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Abstract: Outlier detection is one of the important tasks in data mining. Detecting outliers over streaming data has 
become an important task in many applications, such as network analysis, fraud detections, and environment monitoring. 
One of the well-known outlier detection algorithms called Local Outlier Factor (LOF). However, the original LOF has 
many drawbacks that can’t be used with data streams: 1- it needs a lot of processing power (CPU) and large memory to 
detect the outliers. 2- it deals with static data which mean that in any change in data the LOF recalculates the outliers 
from the beginning on the whole data. These drawbacks make big challenges for existing outlier detection algorithms in 
terms of their accuracies when they are implemented in the streaming environment. In this paper, we propose a new 
algorithm called GSILOF that focuses on detecting outliers from data streams using genetics. GSILOF solve the 
problem of large memory needed as it has fixed memory bound. GSILOF has two phases. First, the summarization 
phase that tries to summarize the past data arrived. Second, the detection phase detects the outliers from the new 
arriving data. The summarization phase uses a genetic algorithm to try to find the subset of points that can represent the 
whole original set. our experiments have been done over real datasets. Our experiments confirming the effectiveness of 
the proposed approach and the high quality of approximate solutions in a set of real-world streaming data. 
 
Index Terms: Outlier detection, data streams, local outlier factor, genetics. 
 

1.  Introduction 

Outlier detection is also known as anomaly detection has gained a lot of importance and attention in the field of 
data mining. It has been used in many applications such as credit card fraud detection and intrusion detection in web 
apps. A lot of algorithms have been developed to detect outliers in static data in which the number of points are 
determined and doesn’t change over time. However, detecting outliers on streamed data is difficult because the size of 
the data set is infinite, and the data is changing over time thus can’t be stored in memory for processing [1]. 

One of the techniques that are used in outlier detection is density-based techniques. Density-based techniques have 
a great ability to detect outliers in different densities and dealing with nonhomogeneous densities datasets. 

One of the well-known algorithms for outlier detection that is density based is Local Outlier Factor LOF. LOF has 
been used in data sets with heterogeneous densities [2, 3, 4]. However, LOF deals with static data that don’t change 
over time as its calculations are done over the whole data one time. Because LOF did its calculations one time on the 
whole data it needs a huge amount of memory to store the data to process. Specifically, LOF has O(n2) space 
complexity to detect outliers as it stores all the points of the data and its distances between the all points. Also in any 
change in data by adding or deleting any points the LOF needs to be recalculated on the whole data set. Such these 
limitations of LOF, it can’t be used with data streams as data streams size are infinite and data are changing over time as 
new points arrive [5].  

A data stream is a continuous data records ordered by timestamps and the data points are available partially at any 
given point in time. Thus, when working on applications with streaming data, their temporal contexts need to be 
considered. In addition, the processing needs additional requirement on computational and memory resources. There are 
many applications that detect outlier detection over streaming data, such as network detection, fraud detections, and 
environmental monitoring. Thus, we need to find abnormal data over data streams in real-time. 

Researchers have proposed different solutions to this problem. One of those solutions works by using sliding-
window in the application and performing learning only on those windowed data. This solution performs well in some 
applications and also makes real-time results. However, the correctness of its results depends largely on the size of 
window that is not considered. There are other existing solutions but most of them fail to address those properties of 
streaming data, and thus produce results exhibiting poor accuracy [6]. 

In this paper, we aim to propose new algorithm called GSILOF (Genetic Summarizing Incremental LOF). that 
overcome aforementioned challenges in streaming data. The GSILOF algorithm consists of two phases 1) detection 
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phase 2) summarization phase. in the detection phase GSILOF algorithm tries to detect the outliers from the arrived data 
points. In the detection phase every new point is checked for being an outlier or not by calculating the LOF for each 
point. To calculate the LOF for each new arriving point the detection phase uses a modified version of LOF called 
Incremental LOF (ILOF) [6]. ILOF overcome the problem of LOF as it doesn’t require the recalculation of the whole 
data points when the data set changes by insertion or deletion. In the ILOF it detects when a new point is added or 
deleted and update the points which may be affected. 

In the summarization phase, we develop a novel density-based sampling algorithm that samples the past data while 
preserving the density of the remaining points. We use genetic algorithms to try to optimize the summarization function 
to select the optimal subset that represents the whole set and minimize the density change between the two sets (whole 
and sub).  

The rest of the paper is organized as follows: section 2 gives a review on the related work. Section 3 describes the 
GSILOF. Section 4 views the experimental results over real data sets. Finally, the conclusion is presented in section 5. 

2.  Related Work 

Many surveys of outlier detection are mentioned. However, most of them focus on the problem of finding outliers 
in static data in which all the data points are available as a whole and its size is pre-calculated [7, 8]. Streaming 
environment, a large amount of data is being generated at high speed and volume. So, outliers need to be detected in 
limited time at one pass. Many categories for outlier detection in data streams have been proposed [6, 9, 10]: distance 
based, a distribution based, and clustering based. 

In distance-based category outliers are detected by measuring the distance from a point to the other points in the 
data set. The detected outlier can be in one of two types global or local. A data point p is a global outlier if the number 
of points within a given distance is less than k point [11]. 

Many adaptions to this approach have been done to use it in data streams. In [12] the authors proposed an 
algorithm deal with the sliding window model, where outlier queries are performed in order to detect anomalies in the 
current window. However, it has limited memory requirements and returns an approximate answer based on accurate 
estimations with a statistical guarantee. 

In [13] the authors introduced a method where an outlier is defined by taking into account the sum of the distances 
from 1st up to the kth nearest neighbors.  The authors in [14] enhanced the algorithm in [12] by reducing the time 
complexity and memory consumption needed. They first propose a continuous algorithm which has two versions. The 
first version requires the radius R to be fixed but it can handle multiple values of K neighbors. The second version can 
handle multiple values of R and K. second they propose an algorithm which is based on micro clusters to reduce the 
number of distance computations. However, the time complexity of this algorithm is guaranteed to be O(n log k) while 
maintaining the space complexity to be O(nk), where n is the number of data points and k refers to the parameter of 
KNN (K-Nearest Neighbourhood). 

For the local outliers, a point is considered a local outlier if it is far by d distance with respect to its k neighbors. 
Authors in [15] proposed a new factor that calculates the degree of oulierness for each point called the Local Outlier 
Factor (LOF). It uses the concept of reachability to define the density of data points: the density of each data point is 
measured by considering the reachability of this data point, in regards to the reachabilities of its neighbours. One of the 
main features of the LOF technique is that it can detect outliers in non-homogeneous densities with high accuracy. Also, 
it doesn’t need any assumptions regarding the underlying distribution of the dataset. Authors in reference [6], presented 
an incremental version of LOF over streaming data. The authors gave theoretical evidence to show that the insertion of 
new data points as well as deletion of an old data point affects only a limited number of neighbors.  

In distribution-based model outliers are detected by having a priori knowledge of the distribution of the data set 
and compare it with the new incoming data. The detection model is applied to fit the data with the distribution of data 
using a mixture of distributions. In references [16, 17] authors used the Gaussian mixture model (GMM), where the 
dataset is equipped to a certain number of Gaussian distributions and the model is trained using Expectation-
Maximization (EM) method. These models are usually having low computational resources, but most of them require 
parameters as inputs and they also assume a fixed distribution in dataset, that is not appropriate with streaming data.  

Clustering based categories try first to divide the data into clusters depend on the distribution of the data. Then, 
some algorithms mark the clusters with a small number of points as outliers. other algorithms mark the points that are 
far from the clusters by a threshold as outliers. However, most of these algorithms were proposed to cluster the data sets 
rather than detecting outliers, e.g., [18, 19, 20].  

Authors in [21] proposed another clustering algorithm to outlier detection over streaming data, they used the idea 
of sliding window and clusters the data in each window. the detected outliers are not represented immediately but rather 
considered as candidate outliers. They maintained the mean value of each cluster and carried over to the next window in 
the stream to further compare with other windows. If the candidate outlier passed a given number of windows, it is then 
identified as true outlier.  

Authors in [22] propose an algorithm that extended affinity propagation to handle evolving data steam with 
dynamic distribution and capable of performing fast and incremental processing of data objects, generate histograms for 
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the clusters in the streamed data which used later for mining and also in detecting outliers. 
In [23] authors proposed an algorithm that works on the problem of determining within any period of time whether 

an object in a data stream is outliers. They used a cluster-based approach to represent data in a hierarchical fashion to 
determine an outlier score based on the deviation between object and cluster. In [24] authors proposed a cluster-based 
approach that is used in outlier detection. they focus on data streams with varying arrival rates. They try to learn from 
the history of the data stream to determine the normal behavior of the current period. The advantage of this approach is 
that it can improve the accuracy of detection by using relevant history, while remaining computationally. 

3.  Genetic Summarizing Incremental LOF (GSILOF)  

In this section, we present how to solve the problem of detecting outliers in a data stream over limited memory 
environment. The proposed algorithm GSILOF consists of two phases: 1) the detection phase 2) the summarization 
phase. The detection phase uses the ILOF to detect the outliers. The summarization phase called Genetic 
Summarization (GS) which uses a Genetic algorithm (GA) that work parallel to find the best solution. GAs work on 
multiple solutions in many directions. It tries to find the best solution from many solutions, so it doesn’t stick in local 
optima. 

3.1.  Detection  phase  

when new point arrives the detection phase starts to calculate the LOF score for this point.  And check if this score 
is below the predefined threshold, if yes this means that this point is inlier. If the score is above the threshold, then this 
point is considered an outlier. To calculate the LOF for each point a modified version of the LOF is used called ILOF 
which handles the drawbacks of the LOF to work with streaming data. The ILOF doesn’t require the recalculation for 
the all previously entered data but only the affected points by the new point. For the LOF algorithm, it must loop 
through all the data points when a new point is inserted to update the LOF score, in contrast, the ILOF algorithm loops 
through the affected points only by the insertion of the new points. when a new point is inserted the ILOF searches for 
the data points whose neighbor are affected. Then the ILOF selectively updates lrdk and LOFk of them. For more details 
about the incremental insertion of iLOF, readers are referred to [6]. 

3.2.  Summarization phase  

GA is based on Darwin’s theory of natural selection and “survival of the fittest” [25]. GA is used in searching 
among many solutions and finding the optimal one. It depends on randomly selecting a number of solutions and 
calculate the degree of how good these solutions are. Each solution is represented by a chromosome. To calculate the 
solution degree and rank, a fitness function is used. A generation consists of number of chromosomes. After calculating 
the fitness function for each suggested solution (chromosome) a generation is finished. Part of the chromosomes is 
selected to be part of the next generation. By applying crossover and mutation functions new chromosomes are 
generated (best generate the best). After that the old selected chromosomes and the newly generated ones are combined 
to construct the new generation. These iterations are done until a pre-defined threshold. in the end the best solution is 
selected for the minimization or maximization function. The solution consists of the best chromosome that achieves the 
best results for the objective function. 

The GS algorithm summarizes the points in the window by selecting a small number of points that represent the 
total points and minimizing the density difference between the old set and the new one. The GS algorithm depends on 
the Nonparametric Density Summarization in [26] except that the authors in [26] use gradient descent to select the 
subset and minimize the density difference the GS uses Genetic algorithm to apply the minimization function. Genetic 
algorithm is better than the gradient descent as it tries to find many optimal solutions and solves the local minima not 
like the gradient descent that can be stuck in the local minima.  

The GS algorithm uses the objective function to evaluate each chromosome as shown in equation 1. For given two 
datasets Z = {z1,z2,...,zN} and X = {x1,x2,...,xM} where Z is a proper subset of X , 𝜌𝜌𝜌𝜌(𝑥𝑥𝑛𝑛) is the Euclidean distances 

between data point 𝑥𝑥𝑛𝑛  and its kth nearest neighbor in Z, and 𝑣𝑣𝑣𝑣(𝑥𝑥𝑛𝑛) is the distance between 𝑥𝑥𝑛𝑛  and its kth nearest 
neighbor in X .  
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where Ck,n  is a  set of data points that have xn as their kth nearest neighbor in Z. 𝑦𝑦𝑛𝑛 is decision variables with a value 
of 1 when the data point xn is selected, used in order to transform the combinatorial optimization problem in [27] to a 
solvable form. 

3.3.  GSILOF Steps 

The GSILOF algorithm takes the maximum window size ws which represent the total number of points that will 
remain in memory. The threshold θ of the LOF to mark any point that has LOF more than θ to be an outlier. The 
number of chromosomes nc and number of Generations ng that are given to the Genetic algorithm to summarize the 
points in the memory. When new point arrives the GSILOF algorithm will calculate the LOF for this point and check 
the LOF against the threshold θ to determine if this point is an outlier or not. Then this point will be added to the current 
window line (4-8). This process is repeated when new points arrive. When the number of the points in the window 
reaches ws the summarization phase starts line (9-11). 

The core step in the summarization phase is to take the oldest w/2 points in the current window which is A and B 
and summarize them by selecting only half of them which is w/4 and removing the remain w/4 from the window. The 
GSILOF initiate the population and add nc chromosome in it. The number of genes in every chromosome is w/2. then 
evaluate every chromosome using the fitness function shown in equation 1 line (12-17) the fitness function will process 
on the oldest w/2 points. After initiating the population, the GSILOF starts a number of generations ng looping over 
them, and in each generation the GSILOF line (18-24). after the population generation and evaluation is finished the 
GSILOF starts to transform the best chromosome into Y to use it to select the most unimportant points to remove the 
line (25). The GSILOF loop through Y and check if the value of the Yn is 1. Then, it adds the points in the current half of 
the window in n index to WD’ line (25-32). At the end the GSILOF removes the old w/2 points from the current 
window and adds the new selected points to the window line (33-34). Since GS summarizes the oldest W/2 data points 
to W/4 data points whenever the number of data points reaches ws, the number of data points to be processed by 
GSILOF is always bounded by ws. The size ws is typically determined by the memory limitation. 
 

 

Algorithm 1  GSILOF 
input: infinite data stream P={p1,p2,...,pt,...}, maximum window size ws, threshold of LOF scores θ, number of Generations ng, number of 
chromosomes nc 

1 WD ← {} // current points in the window 
2 DO←{}   /current detected outliers  
3 Foreach pt ∈P do  
4 LOFk(pt) ← ILOF(pt, DO,θ)  
5 If  LOFk(pt) >=  θ 

6        Add  pt  to DO 
7 End 
8 Add  pt to WD 
9 if | X | != ws then  
10        Continue; 
11 End 
12 P ← {} // populations 
13 Create Population P consists of nc chromosomes  
14 Foreach ch ∈ P do  
15        Initiate chromosome ch in p  
16        Evaluate ch using the Objective Function (Equation 1) 
17 End 
18 Foreach g in ng 
19        Apply selection to P using roulette wheel selection   
20        elitism P // saving best chromosomes in new population, making a copy of each elite chromosome 
21        Apply cross-over method over P // one-point random cross-over of 2 chromosomes 
22        Apply mutation to P  //single point mutation: flipping a chromosome bit 
23        Save best result  
24 end  
25 Transform the resulted chromosomes to Y 
26 Project Y into binary domain 
27 WD’ ← {} // set of points after genetic summarization finish  
28 for n=1:W/2 do  
29        if Yn = 1 then  
30                WD’ ←  WD’ ∪ { WDn } 
31        End 
32 End 
33 Remove oldest W/2 data points in WD  
34 WD ←  WD ∪ WD’ 
35 End 
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For example, as shown in fig 1 in time t1 when new points A arrive the GSILOF algorithm will calculate the LOF 
for this point and check the LOF against the threshold θ to determine if this point is an outlier or not after that it will be 
added to the current window. Repeating again in time t2 when new points B arrives. Now the current window contains 
points A and B. The same for time t3 when new points C arrive. Now the current window contains points A, B and C. 
When new points D arrive in time t4 the GSILOF algorithm repeats again and now the current window will contain 
A,B,C and D. then the GSILOF checks if the current size of the points in the window reaches ws which is yes, Then the 
summarization phase in GSILOF starts.  the fitness function will process on the points A and B only (the oldest w/2). 
After the summarization phase ends A and B now becomes AB’ and the size of AB’ is half the size of AB. At the end the 
GSILOF removes the old w/2 points (A and B) from the current window and adds the new selected AB’ to the window 
line.  

 

 
Fig.1. How Genetic summarization works when new points arrive 

4.  Experiment 

This section presents the experimental results of the GSILOF algorithm. In addition, a comparison between the 
GSILOF algorithm and the DILOF algorithm in [26] are presented. The GSILOF is implemented in C++ and is based 
on the source code for DILOF (http://di.postech.ac.kr/DILOF). Both of the algorithms are deployed over a machine has 
a 2.5 GHz Intel Core i7 CPU, 16G memory DDR3, and 512G SSD hard disk.  

We compare GSILOF with the DILOF algorithm in terms of outlier detection accuracy and execution time. The 
accuracy is measured using Area Under the Curve (AUC). Execution time is the time taken to finish processing all the 
data points in the data stream. 

Three real-world datasets were used in the evaluation of the GSILOF algorithm. All the three datasets are obtained 
from the Machine Learning database repository at UCI (http://archive.ics.uci.edu/ml/) [28]. The datasets are: 

 
1- UCI Vowel : this dataset is modified to be suitable for data stream format like in [29]. The class 1 is down 

sampled to 50 outliers. this dataset consists of 1,456 data points, 12 dimension and 11 classes. 
2- KDD Cup 99 smtp: for this dataset we set the network attacks to be outliers as in [16]. The dataset consists of 

95,156 data points and 3 dimensions. 
3- KDD Cup 99 http: this dataset consists of 567,479 data points and 3 dimensions.  

http://di.postech.ac.kr/DILOF
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For the experimental setup, the hyper-parameters of DILOF, η and λ are fixed to 0.3 and 0.001 for all datasets. And 
the number of the iteration is set to be 20. We set k to be 19 for the UCI Vowel dataset and 8 for the both KDD Cup 99 
smtp and http datasets. For the summarization phase we set the window limit w to be W = {100, 120, 140, 160, 180, 200} 
for the UCI Vowel dataset and W = {100, 200, 300, 400} for both KDD Cup 99 smtp and http datasets. 

4.1.  The outlier detection accuracy using Area Under the ROC Curve (AUC) 

We evaluate the AUC for the two algorithms GSILOF and DILOF. Fig 2, Fig 3 and Fig 4 shows the AUC for the 
three datasets UCI Vowel, KDD Cup 99 smtp and KDD Cup 99 http respectively. For all the datasets the GSILOF has 
higher AUC than DILOF. Also, for all the datasets the AUC percentage increases when the window size increase this is 
for GSILOF algorithm. This is due to that when we increase the window size the number of processed points becomes 
large which increases the detection accuracy for the outliers [30-37]. for the KDD CUP 99 smtp dataset we notice that 
the AUC for the DILOF isn’t guaranteed to become bigger when we increase the window size as noted in window size 
100, 200 and 300. Which changes from high to low then high again. This is because the DILOF depends on gradient 
descent which may start solving the problem of the summarization using local minima not the global minima and stuck 
in this solution up and high. In contradiction the GSILOF depends on the genetics for the summarization which random 
many solutions and overrides the problem of stuck in local minima. 

We notice that for all the datasets the difference between the AUC for the two algorithms starts to be big and 
become smaller as the window size increases but don’t reach zero or negative value as the AUC for the GSILOF are 
always higher than the AUC of DILOF. 
 

 
Fig.2. UCI Vowel Dataset Outlier Detection Accuracy using AUC 

 
Fig.3. KDD Cup 99 smtp Dataset Outlier Detection Accuracy using AUC
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Fig.4. KDD Cup 99 http Dataset Outlier Detection Accuracy using AUC 

4.2.  Execution time  

Fig 5, Fig 6 and Fig 7 shows the AUC for the three datasets UCI Vowel, KDD Cup 99 smtp and KDD Cup 99 http 
respectively. As shown the execution time for the GSILOF algorithm is always higher than the DILOF algorithm. This 
is because that GSILOF searches for many solutions and tries to find the best one while the DILOF works on one 
solution and start to update it to find the near solution that is better than the found one. Also, when we analyze the 
datasets as streams and divide the total execution time over the iterations of new points arrival, we found that the delay 
for the GSILOF algorithm is too small and doesn’t affect the systems that will use it. Also, we can in the future try to 
make the GSILOF run parallel in finding the best solution using GPU or multi-core architecture. But to achieve this the 
window size must be big to overcome the time consumed in partitioning the data to be processed between cores or 
GPUs. We note that for the KDD Cup 99 http dataset when we increase the window size the execution time becomes 
almost the same for the two algorithms.  

A big question was raised when we analyzed the execution time what if we increase the number of iterations for 
the DILOF algorithm? We tested a different number of iterations 20, 50, 100 and 200.  Fig 8 and Fig 9 show the AUC 
and execution time for the different iterations for the UCI Vowel dataset. We notice that when we increase the number 
of iterations the execution time increases which is normal as it increases the solutions updates in the gradient descent. 
The execution time increases when the window size increase as noted before. For the AUC we notice that it isn’t right 
that when we increase the number of iterations the AUC doesn’t guarantee to be bigger. For example, at the window 
size 140 the ACU for 20 iterations is bigger than the AUC for 200 iterations. This indicates that in any case the AUC 
for the DILOF algorithm won’t reach the AUC for the GSILOF. 

 

 
Fig.5. UCI Vowel Dataset Execution Time
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Fig.6. KDD Cup 99 smtp Dataset Execution Time 

 
Fig.7. KDD Cup 99 http Execution Time 

 

 
Fig.8. UCI Vowel Dataset Outlier Detection Accuracy using AUC For different iterations
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Fig.9. UCI Vowel Dataset Execution Time for different iterations 

5.  Conclusion  

We propose an outlier detection algorithm called GSILOF for data streams. GSILOF consists of two phases the 
detection and summarization phases. The detection phase uses the ILOF to detect the outliers. While the summarization 
phase uses a Genetic algorithm (GA) that work parallel to find the best solution. GSILOF effectively and efficiently 
overcomes two fundamental limitations of LOF as it can detect the outliers in streaming data with limited memory 
environment. Our comprehensive experimental evaluations demonstrate that GSILOF significantly outperforms DILOF 
in terms of both detection accuracy and execution time. We are investigating further improvements and open research 
directions. In particular: The execution time of GSILOF is still high, especially as dimension of data increases. An 
efficient algorithm for clustering is to be developed in order to decrease the overall time of GSILOF. Also, algorithms 
for detecting Collective outliers are barely found in the literature and therefore this area has much to be researched. 
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