, the

algorithm finds a single correctly classifying k value, and feeds them to a Multi Layer Perceptron to generate it’s k-

terrain. A Global Imbalance Handling Scheme (GIHS) is used in classification to handle class imbalance. The results

show competitive performance of AdaKNN against the kNN and some other newer variants of kNN (NWkNN, kPNN,

kENN, WkNN, and dynKNN).

Kibanov et al. [17] proposed an adaptive kNN classifier based on expected accuracy where optimal k is
dynamically selected for each instance to be classified, such that the highest probability of classification accuracy is

attained. They introduce expected accuracy measure which is defined as “the accuracy of a set of structurally similar

observations” to improve the accuracy of kNN classification. Similarity functions were employed to discover these

“observations” for which they used five (5) different classification tasks based on geo-spatial data. Their sequential

iteration over a large range of k values (k = 1 to 200) for finding optimal k increases runtime and space, thus efficiency

is reduced. Also, the classifier was applied only on geo-spatial data using the lat-lon similarity function.

3. Adaptive k-Nearest Neighbor

Adaptive k-NN is a modification over the traditional kNN method for achieving higher classification accuracy.

kNN is a simple and basic classification algorithm with some advantages: kNN is a lazy learner, thus has no training

time. Secondly, it can be used as incremental learner. On the other side, kNN has some disadvantages: noise tolerance
which could lead to low classification accuracy. The concept of the adaptive kNN algorithm is to dynamically select

optimal k for every test instance (as against the use of a constant k in the traditional kNN) and to use this k with standard

kNN in order to maximize classification accuracy.

For this paper, the ACKER algorithm developed in [17] is adopted as the research basis for adaptive kNN

algorithms. We introduce the use of the kd-Tree structure for indexing data points while we employ the SA algorithm to

An Enhanced Adaptive k-Nearest Neighbor Classifier Using Simulated Annealing

36 Volume 13 (2021), Issue 1

return the nearest neighbors to a query point for faster classifications. Given a query (test) point, the ACKER algorithm

estimates the expected accuracy for different possible values of k and chooses a k that provides a maximum value of the

expected accuracy.

Algorithm I: ACKER [17]

Data: query instance p, function f, set Range, integer l

Result: Class of instance p

1. 𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑘 = 0

2. 𝑚𝑎𝑥_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = -1

3. for k in Range do

4. 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑝, 𝑘, 𝑓, 𝑙)

5. if 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 > 𝑚𝑎𝑥_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 then

6. 𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑘 = k

7. 𝑚𝑎𝑥_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

8. end

9. end

10. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑐𝑙𝑎𝑠𝑠 = 𝑘𝑁𝑁(𝑝, 𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑘)

11. return (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑐𝑙𝑎𝑠𝑠)

3.1. Similarity Functions

The similarity function 𝑠𝑖𝑚: 𝑃 × 𝑃 × 𝑁 → 𝑅 defines the similarity of the k-environment of two given points.

Simply stated as 𝑠𝑖𝑚: 𝑃 × 𝑃 → 𝑅. Considering a function f: P ×N → R that characterizes a point and its k-environment.

Then, a similarity function based on f as defined in [17], is shown as:

𝑠𝑖𝑚𝑓: 𝑃 × 𝑃 × 𝑁 → 𝑅 (𝑝, 𝑝′ , 𝑘) → −𝑑𝑖𝑠𝑡(𝑓(𝑝, 𝑘), 𝑓(𝑝′ , 𝑘)) (1)

Where 𝑑𝑖𝑠𝑡(𝑥, 𝑦) indicates the Euclidean distance between two points. The standard Euclidean distance is used to

compute the closest neighbors of an instance. Let the feature vector (𝑎1(𝑥), 𝑎2(𝑥), … 𝑎𝑛(𝑥)) represent an arbitrary

instance x. Where 𝑎𝑖(𝑥) indicates the value of the ith attribute of instance x. Then the Euclidean distance between two

instances x and y is defined to be 𝑑(𝑥, 𝑦), where

𝑑(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)
2𝑛

𝑖=1 (2)

The higher the similarity of two points are with their k-environments, the higher the value of 𝑠𝑖𝑚𝑓. 𝑃𝑠𝑖𝑚,𝑙(𝑝, 𝑘) is

defined as “the set containing the l points whose k-environments are most similar to the k-environments of p with

respect to the given similarity function”, also written as

𝑃𝑠𝑖𝑚,𝑙(𝑝, 𝑘) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑝
𝑙 , (𝑠𝑖𝑚(𝑝, 𝑝′ , 𝑘)) (3)

The similarity functions used in [17] and adopted in this paper are introduced below:

A. Average Distance Similarity Function (𝑆𝑖𝑚𝑎𝑣𝑔_𝑑𝑖𝑠𝑡)

The average distance similarity function 𝑎𝑣𝑔_𝑑𝑖𝑠𝑡(𝑝, 𝑘) which is “the average distance to the k nearest neighbors

of query point p” is denoted as:

𝑎𝑣𝑔_𝑑𝑖𝑠𝑡(𝑝, 𝑘) =
∑ 𝑑𝑖𝑠𝑡𝑘

𝑖=1 (𝑝,𝑝𝑖)

𝑘
 (4)

Where 𝑝𝑖 is defined here and after, as “the ith nearest neighbor to 𝑝”. The similarity function based on 𝑎𝑣𝑔_𝑑𝑖𝑠𝑡 is

defined as:

𝑠𝑖𝑚𝑎𝑣𝑔𝑑𝑖𝑠𝑡
(𝑝, 𝑝′, 𝑘) = −𝑑𝑖𝑠𝑡(𝑎𝑣𝑔_𝑑𝑖𝑠𝑡(𝑝, 𝑘), 𝑎𝑣𝑔_𝑑𝑖𝑠𝑡(𝑝′, 𝑘)) (5)

B. Maximum Distance Similarity Function (𝑆𝑖𝑚𝑚𝑎𝑥_𝑑𝑖𝑠𝑡)

The maximum distance similarity function 𝑚𝑎𝑥_𝑑𝑖𝑠𝑡(𝑝, 𝑘) which is “the maximum distance to the kth nearest

neighbor of the query point p” is denoted as:

An Enhanced Adaptive k-Nearest Neighbor Classifier Using Simulated Annealing

Volume 13 (2021), Issue 1 37

𝑚𝑎𝑥_𝑑𝑖𝑠𝑡(𝑝, 𝑘) = 𝑑𝑖𝑠𝑡(𝑝, 𝑝𝑘) (6)

The similarity function based on 𝑚𝑎𝑥_𝑑𝑖𝑠𝑡 for two points 𝑝 and 𝑝′ is defined as follows:

𝑠𝑖𝑚max
𝑑𝑖𝑠𝑡

(𝑝, 𝑝′ , 𝑘) = −𝑑𝑖𝑠𝑡(𝑚𝑎𝑥_𝑑𝑖𝑠𝑡(𝑝, 𝑘), 𝑚𝑎𝑥_𝑑𝑖𝑠𝑡(𝑝′, 𝑘)) (7)

C. Maximum_Average_Combined Distance Similarity Function (𝑆𝑖𝑚𝑚𝑎𝑥 _𝑎𝑣𝑔_𝑐𝑜𝑚𝑏)

The maximum-average-combined distance similarity function 𝑚𝑎𝑥_𝑎𝑣𝑔_𝑐𝑜𝑚𝑏(𝑝, 𝑘) which returns a tuple of

results of 𝑎𝑣𝑔_𝑑𝑖𝑠𝑡 (4) and 𝑚𝑎𝑥_𝑑𝑖𝑠𝑡 (6) is denoted as:

𝑚𝑎𝑥_𝑎𝑣𝑔_𝑐𝑜𝑚𝑏(𝑝, 𝑘) = (𝑚𝑎𝑥_𝑑𝑖𝑠𝑡(𝑝, 𝑘), 𝑎𝑣𝑔_𝑑𝑖𝑠𝑡(𝑝, 𝑘)) (8)

The similarity function based on 𝑚𝑎𝑥_𝑎𝑣𝑔_𝑐𝑜𝑚𝑏 for two points 𝑝 and 𝑝′ is defined as follows:

𝑠𝑖𝑚𝑚𝑎𝑥_𝑎𝑣𝑔_𝑐𝑜𝑚𝑏(𝑝, 𝑝′, 𝑘) = −𝑑𝑖𝑠𝑡(𝑚𝑎𝑥_𝑎𝑣𝑔_𝑐𝑜𝑚𝑏(𝑝, 𝑘), 𝑚𝑎𝑥_𝑎𝑣𝑔_𝑐𝑜𝑚𝑏(𝑝′, 𝑘) (9)

D. Latitude_Longitude Distance Similarity Function (𝑆𝑖𝑚𝑙𝑎𝑡_𝑙𝑜𝑛)

The latitude-longitude distance similarity function is denoted as:

𝑙𝑎𝑡𝑙𝑜𝑛(𝑝) = (𝑙𝑎𝑡(𝑝), 𝑙𝑜𝑛(𝑝)) (10)

The similarity function based on 𝑙𝑎𝑡_𝑙𝑜𝑛 is defined as the Euclidean distance between an instance (point) and its

neighbors:

𝑠𝑖𝑚𝑙𝑎𝑡_𝑙𝑜𝑛(𝑝, 𝑝′) = −𝑑𝑖𝑠𝑡(𝑙𝑎𝑡_𝑙𝑜𝑛(𝑝), 𝑙𝑎𝑡_𝑙𝑜𝑛(𝑝′)) (11)

3.2. Expected Accuracy

The concept of expected accuracy is: Given a query instance p along with its “k-environment”, a set of points

𝑃𝑠𝑖𝑚,𝑙(𝑝, 𝑘) with similar k-environments from the training set is found. As the “k-environments” are similar, it is

assumed that there is a correlation between the accuracy of the kNN-based classification function for given point p,

denoted as 𝑎𝑐𝑐(𝑐′
𝑘(𝑝), {𝑝}), and the accuracy of kNN-based classification function for 𝑃𝑠𝑖𝑚,𝑙(𝑝, 𝑘) [12]. Thus, the

expected accuracy is defined as:

𝑒𝑥𝑝_𝑎𝑐𝑐𝑙(𝑝, 𝑘) = 𝑎𝑐𝑐(𝑐′
𝑘 , 𝑃𝑠𝑖𝑚,𝑙(𝑝, 𝑘) (12)

It is supposed that different regions are statistically similar. Thus, it is established that expected accuracy is a good

indicator for a real accuracy.

Algorithm II: Expected Accuracy [17]

Data: query instance p, function f, integer k, integer l

Result: “Expected accuracy for 𝐾𝑁𝑁(𝑝, 𝑘)”

1. find set 𝑃𝑠𝑖𝑚,𝑙(𝑝, 𝑘) of l different points p’ with minimal difference to reference function w.r.t f:

𝑠𝑖𝑚(𝑝, 𝑝′) = | 𝑓(𝑝, 𝑘) − 𝑓(𝑝′, 𝑘)|,

𝑃𝑠𝑖𝑚,𝑙(𝑝, 𝑘) = 𝑎𝑟𝑔𝑚𝑎𝑥(Σ𝑠𝑖𝑚(𝑝, 𝑝′, 𝑘)) as in (3)

2. 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = number of correct predictions of 𝐾𝑁𝑁(𝑝′, 𝑘),

where 𝑝′ ∈ 𝑃𝑠𝑖𝑚,𝑙(𝑝, 𝑘)

3. 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑙

4. return 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

4. k-Nearest Neighbor with Simulated Annealing

The k-nearest neighbor algorithm assumes all instances to correspond to points in an n-dimensional space [12]. The
closest neighbors to a point are defined in terms of the standard Euclidean distance as shown in (2). The target of kNN

is to get the k closest values of all distances between the query point and the other training points, defined as:

An Enhanced Adaptive k-Nearest Neighbor Classifier Using Simulated Annealing

38 Volume 13 (2021), Issue 1

𝑚𝑖𝑛𝑘𝑑(𝑥, 𝑦) = −√∑ (𝑥𝑖 − 𝑦𝑖)
2𝑛

𝑖=1 (13)

From (13), it is deduced that this becomes a problem of combinatorial optimization and ∑ 𝑥𝑖 − 𝑦𝑖
𝑛
𝑖=1 has to be

computed instantaneously. Simulated Annealing (SA) method is a good solution in the field of combinatorial

optimization based on correlation with the physical process of annealing in metallurgy [12], therefore the idea of

Simulated Annealing is adopted to improve the computational efficiency of the adaptive kNN methods. Since data

storage structure is very related with algorithms, the kd-tree, which will be used in this paper as the storage structure, is

introduced.

4.1. Data Storage

The kd-tree which is used as our data storage for indexing points is a b+ tree in which every leaf node is a k-

dimensional point, with every non-leaf node generating a splitting hyperplane that divides the space into two half-

spaces. Fig.1 shows how points (P1 … Pn) represented in an array (b) are indexed using the kd-tree (a). The points to

the left of the hyperplane are represented by the left subtree of that node (c), (e), (g) and the points to the right of the

hyperplane are represented by the right subtree (d), (f), (h), with each point in the nodes referencing the instances in an

array. The hyperplane direction of points in a kd-tree is chosen in the following steps:
a) Pick a random dimension

b) Find the median of points in the chosen axis and split them into two half-spaces. Points ≥ median are

represented in the right subtree while points < median are represented in the left subtree

c) Repeat until the kth dimension is split.

Fig.1. Storage structure

4.2. Simulated Annealing

This research work seeks to minimize the running time of the ACKER method whilst maintaining its accuracy by

using a metaheuristic method; the Simulated Annealing (SA) algorithm, to find the accurate nearest neighbors to a

given point in fewer iterations as against the exhaustive, brute-force approach. The concept of simulated annealing is a

random-search metaheuristic technique for finding a good solution to an optimization problem in a large search space

by trying random variations of the current solution [12]. The choice of SA to find nearest neighbors comes from its

advantages, as it is a very good metaheuristic for combinatorial optimization (CO) problems, and its capability to escape
from being stuck in local minima.

Algorithm III: SA Pseudocode [18]

Input: Initial Temperature, Final Temperature, Cooling rate

Result: Best solution

1 Generate an initial solution X0

2 Do

3 Generate new solution X0 in the neighborhood of X0

4 Compute the acceptance probability

5 Decide on acceptance or rejection of new solution

6 Memorize the best solution found so far

7 Reduce the temperature
8 While stopping condition is not exceeded

An Enhanced Adaptive k-Nearest Neighbor Classifier Using Simulated Annealing

Volume 13 (2021), Issue 1 39

4.3. Annealing Schedule

The traditional implementation of the Simulated Annealing algorithm is one in which homogeneous Markov

chains of finite length are generated at decreasing temperatures [12]. The process starts with an initial solution 𝑋, which

in this case is finding the k points in the same leaf node as the query point, and creates and updated solution 𝑋′ in the

neighborhood of the current solution which is finding the next k points in the same node or neighboring leaf nodes.

Solutions are generated if the fitness value 𝐹(𝑥′) is less than 𝐹(𝑥) [18].

We define our fitness functions 𝐹(𝑥) to be: computing the Euclidean distance of the query point and the first k

points in that leaf node, and 𝐹(𝑥′) to be: computing the Euclidean distance of the query point and the next k points in

that leaf node and the neighboring leaf nodes. However, a greater fitness of 𝑥′ is sometimes accepted with a probability

so as to enable the algorithm avoid being trapped in local minima. The probability used in this work is adopted from [18]

and defined in (14)

𝑃𝑟 = exp (
−(𝑓(𝑥′)−𝑓(𝑥))

𝑇
) (14)

Where T is the temperature or the control parameter. Our cooling process is finding the next k points and

computing the Euclidean distance with the query point. If these new distances don’t substitute the already existing ones,

then it is concluded as the final temperature. We set the length of our Markov chain as 𝑘.

5. EACKER

The EACKER method proposed in this paper is a modification of the ACKER method in [17] which finds optimal

k for a query point based on the kNN accuracy of similar points, where k is dynamically selected for each point to be

classified. The EACKER aims at improving the computational efficiency of the ACKER by replacing the brute-force

approach for finding optimal k with the use of metaheuristic search method, thus reducing the time taken for

classification. Datasets are preprocessed and split into training(X) and test(Y) sets with 70% and 30% for train and test

set respectively. The training datasets are indexed and stored in a k-dimensional tree (kd-tree).

Algorithm IV: EACKER

Data: query point p, set Range, function f, integer l

Result: Class of point p

1. 𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑘 = 0

2. 𝑚𝑜𝑑𝑒 = highest occurring number of 𝑘′ from set of similar points 𝑃𝑠𝑖𝑚,𝑙(𝑝, 𝑘)

3. find set 𝑘′ of correctly classifying k values 𝐾𝑁𝑁(𝑝, 𝑘) for all training points in 𝑃𝑠𝑖𝑚,𝑙(𝑝, 𝑘) using Simulated

Annealing

4. for k in Range do

5. find set 𝑃𝑠𝑖𝑚,𝑙(𝑝, 𝑘) of l different points p’ with minimal difference to reference

 function w.r.t f: 𝑠𝑖𝑚(𝑝, 𝑝′) = | 𝑓(𝑝, 𝑘) − 𝑓(𝑝′, 𝑘)|,
 𝑃𝑠𝑖𝑚,𝑙(𝑝, 𝑘) = 𝑎𝑟𝑔𝑚𝑎𝑥(Σ𝑠𝑖𝑚(𝑝, 𝑝′, 𝑘)) see (3)

6. if 𝑚𝑜𝑑𝑒 > 1 then

7. 𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑘 = random 𝑚𝑜𝑑𝑒

8. end

9. 𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑘 = 𝑚𝑜𝑑𝑒
10. end

11. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑐𝑙𝑎𝑠𝑠 = 𝑘𝑁𝑁(𝑝, 𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑘)

return (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑐𝑙𝑎𝑠𝑠)

At the classification phase, a set of similar points(𝑃𝑠𝑖𝑚,𝑙) is computed for all query points from test dataset using a

similarity function (as shown in section III), where l = ∛𝑛, (where 𝑛 = total instances in the dataset) and a set of

correctly classifying k values(kʹ) computed for all instances (points) with the aid of simulated annealing, for k =

1…𝑘𝑚𝑎𝑥 . Where 𝑘𝑚𝑎𝑥 = √𝑛. which satisfies the properties: a) kmax “should neither be too large nor too small to

preserve the local structure of the neighborhood.” b) kmax “should be data-dependent” [16]. The mode from the set of

correctly classifying k values (k ʹ) for each training instance in 𝑃𝑠𝑖𝑚,𝑙 is then returned and used as optimal k for

classifying the query point in the test dataset. It is expected that the most occurring kʹ value will yield the highest

expected accuracy.

The computation for expected accuracy by finding similar points for each test instance has been proven to yield

more accurate results over the traditional kNN [17], and thus we adopt this method in our algorithm. However, the

An Enhanced Adaptive k-Nearest Neighbor Classifier Using Simulated Annealing

40 Volume 13 (2021), Issue 1

method of finding the similar points for each point to be classified greatly affects the computation time for finding the

correctly classifying k values 𝑘′ and optimal k for each test point. The prospect of an exhaustive search for similar

points and 𝑘′ is eliminated by introducing the SA metaheuristic search which returns 𝑘′ faster, while the mode function

returns the optimal k from the set of 𝑘′ returned. This significantly reduces the computation time without accuracy

trade-off.

6. Evaluation

The details of the system implementation, evaluation and analysis of results is discussed in this section. The

environment for which experiments were carried out is: Windows 10 Home 64-bit Operating System, x64-based

processor with Intel(R) Core i5(8th Gen). CPU speed at 1.80 GHz 3.1 GHz turbo boost 8.00GB RAM and 1TB HDD.

The algorithm is developed using Anaconda navigator and Jupyter notebook version 5.0.0.

6.1. Data Source

For this research, four different datasets that represent geo-spatial data and non-geo-spatial data from three

different open source benchmark dataset repositories were used. All experimental results presented were conducted

using 10-fold cross-validation where we used for each experiment, 70% of the data as training data and 30% of the data

as test data. From these datasets we constructed 4 different classification tasks to evaluate the EACKER approach. The

datasets and their classification tasks are presented below:
Milan Twitter Dataset. The Milan Twitter dataset (Social-Pulse Milano Spazio-Dati) was gathered in Milan, Italy

from November to December, of 2013. For the classification tasks, tweets where one of the seven most popular local

geographical items in Italy is mentioned are considered. Also, in order to add some noise to the data, a general entity

(“Italy”) is added [17]. The dataset has a total of 269,290 records (https://dandelion.eu/products/- datatxt/).

San Francisco Crimes Dataset. This dataset contains all coordinates and categories of crimes committed in San

Francisco in 2015. Given the coordinates of a particular crime, the job of the classification model is predicting the crime

category [17]. The dataset contains over 2.2m records (https://data.sfgov.org/Public-Safety/SFPD-Incidents-Previous-

Year-2015-/ritf-b9ki).

Iris Dataset. The Iris flower dataset is a multivariate dataset introduced by the British statistician and biologist

Ronald Fisher. The data set consists of 50 samples from each of three species of the Iris flower (Iris setosa, Iris virginica

and Iris versicolor). Four features were measured from each sample: the length and the width of the sepals, and the

length and width of the petals, in centimeters. The task of the classifier is to predict the specie of an Iris flower, given
the length and width of the sepals and petals of that Iris flower.

Avila Dataset. This dataset contains an extraction of 800 images from the Avila Bible. For the prediction task each

pattern is assigned to one of the 12 classes: A, B, C, D, E, F, G, H, I, W, X, Y. the dataset has been normalized using the

Z-normalization method and divided into two sets: a training set which contains 10430 samples, and a testing set which

contains 10437 samples.

6.2. Result for Data Storage in kd-Tree

As stated earlier, the kd-tree is a b+ in which every leaf node is a k-dimensional point. The runtime complexity of

Search, Insert and Delete operations in a kd-tree are: 𝑂(𝑙𝑜𝑔 𝑛) average case and 𝑂(𝑛) worst case.

6.3. Nearest Neighbor Search in kd-Tree using Simulated Annealing

Here, we show the runtime complexity of finding k nearest neighbors and computing similar points (𝑃𝑠𝑖𝑚,𝑙) for any

given point and its k-environment. Based on that, we estimate the algorithmic runtime of the EACKER algorithm.

6.4. Complexity of finding Nearest Neighbors

The complexity of finding the nearest neighbors of any given point is the same as the complexity of searching in

kd-trees. The introduction of Simulated Annealing aids in finding accurate nearest points to any given point by

comparing the Euclidean distance of that point to other neighboring points. Thus, regardless of the number of points to

be searched or compared with, the complexity remains 𝑂(𝑙𝑜𝑔 𝑛).

6.5. Complexity of finding Similar points (𝑃𝑠𝑖𝑚,𝑙)

The elements in kd-trees are not linked, therefore it is necessary to search for l points in (𝑃𝑠𝑖𝑚,𝑙). In the average

case, this will be performed in 𝑂(𝑙 × 𝑙𝑜𝑔 𝑛), or 𝑂(𝑛. 𝑙𝑜𝑔 𝑛).

6.6. Complexity of EACKER

Based on the running time complexities of finding the nearest neighbors and similar points of any given point, we

estimate the algorithmic runtime complexity to be 𝑂(𝑛. (𝑙𝑜𝑔 𝑛)2).

An Enhanced Adaptive k-Nearest Neighbor Classifier Using Simulated Annealing

Volume 13 (2021), Issue 1 41

6.7. Experimental Results

In this section, we discuss the performance of the traditional kNN, ACKER and EACKER, and show the

experimental results obtained from four different datasets earlier introduced with different k values using the traditional

kNN, ACKER and EACKER methods in terms of the CPU running time (in seconds) and classification accuracy. Each

value reported is the average value obtained from running each experiment ten times over using the average distance

similarity function (𝑠𝑖𝑚𝑎𝑣𝑔_𝑑𝑖𝑠𝑡). We also show our choice range of k values and how they affect the computation time

and the classification accuracy on the classification tasks.

Table 1 shows the CPU running time using different k values from 5 to 1,000 on four different datasets using the
kNN, ACKER and EACKER methods.

It can be observed that the kNN method runs on a constant time, the ACKER method exhibits polynomial runtime,

and the EACKER method demonstrates a polylogarithmic runtime which is logarithmic to ACKER.

It can also be observed that there are no figures for the CPU running time for the Iris classification task after

k=100 for KNN and k=50 for ACKER and EACKER respectively. This is as a result of the number of instances (150)

contained in the Iris dataset, therefore, a greater number of k cannot be considered after 150 for kNN, and 50 for

ACKER and EACKER where k and similar points, l are to be found.

Table 2. shows the classification accuracies using different k values from 5 to 1,000 on four different datasets

using the kNN, ACKER and EACKER methods. The ACKER and EACKER’s classification performance in terms of

accuracy clearly outperforms the traditional kNN method. However, ACKER’s classification performance in terms of

accuracy does not differ from EACKER’s because both methods make use of the same similarity functions to return the

same optimal k.

6.8. EAKER Accuracy Dependent on Similarity Functions

Fig. 2-5 show the classification accuracies using different k values from 5 to 1,000 on four different datasets using

the ACKER and EACKER methods on different similarity functions. The figures show how different similarity

functions influences the overall classification accuracy for each dataset.

Fig.2. Similarity function accuracy on Iris dataset

It can be observed that there isn’t a substantial variance in the Iris and Avila datasets, although the

𝑚𝑎𝑥_𝑎𝑣𝑔_𝑐𝑜𝑚𝑏 similarity function marginally outperforms the rest. The Milan-Twitter dataset also show competitive

accuracy results for all similarity functions, while the 𝑙𝑎𝑡_𝑙𝑜𝑛 similarity function clearly outperforms the other
similarity functions in the San Francisco Crimes dataset.

0%

20%

40%

60%

80%

100%

K 5 10 20 50 100 1000

Iris

avg_dist max_dist max_avg_comb

An Enhanced Adaptive k-Nearest Neighbor Classifier Using Simulated Annealing

42 Volume 13 (2021), Issue 1

Fig.3. Similarity function accuracy on Avila dataset

Fig.4. Similarity function accuracy on SF-Crimes dataset

Table 1. Comparative Analysis for Running Time (Secs)

 KNN ACKER EACKER

K
Milan-

Twitter

SF-

crimes
Iris Avila

Milan-

Twitter

SF-

crimes
Iris Avila

Milan-

Twitter

SF-

crimes
Iris Avila

5 23 20 0.2 20 24 20 0.6 32 10.4 10.3 0.1 15

10 23 20 0.2 20 44 40 0.8 62 25 20 0.3 30

20 23 20 0.2 20 84 79 1.1 122 52 42 0.6 75

50 23 20 0.2 20 214 198 2.0 310 166 126 1.0 150

100 23 20 0.2 20 435 398 - 652 339 253 - 466

1,000 23 20 - 20 4106 3924 - 5402 3090 2230 - 4360

Table 2. Comparative Analysis for Accuracy

 KNN ACKER EACKER

K
Milan-

Twitter

SF-

crimes
Iris Avila

Milan-

Twitter

SF-

crimes
Iris Avila

Milan-

Twitter

SF-

crimes
Iris Avila

5 88% 15% 90% 59% 90% 20% 80% 65% 90% 20% 80% 65%

10 88% 20% 83% 58% 88% 25% 75% 67% 88% 25% 75% 67%

20 88% 26% 79% 55% 87% 31% 73% 61% 87% 31% 73% 62%

50 88% 28% 76% 51% 87% 33% 73% 63% 87% 33% 73% 63%

100 88% 28% 75% 48% 86% 33% - 56% 86% 33% - 56%

1,000 88% 28% - 40% 86% 33% - 56% 86% 33% - 56%

0%

20%

40%

60%

80%

K 5 10 20 50 100 1000

Avila

avg_dist max_dist max_avg_comb

0%

5%

10%

15%

20%

25%

30%

35%

40%

K 5 10 20 50 100 1000

SF - Crimes

avg_dist max_dist

max_avg_comb lat_lon

An Enhanced Adaptive k-Nearest Neighbor Classifier Using Simulated Annealing

Volume 13 (2021), Issue 1 43

Fig.5. Similarity function accuracy on Milan-Twitter dataset

7. Conclusion and Further Work

This work successfully applied its classification tasks on geo-spatial and non-geo-spatial datasets as recommended
in [17] using the introduced similarity functions, with the exception of the Latitude_Longitude similarity function

(𝑠𝑖𝑚𝑙𝑎𝑡_𝑙𝑜𝑛), which is unique to geo-spatial datasets.

Most research works in this field focuses on ways to enhance the accuracy of adaptive kNN methods and

sometimes this comes at an extra cost in trading off execution time. This research work is tailored to cause a shift in

paradigm towards the development of adaptive kNN methods that achieve faster classification without trading off

accuracy. The results of the EACKER method based on the similarity functions introduced, demonstrated visible

enhancement in the CPU running time compared to the ACKER algorithm. Furthermore, results show that there is no
accuracy trade-off against the ACKER method, while improving the accuracy of the traditional kNN method for most of

the classification tasks. The only dataset where the EACKER showed a poor performance alongside the ACKER and

the traditional kNN is the SF - Crimes dataset. The probable reason the kNN and the adaptive kNN approach cannot

achieve good performance with this dataset is the degree of class imbalance resulting from a skewed class distribution.

Again, the experimental results of this research work show that using a large range of k is not essential, as after some

point (k = 50), more k values do not improve classification accuracy. Therefore, reducing range of k values from n

elements (where n could be the entire size of the dataset) to √𝑛 elements doesn’t result to a reduction in the overall

classification accuracy, but can significantly decrease the running time.

Advancements to this research work can be achieved by investigating the influence of other similarity functions on

the expected accuracy and the influence of other distance metrics on the overall accuracy. Secondly, the Simulated

Annealing algorithm may be modified to search for optimal k adaptively by finding a steady set of nearest neighbors

which will be dependent on the size and density distribution of any given dataset without having to search for 𝑘𝑚𝑎𝑥, as

long as the overall classification accuracy is maintained.

References

[1] T. M. Cover, and P. E. Hart, “Nearest Neighbor Pattern Classification,” IEEE Transactions on Information Theory 13, 1967, pp.
21–27.

[2] N. Nilsson, Learning Machines: Foundations of Trainable Pattern-Classifying Systems, 1965.
[3] G. S. Sebestyen, Decision-making Processes in Pattern Recognition (ACM monograph series), 1962.
[4] P. Rani, “A Review of Various KNN Techniques,” International Journal for Research in Applied Science & Engineering

Technology, 2017.
[5] J. Han, M. Kamber, and J. Pei, Data Mining Concepts and Techniques. Boston: Elsevier Inc, 2012.
[6] I. Tsang, J. Kwok, and P. Cheung, “Core Vector Machines: Fast SVM Training on Very Large Data Sets,” Journal of Machine

Learning Research, 2005, pp. 363-392.
[7] S. Zhou, T. Ling, and J. Guan, “Fast Text Classification: A Training Corpus Pruning Based Approach,” Proceedings of Data-

base Systems for Advanced Applications, Kyoto, Japan: IEEE Computer Society, 2003, pp. 127-136
[8] W. Ian, F. Eibe, “Data Mining: Practical Machine Learning Tools and Techniques,” Elsevier, 2005, pp. 129-135
[9] S. Berchtold, B. Ertl, and Keim, “A Fast Nearest Neighbor Search in High-dimensional Space,” International Conference on

Data Engineering, 1998, pp. 209-218.
[10] B. LI, S. Yu, and Q. Lu, “An Improved K-Nearest Neighbor Algorithm for Text Categorization,” in Proceedings of the 20th

International Conference on Computer Processing of Oriental Languages . China: Shenyang, 2003.
[11] L. Jiang, H. Zhang, and Z. Cai, “Dynamic K-Nearest-Neighbor Naive Bayes with Attribute Weighted,” International

0%

20%

40%

60%

80%

100%

K 5 10 20 50 100 1000

Milan-Twitter

avg_dist max_dist

max_avg_comb lat_lon

An Enhanced Adaptive k-Nearest Neighbor Classifier Using Simulated Annealing

44 Volume 13 (2021), Issue 1

Conference on Fuzzy Systems and Knowledge Discovery. Springer, Berlin, Heidelberg, 2006.
[12] C. Yang, Y. Li, C. Zhang, and Y. Hu, “A Fast KNN Algorithm Based on Simulated Annealing”. Department of Computing &

Information Technology, Fudan University, 2007.
[13] S. Sun, and R. Huang, “An Adaptive K-Nearest Neighbor Algorithm”. Seventh International Conference on Fuzzy Systems and

Knowledge Discovery, 2010.
[14] W. Liu, and S. Chawla, “Class Confidence Weighted KNN Algorithms for Imbalanced Datasets,” Pacific-Asia Conference on

Knowledge Discovery and Data Mining, 2011, pp. 345-356.
[15] M. Kuhkan, “A Method to Improve the Accuracy of K-Nearest Neighbor Algorithm,” International Journal of Computer

Engineering and Information Technology, 2016, pp. 90-95.
[16] S. Mullick, S. Datta, and S. Das, “Adaptive Learning-Based K-Nearest Neighbour Classifiers With Resilience to Class

Imbalance,” IEEE transactions on neural networks and learning systems, 2018.
[17] M. Kibanov, M. Becker, J. Mueller, M. Atzmueller, A. Hotho, and G. Stumme, “Adaptive KNN Using Expected Accuracy for

Classification of Geo-Spatial Data,” Symposium on Applied Computing. Pau, France, 2018.
[18] M. Abdullahi, Md. Ngadi, “Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud

Computing Environment,” PLoSONE 11(6):e0158229, 2016.

Authors’ Profiles

Anozie Onyezewe was born on 6th August 1993. He received B.Sc. degree in Computer Science from Michael
Okpara University of Agriculture Umudike and M.Sc in Computer Science from Ahmadu Bello University Zaria.
In 2018 he joined the Ahmadu Bello University Department of Computer Science’s Artificial Intelligence research
group where he majored in Machine Learning and Intelligent Systems. In 2019, he was selected as a Student
Instructor in Data Science Nigeria’s AI+ Invasion Zaria.

Armand F. Donfack Kana received the B.Sc. degree in Computer Science from University of Ilorin, Nigeria,
M.Sc. and Ph.D. degrees in Computer Science from University of Ibadan, Nigeria. He is currently a Senior
Lecturer in Computer Science at the Department of Computer Science, Ahmadu Bello University, Zaria, Nigeria.
His current research interests include Knowledge Representation and Reasoning, Machine Learning, Formal
Ontologies and Soft Computing.

Aminu O. Abdulsalami is a lecturer in the Department of Computer Science, Ahmadu Bello University, Zaria.
He received His B.Sc. and M.Sc. degrees in Computer Science from Ahmadu Bello University Zaria. Aminu is
currently a Ph.D. student in the School of Computer Science and Technology, Wuhan University of Technology,
China. His research interest includes Evolutionary Computing, Federated Learning and Blockchain.

Fatimah B. Abdullahi received her M.Sc. degree in Computer Science in 2009 from Ahmadu Bello University,
Zaria Nigeria. Her Ph.D. degree in Computer Science from University of Liverpool United Kingdom in 2016. She
is currently an academic staff member of Ahmadu Bello University. Her research interests include Data Mining,
Machine Learning and Data Analytics.

How to cite this paper: Anozie Onyezewe, Armand F. Kana, Fatimah B. Abdullahi, Aminu O. Abdulsalami, "An Enhanced
Adaptive k-Nearest Neighbor Classifier Using Simulated Annealing", International Journal of Intelligent Systems and
Applications(IJISA), Vol.13, No.1, pp.34-44, 2021. DOI: 10.5815/ijisa.2021.01.03

