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Abstract: The emergence of chatbots over the last 50 years has been the primary consequence of the need of a virtual 
aid. Unlike their biological anthropomorphic counterpart in the form of fellow homo sapiens, chatbots have the ability 
to instantaneously present themselves at the user's need and convenience. Be it for something as benign as feeling the 
need of a friend to talk to, to a more dire case such as medical assistance, chatbots are unequivocally ubiquitous in their 
utility. This paper aims to develop one such chatbot that is capable of not only analyzing human text (and speech in the 
near future), but also refining the ability to assist them medically through the process of accumulating data from 
relevant datasets. Although Recurrent Neural Networks (RNNs) are often used to develop chatbots, the constant 
presence of the vanishing gradient issue brought about by backpropagation, coupled with the cumbersome process of 
sequentially parsing each word individually has led to the increased usage of Transformer Neural Networks (TNNs) 
instead, which parses entire sentences at once while simultaneously giving context to it via embeddings, leading to 
increased parallelization. Two variants of the TNN Bidirectional Encoder Representations from Transformers (BERT), 
namely KeyBERT and BioBERT, are used for tagging the keywords in each sentence and for contextual vectorization 
into Q/A pairs for matrix multiplication, respectively. A final layer of GPT-2 (Generative Pre-trained Transformer) is 
applied to fine-tune the results from the BioBERT into a form that is human readable. The outcome of such an attempt 
could potentially lessen the need for trips to the nearest physician, and the temporal delay and financial resources 
required to do so. 
 
Index Terms: Medical chatbot, RNN, LSTM, GRU, TNN, KeyBERT, BioBERT, GPT-2. 
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1.  Introduction 

In computing terms, a chatbot is a virtual entity that engages in communication with humans primarily via text. As 
the latter would almost always make use of their natural language to do so, it is the task of the chatbot to convert this 
into a form that it can interpret, that is, in machine language, and then give a fitting reply to the message in question [1]. 
This whole procedure is generally known as Natural Language Processing (NLP). 

In the dawn of the 21st century, where automation and artificial intelligence has reduced time, effort and monetary 
wastage to a great degree, it was only a matter of time before chatbots that are capable of assessing people’s symptoms 
and providing medical counsel came to the scene. Now, of course, they would arguably never healthcare professionals, 
especially not when it comes to physically treating ailments, however, their use is prominent in certain key areas. 
People may easily and conveniently acquire healthcare information and guidance via medical chatbots. Due to its 
round-the-clock accessibility, consumers may get help right away without having to make an appointment or wait in 
line. Chatbots can also assist with preliminary diagnosis and offer suggestions depending on an individual's symptoms. 
They can provide preliminary evaluations, advise self-care measures, or indicate when professional medical assistance 
is necessary by posing relevant and essential questions and examining the answers. 

Numerous resources of medical information and research are available to medical chatbots. They can inform users 
on many aspects of health, describe ailments, drugs, and therapies, and encourage pro-active self-care habits. Chatbots 
may aid with mental health issues by offering emotional support, coping techniques, and recommendations for the right 
resources or expert assistance when necessary. They provide people with a private, secure setting where they may vent 
their emotions and look for advice. By assisting with the identification of urgent situations, recommending appropriate 
levels of treatment, and guiding patients to the best healthcare professionals, they can optimize the use of resources and 
boost overall effectiveness. 

Certain medical chatbots can work with wearable technology or health applications to measure users' vital signs, 
keep tabs on their chronic diseases, or send them reminders to take their medications as prescribed. This encourages 
early diagnosis of possible problems and enables people to actively manage their health. In general, chatbots close the 
information discrepancy among patients and healthcare resources by facilitating rapid access to trustworthy information, 
assistance, and direction. They improve accessibility and effectiveness in the delivery of healthcare and provide people 
the power to decide what is best for their health. 

However, some key concepts need to be explained before proceeding any further. 

1.1.  Natural Language Processing 

In other words, Natural Language Processing usually deals with analyzing human language to convert it into a 
form that can be deciphered by an artificial intelligence; in this case, a chatbot. Methods include segmentation of words 
[2], text mining [3], pre-processing of data (tokenization [4], eliminating non-essential terms [5], stemming), etc. NLP 
has its uses in fields beyond the realm of chatbots, from data mining to search engine optimization techniques and 
handling spam messages [6]. 

1.2.  Deep Learning 

Deep Learning, a term coined by G.E. Hinton in 2006 [7], is a segment of the much broader domain called 
Machine Learning that involves the training of neural networks, which are designed and developed into an architecture 
that mimics the intricately sophisticated webbing of neurons known as the human brain [8]. As the name suggests, it is 
capable of teaching itself to work as intended, with an emphasis of fine-tuning its accuracy of generating results through 
rigorous and consecutive cycles of training with the help of existing datasets. The internal architecture consists of 
multiple layers of neurons working synergistically towards the same ultimate objective, as depicted by Figure 1-1. 
Common neural networks include CNN (Convolutional Neural Network), RNN (Recurrent Neural Network), TNN 
(Transformer Neural Network), and DBN (Deep Belief Network); all of these are remarkably adroit at both supervised 
(labelled data with a designated attribute) and unsupervised (unlabeled data) learning. 

Deep Learning exceeds mainstream Machine Learning-based chatbots in several ways. 
First off, deep learning algorithms can automatically learn multi-level features, doing away with laborious manual 

extracting features in machine learning, and outcomes are frequently more accurate than those of conventional 
techniques due to deep neural networks' potent training and expression abilities. However, because of its robust 
expression capability, a lot of pointless features will be developed at runtime, necessitating a substantial amount of data 
pieces for training stage. As can be observed, traditional approaches are much more reliable for analyzing miniscule 
amounts of data whereas our method is better suited for analyzing big volumes of data. 

The focus of conventional machine learning techniques and dictionary creation approaches, on the other hand, is 
on how to develop a computational formula and what characteristics to extract. Deep learning techniques, on the other 
hand, concentrate on how to create a network structure that is more effective, as well as how train a network with more 
precise parameters. 

Finally, deep neural networks can autonomously change the weights of model parameters to as nearly reach the 
intended impact as feasible because of the robust autonomous learning function. Various issues can be addressed 
utilizing the same model and training approach, but different problems require different network structures and 
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parameter weights. The overall structure is similar to a function, with input and output correlating one to one. Deep 
learning may therefore be used in many other domains and has shown positive outcomes. 

Aside from its use in building chatbots, deep learning has applications in image processing, pattern recognition, 
sensors in self-driven vehicles, calamity prediction, etc. 

A neural network generally has three key areas: 
 

• The input layer takes input from the source and transfers it into the hidden layer. 
• The hidden layer performs the “process” part of the neural network, that is, it takes data from the input layer, 

processes it however it is supposed to in order to achieve the end result, and passes it to the output layer. The 
hidden layer is, of course, hidden in the sense that the nodes are kept concealed. 

• As the last layer of the network, the output layer merely receives information from the hidden layer and 
releases it as the result. 
 

 
Fig.1. Hidden layer in a neural network 

1.3.  Miscellaneous Concepts 

It is of essence to comprehend the meanings of three distinct keywords before advancing any further: 
 
• Backpropagation - the weights of the network connections are regularly modified in an effort to bring the 

expected output and real output as close as possible. 
• Feedforward Propagation - data moves in the forward direction. Median functions are computed in the hidden 

layer using the input layer, which in turn is used to determine the result. 
• Activation Function - The purpose of an activation function is to add non-linearity to the neural network. 

Although adding an Activation Function to an already convoluted system may seem cumbersome, it has a high 
reward: effort ratio. If we were to work with a neural network that does not have an Activation Function, every 
neuron would be implementing a linear transformation on the fed data with the help of weights and biases. 
Introducing multiple hidden layers would not change the outcome as they will work in a similar fashion as a 
whole. The only task this type of network would be able to perform is linear regressions. 

 
This paper is divided into 6 sections. The first section introduces the paper and delivers a background for it, while 

also providing a headfirst dive into several concepts, the comprehension of which is of paramount importance before 
proceeding any further. The second section follows it up with a summary of pertinent studies that have been conducted 
since the 1900s till the present day. Section 3 elucidates the methodologies used by this paper in great detail, that is, the 
procurement of the datasets and the TNN models used. Section 4 discusses the accuracy of the results obtained by 
comparing it to those of three other similar neural network models that were used for the same purpose in a 2020 paper, 
while the fifth section draws conclusions from the entirety of the project, summarizing it and mentioning the limitations 
experienced and the scope for future research. The sixth and last section merely lists the references used. 

2.  Related Works 

The domain of NLP is primarily driven with the frameworks offered by Deep Neural Networks due to the latter’s 
high computational abilities and abundance of open-source models, which are primarily of two categories- Transformer 
Neural Networks (TNN) and Recurrent Neural Networks (RNN) [9].  
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2.1.  Recurrent Neural Network (RNN) 

RNNs are progressive topologies with the ability to model entities successively. In an RNN, the results of one 
phase are fed into the next phase's computations. Classic neural networks have inputs and outputs that are autonomous 
of one another, yet there is a requirement to recall the prior statements in situations where it is necessary to anticipate 
the following word in a phrase. As a result, RNN was developed, which utilized a hidden unit to resolve this problem. 
The hidden unit, which retains certain data about a series, is the primary and perhaps the most significant characteristic 
of RNNs. RNNs are better suited for sequential datasets, such as text. 

RNNs employ two distinct activation functions quite frequently, which are Tanh and Sigmoid. 
The numbers moving across the network are controlled with the aid of the tanh function. Numbers are all 

compressed by the tanh function to fall within -1 and 1. 
Sigmoid functions can be found in gates. The tanh function is comparable to a sigmoid function. It compresses 

data across 0 and 1 rather than from -1 and 1. Since every integer multiplied by 0 is 0, numbers vanish or are 
"forgotten," making it easy to modify or forget data. Any integer multiplied by one has the same result, hence that 
integer is "preserved" or remains equal. The system learns which information is crucial to maintain and which should be 
deleted based on importance. 

However, RNNs have a major drawback as a result of its short-term memory, which is the vanishing gradient issue, 
that is, it has problems remembering data from earlier stages as it undergoes additional phases. Given the characteristics 
of back-propagation, a method used to prepare and tune neural networks, short-term memory and the vanishing gradient 
arise [10]. 

Three main processes are involved in RNN. It executes a forward pass first, then predicts. Second, a loss function 
is used to contrast the forecast to the actual data. The deviation produced by the loss function serves as an estimation of 
how inadequately the system is functioning. Finally, it does back propagation, which determines the gradients for every 
network node by using that magnitude of deviation. 

The gradient is the quantity utilized to modify the intrinsic weights of the system, thus enabling learning. The 
modifications increase in size as the gradient does, and conversely. The issue is at this point. Each unit in a layer 
quantifies its gradient with regard to the consequences of the gradients in the layer preceding it when back propagation 
is being used. Revisions to the present layer will thus be negligible if those to the ones preceding it were already modest. 
Since it back propagates downward, gradients rapidly diminish as a result. Given that the intrinsic weights are scarcely 
being altered by the very modest gradients, the previous layers are unable to learn anything. And that is the issue with 
the disappearing gradient. In order to solve this issue, RNNs have been modified to its main two derivatives, namely 
LSTM and GRU [11].  

LSTM, or Long Short-Term Memory, is a specialized RNN developed in 1997 owing to the vanishing gradient 
problem (differential values converge to zero around the origin of the graph) of previous RNNs [12], including 
Backpropagation Through Time (BPTT) [13, 14] and Real-Time Recurrent Learning (RTRL) [15]. These erroneous 
backflow issues can be solved via LSTM. Even with distorted, incompressible input sequences, it can learn to bridge 
temporal spans beyond 1000 steps without losing its short-time lag skills. This is accomplished by an effective gradient-
based algorithm for an architecture that enforces constant error flow through the internal states of special units (thus, 
neither exploding nor vanishing error flow, providing the gradient processing is compressed only at structure points; 
however, this does not affect long-term error flow) [16]. LSTM usually consists of three gates- forget, input, output, 
[17]. 

The forget gate determines what data must be deleted or retained. The sigmoid function processes data from the 
prior hidden unit as well as data from the present input. There are numbers within 0 and 1. To forget implies inching 
nearer to 0, while to retain implies getting nearer to 1. 

The input gate modifies the cell unit, which is the storage of the system. Initially, a sigmoid function is used to 
process the present data and the prior hidden unit. The numbers are changed to range from 0 to 1, and that determines 
whichever data would be altered. 0 denotes unimportant, whereas 1 denotes significant. Additionally, we supply the 
tanh function with the hidden unit and present data to compress results amongst -1 and 1, which aids in network 
regulation. The outcome of the sigmoid is then multiplied by the result of the tanh. The data that should be retained 
from the tanh result will be determined by the sigmoid result. 

The subsequent hidden unit is decided by the output gate. Keep in mind that the hidden unit holds data about prior 
entries. Forecasts are also made using the hidden unit. Initially, a sigmoid function is used to process the present data 
and the prior hidden unit. The freshly altered cell unit is then relayed to the tanh function. To determine what data the 
hidden unit will contain, we multiply the tanh value by the sigmoid value. The hidden unit is the product. The new 
hidden and cell units are then transferred over to the following sampling interval. [18]. 

While LSTM takes into account the sequence reliance between lexical items to detect components in both long- 
and short-range forms, Bi-LSTM can carry out both directional scans, and it is possible to navigate both aspects 
simultaneously in both forward and backward orientations, hence aptly termed Bidirectional LSTM. This specific 
feature makes it an upgraded version of LSTM [19]. Bi-LSTM is fundamentally an amalgamation of the assets LSTM 
and Bi-RNN [20], bearing the capability of stockpiling both past and future information, ultimately leading to its 
superiority over LSTM [21]. Due to this, Bi-LSTM can predict the context of a given word and enable the chatbot to 
reply appropriately. 
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Both LSTM and Bi-LSTM are adept at handling relatively substantial volumes of data, evident by their modal 
accuracies being over 80% in most cases involving chatbots and NLP [22].  

Gated Recurrent Unit (GRU) was developed in 2014 [23], making it another version of RNN akin to LSTM but is 
easier to process and deploy. Furthermore, it constitutes of two gates rather than three, which are reset and update. The 
reset gate works in a similar fashion to that of LSTM’s forget and input gates, while the update gate determines to what 
extent a neuron would update its existing data [24]. Like LSTM, GRU also tackles the vanishing gradient problem with 
an identical mechanism. 

Bidirectional-GRU is to GRU as Bidirectional-LSTM is to LSTM, in the sense that both the bidirectional neural 
networks are enhanced versions of their respective base models, capable of traversing either direction and gathering 
both past and future data for finer context prediction [25]. 

 

 
Fig.2. LSTM and GRU architecture 

According to conventional research, both LSTM and GRU may maintain significant characteristics via a variety of 
gates, preventing the loss of significant distinct characteristics over protracted propagation. GRU's design is less 
complex and can save a significant amount of time without affecting quality since it has one fewer gate than LSTM, 
which decreases matrix multiplication. On the contrary, practical evidence suggests that this GRU edge only applies 
when dealing with lengthy texts and limited datasets. In some cases, the performance reduction of GRU is more severe 
than that of LSTM. Since computational complexity is no more a limiting factor, LSTM is appropriate in such situations 
[26]. 

2.2.  Transformer Neural Network (TNN) 

TNN, modeled by a Google Brain group in 2017 [27], is a DNN that uses the self-attention process and weights the 
importance of each component of the input variables using their derivatives. It is largely utilized in the disciplines of 
NLP, and computer vision and pattern recognition (CVPR) [28]. 

The TNN architecture has two distinct parts- an encoder and a decoder [29, 30, 31]. The encoder deals with the 
input, while the more nuancedly designed decoder handles the output. 

 

 
Fig.3. TNN architecture 
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In the encoder, the primary task of the Input Embedding section is NLP, that is, converting natural language into 
vectors for the system to comprehend; whereas the Positional Encoding part appreciates the context of the entire 
sentence by judging the location of the words. 

Next comes the concept of Self-Attention. It emphasizes the notion of a word's significance in relation to certain 
other words used throughout the sentence. It appears as a vector of attention. An attention vector that reflects the 
contextual relationship among words in a phrase may be constructed for each word. The main issue it has is that it gives 
each word a far more weight than it deserves in the phrase, when we are more interested in how those words interact 
with one another. Therefore, to determine the ultimate attention vector for each word, we calculate multiple attention 
vectors for each word and then take an arithmetic mean. It is known as the Multi-Head Attention component since we 
are employing various attention vectors. 

All attention vectors are subjected to a rather straightforward Feed-Forward network, and its primary function is to 
change the attention vectors to a format that the subsequent encoder or decoder phase will tolerate. Attention vectors are 
collected by the Feed Forward network individually.  The finest part is that, in contrast to RNN, all of the attention 
vectors are autonomous. Therefore, parallelization is possible here, and that is what really changes everything. We can 
now input every one of the words concurrently into the encoder unit to obtain the collection of encoded vectors with 
each word. 

The Decoder, as previously mentioned, is responsible for the output data. Akin to the Encoder, it has (Output) 
Embedding, Positional Encoding and Multi-Head Attention chambers that work with similar mechanisms; however, the 
aforementioned third unit has the word ‘Masked’ attached as a prefix. The innate nature of its learning ability resides in 
the fact that it first converts the vectors for use by the Decoder with the help of previous data, then it compares this 
result to the dataset that had been fed to it originally. The matrix result will be updated after contrasting the two. Over 
numerous repetitions, it would learn in this manner. Consequently, when conducting the matrix operation in tandem, we 
ensure that the matrix would conceal words that arrive later by turning them into 0s, preventing the attention network 
from using these; hence the ‘Mask’ prefix. 

The next Multi-Head Attention compartment is then given the output attention vectors originating from the 
preceding stage and the vectors of the Encoder (at this point, the Encoder's findings likewise become apparent. The 
output from the Encoder is plainly evident in the graphic as well, arriving here.) It is termed an encoder-decoder 
attention unit for this reason. Attention vectors for each word in sentences are the outcome of this block. Each vector 
illustrates how a word in either set relates to others. 

Now that each attention vector has been sent through a feed-forward unit, the output vectors will be transformed 
into a form that any decoder or linear layer—another feed-forward layer—can readily accept. It goes via a Softmax 
Layer, which converts the input data into a probability distribution that can be understood by humans. A Softmax 
function serves as an amalgamation of several Sigmoid Functions by evaluating empirical probability of every stage, 
and is used for the outermost layer in a network that works with multinomial classification. 

For each word, the Transformer first creates embeddings, or initial representations. Then, by leveraging self-
attention, it compiles data from every other word, creating a new representation for each word that is influenced by the 
full context. Then, for each word, this phase is performed several times simultaneously to produce new representations 
one after the other. Similar to the encoder, the decoder creates words individually, spanning left to right. It pays 
attention to both the final representations produced by the encoder and the other words that were created earlier. 

As stated earlier, RNN suffers from the vanishing gradient issue, which is sorely lacking in TNN. TNN also parses 
entire sentences at once while simultaneously giving context to it via embeddings, unlike RNN and its derivatives 
(LSTM/GRU), which sequentially process one word at a time. This allows for parallelization among TNN models [32-
34]. 

One of the most commonly used TNN derivatives is Bidirectional Encoder Representations from Transformers 
(BERT), which was introduced in 2018 by Google [31], and is primarily used for NLP pre-processing. Dissimilar to 
other models that perform related tasks [11, 35], the purpose of BERT is to prepare bidirectional deep representations 
from unlabeled data in every layer by combining the context of both directions (left and right). The outcome is the 
opportunity to adjust the pre-trained BERT model by adding just one output layer to develop cutting-edge models for a 
variety of activities, including answering questions without any meaningful task-specific language architectural 
alterations. These are the result of the bidirectional self-attentions heads (12 in BERTBASE and 16 in BERTLARGE) which 
were both fed unlabeled data for the pre-training stage from BooksCorpus [36] and the English version of Wikipedia, 
having 800 million and 2500 million words, respectively. BERT has consistently scored between 80-90% accuracy with 
versatile NLU operations, such as GLUE, SQuAD, SWAG, and Sentiment Analysis [37]. Two of BERT’s variants are 
discussed below. 

BioBERT is used for medical text analysis [38] in order to overcome the more generalized approach of text mining 
offered by BERT, the latter of which is difficult to assess and may lead to ambiguities. The pre-training dataset is 
extracted from PubMed and PMC articles, which are two major medical blogs, and finetuned using three more medical 
datasets, namely NER, RE, and QA. 

The sole purpose of KeyBERT is to extract keywords from phrases along with taking their semantics into account 
[39]. To start, texts are first transformed into BERT embeddings via KeyBERT. Then, word n-gram embeddings with 
predetermined lengths using BERT are produced. The keyphrases that best characterize the full document are then 
extracted using cosine commonalities among text and keyphrase embeddings. 
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The first version of Generative Pre-trained Transformer (GPT) was developed in 2018 [40] It demonstrated how 
pre-training on a heterogeneous dataset with extensive stretches of continuous text allows a linguistic generative model 
to gain global information and comprehend long-range relationships. 

GPT-2 is an enhanced edition of the original GPT, introduced in 2019 [41], was not made fully accessible by the 
general population due to worries about potential abuse, including tools for creating fake news. The training dataset 
used was WebText, which consists of little more than 8 million items totaling 40 Gigabytes of text from hyperlinks 
posted in Reddit contributions that have received at least three upvotes. By adopting byte pair encoding, it eliminates 
several problems that might arise when encoding vocabulary using word tokens. By encoding separate characters and 
multi-character tokens, this enables the representation of just about any string of characters [42]. 

GPT-3 is an extended version of GPT-2, released in 2020 [43]. The whole iteration of GPT-3 has 175 billion 
parameters, which is hundred times more than the complete edition of GPT-2's 1.5 billion parameters; the accuracy and 
efficiency have thus been enhanced several folds. As of 2020, GPT3 has been acquired by Microsoft and is no longer 
available to the general public, other than the trial version offered for two months. 

2.3.  Existing Chatbots 

A.  Domain-based 

There are two types of chatbots when it comes to knowledge are: open domain and closed domain, and the data 
which the chatbot is addressing is referred to as the domain. Open domain includes both fundamental human 
understanding and broad information, including contemporary events. The chatbot software would be categorized as a 
closed domain chatbot if its expertise is specialized in a certain field, such as healthcare assistance, football, etc. [9]. 
Studies have showed that closed domain chatbots are simpler to create and are now yielding positive outcomes [44, 45, 
46], while a lot of misleading findings were produced by open domain chatbots, which are currently difficult to 
construct [47, 48]. 

Examples of closed domain chatbots include 
 

• DeepProbe, which employs the criterion of "bad, fair, good, excellent," while "fair, good, excellent" is seen as 
favorable [49] 

• AliME, which utilizes business analysts as its human judges, using a scale of 0, 1, and 2, with 0 being 
inappropriate, 1 being a remark that is only appropriate in specific situations, and 2 being a reasonably 
appropriate answer [50] 

• SuperAgent, which has no metric for sentient assessment in its review process [51]. Whereas open domain 
chatbots include 

• MILLABOT, which uses a scale of 1 to 5, where 1 is unsuitable or illogical, 3 is a reasonable answer, and 5 is 
very suitable [52] 

• RubyStar, whose performance metrics are similar to that of MILLABOT [53] 

B.  Objective-based 

Objective-based chatbots are categorized according to the main objective they seek to accomplish. They are 
created with a specific objective in mind and are arranged for quick exchanges of data with the users [54]. 

Some examples of objective-based chatbots: 
 

• Casper (Insomnobot-3000) is the lone chatbot in the world that is open for a conversation from 12 pm to 4 am, 
right when a user may have trouble falling asleep. Using the chatbot, they can talk about practically any topic 
because it was designed to mimic interpersonal interactions [55]. 

• One Remission is a bot created by a New York-based startup with the intention of providing the data required 
by individuals active in the cancer battle. In order to reduce their dependence on physicians, this supportive 
bot gives customers a detailed range of post-cancer routines, meals, and regular workouts. For instance, users 
may look up the advantages and disadvantages of a particular dietary item in relation to cancer, with the option 
of contacting a professional oncologist at any time. The bot functions as a psychological and physical helper, 
giving individuals the freedom to express any good or skewed opinions. Users can speak with the bot orally or 
through texts, while they will receive correct answers to their queries in response. One Remission is available 
to offer the best guidance available whether they require assistance with their meals, workout routines, or 
circadian rhythms [56]. 

• Babylon Health, developed in 2013, provides healthcare background and standard health knowledge-based 
consultations, in addition to the option for a user to speak with a medical professional through video 
conference if necessary. In the initial scenario, people tell the bot about their sickness' indicators, and the bot 
compares them to a library of ailments before understanding what they're saying and suggesting the best 
course of action. The personal engagement with a qualified practitioner, who attentively observes and analyzes, 
to evaluate the user and then writes an adequate treatment or refers them to a consultant, if necessary, 
significantly exceeds the regulatory norms of a bot in the later scenario [56]. 
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C.  Older Examples 

Objective ELIZA is among the first popular bots in history. It was created in 1966 at the MIT Lab [57] with the 
goal of demonstrating human language communication between people and machines in order to deliver psychiatric 
treatment, focusing on encouraging the client to communicate more. ELIZA's replies take the form of open-ended 
inquiries that are supposed to pique the client's interest and encourage more discussion. It matches keywords from a 
library of frameworks with semantics to provide answers to the client's inquiries using regulatory approaches and a 
program. The algorithm picks the relevant replies after identifying the proper framework. In the event that there are 
several frameworks, one is chosen at random, which the algorithm subjects to a series of perspectives to further 
effectively prepare the message for a reply. ELIZA is able to persuade certain individuals to support the client's therapy. 
However, Eliza is unable to offer something like to counseling with a human counselor. ELIZA's flaw is its inability to 
continue conversations. Additionally, ELIZA is unable to pick up new behavioral traits, find background for voice or 
phrases via conversation and logic-based deductive skills [58]. 

ALICE (Artificial Linguistic Internet Computer Entity), released in 1995, used ELIZA as its base [59]. ALICE 
remains solely reliant on pattern recognition and a depth-first approach to human input, however. It is an XML variant 
in which the criteria for queries and responses are encoded. The replies are generated using a collection of artificial 
intelligence markup language (AIML) elements based on the conversation record and human speech [43]. The human 
phrase is initially inputted into AIML and placed in a class. Each class consisted of a reply pattern and a set of 
circumstances that provide the background, or content, to the pattern. After that, the system preprocesses it and 
compares it to decision tree nodes. The bot will respond or take measures when text entry matches. The recursion 
procedures used by the AIML patterns to duplicate the user's supplied statement result in sometimes meaningless 
answers. In order to assess if the answer generates an accurate or relevant result, string-based restrictions are necessary. 
The disadvantage of ALICE is the character modeling used to describe the bot's behavior, including its features, 
perspectives, temperament, and bodily conditions [60]. The AIML ought to have character components, based on the 
human controller. Nevertheless, it is far from a simple process. Additionally, ALICE lacks the ability to rationalize or 
produce replies that are sentient and therefore cannot provide suitable replies. A sophisticated chatbot needs a lot of 
classifications, which might make the program impractical, challenging to manage, or cumbersome. In order to speak 
coherently, ALICE lacks cognitive elements like NLU, sentiment analysis, and grammatical analysis. Additionally, 
ALICE frequently regurgitates the same responses if the exact data is entered repeatedly. 

D.  Newer Examples 

Google created Dialogflow, also called as Api.ai, which is a component of Google Cloud Platform [61]. It enables 
programmers to offer their consumers voice and text conversations with UI that are supported by ML and NLP. This 
enables them to concentrate on other crucial aspects of developing the program instead of outlining intricate language 
patterns. Dialogflow understands the background and purpose of human input. After that, employ objects to retrieve 
pertinent information from them via matching input from the user to certain purposes. Lastly, it permits replies to be 
provided by the chat agent. Dialogflow's shortcomings include a lack of a mobile app, a static UI, and inadequate 
paperwork. 

For creating speech and text-based interactive UI for apps, Amazon built Lex, an AWS tool [62]. In order to create 
very appealing UX with genuine-sounding communication, it offers deep learning capabilities and versatility of natural 
language understanding (NLU) and automated speech recognition (ASR). Because of the integration between Amazon 
Lex and AWS Lambda, users may quickly launch operations to carry out back-end business rules for data modification 
and extraction. The limitation of Amazon Lex is that it only supports English at the moment. Lex must adhere to a strict 
procedure for web application. Additionally, it is difficult to prepare the dataset, and connecting the statements to the 
objects is fairly crucial. 

3.  Methods 

3.1.  Workflow 

The methodology is divided into three parts: Dataset Collection and Preprocessing, Finetuning the BioBERT 
Model, and Finetuning the GPT-2 Model. 

Q/A based datasets are collected and separated into questions and answers, which are fed into the KeyBERT the 
extract keywords and attach tags before storing them. 

Q/A pairs are vectorized and passed into the BioBERT model, which again separates and further vectorizes them 
into numbers, before preforming dot product similarity matching between them. 

GPT-2 converts vectors into text as the final output. 
New questions are concatenated with existing similar Q/A pairs in the BioBERT, and the entire aforementioned 

process of GPT-2 repeats.  
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Fig.4. Part 1 – Dataset Preprocessing 

 
Fig.5. Part 2 – Finetuning BioBERT 
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Fig.6. Part 3 – Finetuning GPT-2 

 
Fig.7. Deployment 

3.2.  Dataset Preparation 

Due to the versatile nature of a chatbot’s functionalities, the dataset(s) used for this project originate from four 
different domains: 

 
• Mental Health (depression, anxiety, panic attacks, suicidal tendencies) 
• Virtual Friend (chatbot) that is available for conversation 24/7 
• Emergency Services (911) - police, fire service, ambulance  
• Customer Service systems that can aid in alleviating the user’s issues (e.g., Sheba) 
 
The four main sources of these datasets were Kaggle, GitHub, UCI Machine Learning Repository, and Google 

Forms with approximately 500 responders. All these datasets exist as either readymade Q/A pairs (which are relatively 
easy to deal with), or as a complex structure which had to be extracted via additional programming and converted into 
Q/A pairs. In both cases, the file format is either CSV or JSON, which was handled by the pandas library of the Python 
programming language. The dataset had 50000 instances, of which 10000 were used to train and 40000 were used to 
test the model. 

An important step is to remove stop words before training the BioBERT model. Stop words are non-essential (in 
the context of our system) and language-specific words which bear no information. Examples include conjunctions, 
articles, pronouns, prepositions, interjections, and words that have been abbreviated in a informal manner (such as “they 
will” can be abbreviated into “they’ll”). The English language has about 500 stop words. 
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3.3.  Neural Network Models Used 

As stated earlier, TNN models were used due to their lack of the vanishing gradient issue in comparison with 
traditional RNN models. Furthermore, enhanced versions of RNN (LSTM and GRU), although do not face this hurdle 
either, they can only process individual words sequentially; whereas TNN models process entire sentences at once while 
simultaneously giving context to it via embedding. This leads to increased efficiency, accuracy and the scope for 
parallelization. 

Specifically, three TNN models were used- KeyBERT, BioBERT, and GPT-2. Both BERT models contain 
bidirectional heads that can traverse left and right to extract past data and future context, respectively. KeyBERT was 
used for keyword extraction, BioBERT serves as the central and main component of the model, and GPT-2 is the final 
layer which finetunes the entire chatbot. 

3.4.  Methodology 

A.  KeyBERT 

The keywords in each sentence of the dataset are given a specific tag by the KeyBERT using a loop. Each keyword 
is made up of two words, and each question or answer has two to three keywords on average. The questions and 
answers are concatenated to decipher their context before the KeyBERT can be extracted from them. These Q/A pairs, 
along with their keywords, are saved in a storage system. 

The KeyBERT model did not undergo pre-training; it was used out-of-the-box. 

B.  BioBERT 

The Q/A pairs that were saved earlier are converted from text into vectors using an open-source algorithm called 
Word2Vec [43], and then fed into the BioBERT. These vectors undergo an embedding procedure in the BioBERT that 
is similar to the previous Word2Vec algorithm, but the vectorization method here is contextual, so homonyms (words 
that have the same spelling and/or pronunciation but different meanings and origins) have different vector values, which 
are represented as numbers. The vectors stemming from questions are directed into a unit called the Question Head, and 
the ones stemming from answer are directed into another unit called the Answer Head; essentially ending up as matrices 
on either side. These are subjected to matrix multiplication in the form of dot product calculation, and the result is yet 
another Q/A combination. 

 

 
Fig.8. Training of BioBERT 

The BioBERT model was trained using 10000 instances of data, and in 5 epochs. 

C.  GPT-2 

The Q/A vector representation from the previous stage are fed into the pre-trained GPT-2 to decode the dataset into 
a form that can be interpreted by humans. In short, BioBERT acts as the encoder and GPT-2 acts as the decoder of the 
entire system. 
 

 
Fig.9. Training of GPT-2 

The GPT-2 model was trained using 10000 instances of data, and in two stages of 10 epochs each. 

D.  Deployment 

The pre-trained model is put to use by first inputting questions into the system after removing the stop words in 
them. But since Machine Learning models cannot interpret natural language directly, so these questions need to be 
vectorized into a numeric representation, which is done using BioBERT’s tokenizers. These are compared against the 
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existing Question Head to find similar questions and discern their individual context. A dot product calculation is 
performed between the new questions (together with the old ones) and answers that were paired against similar 
questions in the training dataset; these are then concatenated into a new set of Q/A pair embedding. These are finally 
passed to the GPT-2 model that converts them back into a textual form. 

The entire system has been deployed on an internal IP using FastAPI, which is a Python-based web framework, 
and ngrok, which is a cross-platform application that connects local servers to the internet. The UI is developed using 
React, which is a JavaScript library. 

 

 
Fig.10. System UI 

As the screenshot above depicts, users can read up on the system in detail and the development team in the “About 
us” section, may make charitable contributions using the “Donate us” option, and exit the system using the “Exit” 
button. The development team may change the URL using the “Update URL” settings, which cannot be accessed by 
mainstream users for obvious reasons. 

4.  Results and Discussion 

The deployed BioBERT model achieved an accuracy of 89.64% after 5 epochs. 
 

 
Fig.11. Achieved accuracies of the BioBERT model 
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A paper published in 2020 makes use of a hybrid model-based chatbot to compare the accuracy of three neural 
networks, namely Manhattan LSTM (MaLSTM), Hierarchical Bi-LSTM Attention Model (HBAM), and the basic 
BERT model [48]. Medical datasets from Quora, WebMD, eHealthForum, and QuestionDoctors were used, consisting 
of 20000 train and 50000 test instances in the form of Q/A pairs. 

Since this paper has a domain, methodology, dataset size and a neural network very similar to that of BioBERT, 
the two can be subjected to a comparative analysis of their accuracies.  

Table 1. Neural Network Accuracy Comparison 

Neural Network Model Used Average Evaluation Accuracy 

BioBERT 89.6% 

BERT 78.2% 

MaLSTM 78.4% 

HBAM 81.2% 

 

 
Fig.12. Bar Graph showing Neural Network Accuracy Comparison 

As can be seen above, BioBERT outperforms the rest by a significant margin, boasting an accuracy of 89.6%, 
while the rest experienced accuracies of below 80% with the exception of HBAM, which scored 81.2%. Both MaLSTM 
and HBAM were RNNs, and due to their lack of parallelization, where they would parse each word sequentially, it was 
expected that they would score lower than any modified TNN, especially when compared against the BioBERT model, 
which not only has undergone a keyword tagging phase previously in the KeyBERT layer, but has had its results fine-
tuned by the GPT-2 layer as well. Intuitively speaking, it may come off as a shock that the standalone BERT model 
would score the lowest among all four, even though it is a TNN model that was “competing” against two RNNs, namely 
MALSTM and HBAM. However, it should be noted that the HBAM model was equipped with an attention layer for 
keyword identification. As for the MaLSTM model, it is plausible that the standalone BERT model’s generalized 
embedding and 12 layers of TNNs caused a certain degree of overestimation. 

5.  Conclusions 

With artificial intelligence shaping every aspect of our lives, utilizing chatbots for medical purposes is a no-brainer. 
This paper aimed to develop one such chatbot that is capable of not only analyzing human text (and speech in the near 
future), but also refining the ability to assist them medically through the process of accumulating data from relevant 
datasets, using Transformer Neural Networks (TNNs), which parses entire sentences at once while simultaneously 
giving context to it via embedding, leading to increased parallelization. Two variants of the TNN Bidirectional Encoder 
Representations from Transformers (BERT), namely KeyBERT and BioBERT, are used for tagging the keywords in 
each sentence and for contextual vectorization into Q/A pairs for matrix multiplication, respectively. A final layer of 
GPT-2 (Generative Pre-trained Transformer) is applied to fine-tune the results from the BioBERT into a form that is 
human readable. When compared against three other contemporary neural network models that used similar datasets 
and were built for the same purpose, BioBERT outperformed the rest by a significant margin, boasting an accuracy of 
89.6%, while the one that came closest scored 81.2%. Although this paper achieved what it had set out to do, it was 
bound by a few limitations, and certain areas could be improved upon in the future. 

5.1.  Limitations 

The dataset used was relatively small, with only 50000 instances. A larger dataset with a greater number of epochs 
could potentially boost the accuracy to over 90%. 
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Furthermore, the hardware used had only 8 GB HDD RAM, Intel Core i5 8th Gen processors and Nvidia GeForce 
MX150 2 GB GPU. Since accuracy is dependent on processing power, better configurations could have affected the 
results in a positive manner. 

5.2.  Future Work 

BioBERTBASE was used as the main model, which has only 12 bidirectional self-attentions heads. Using 
BioBERTLARGE, consisting of 24 bidirectional self-attentions heads, would likely be more efficient and produce better 
results. The MediBERT can also be made available to the general public by deploying it on a domain that is accessible 
worldwide. 

The bot can only process text as of now; with the proper resources and a longer development time, it may be 
possible to integrate voice command and text-to-speech (and vice versa) capabilities. Raspberry Pi may be used as the 
computer, along with a speaker and a microphone, to emulate the contemporary virtual assistants present in the form of 
Amazon’s Alexa and Apple’s Siri; except this would be solely used for medical aid, and due to the specialization, it 
could potentially outperform both virtual assistants in this domain.  
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