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Abstract— For the problem of tracking multiple targets, the 
Joint Probabilistic Data Association approach has shown to 
be very effective in handling clutter and missed detections. 
However, it tends to coalesce neighboring tracks and ignores 
the coupling between those tracks. To avoid track 
coalescence，a K Nearest Neighbor Joint Probabilistic Data 
Association algorithm is proposed in this paper. Like the 
Joint Probabilistic Data Association algorithm, the 
association possibilities of target with every measurement 
will be computed in the new algorithm, but only the first K 
measurements whose association probabilities with the 
target are larger than others’ are used to estimate target’s 
state. Finally, through Monte Carlo simulations, it is shown 
that the new algorithm is able to avoid track coalescence 
and keeps good tracking performance in heavy clutter and 
missed detections. 
 
Index Terms—Joint Probabilistic Data Association, track 
coalescence, K Nearest Neighbor, Scaled Joint Probabilistic 
Data Association.  

I.  INTRODUCTION 

Joint Probabilistic Data Association (JPDA) algorithm 
[1] is usually used to solve the problem of tracking 
multiple targets under the environment of heavy clutter. 
But the traditional JPDA algorithm will cause track 
coalescence when the targets are parallel neighboring or 
small-angle crossing. The adjacent tracks will be attracted 
by each other and gradually change to be coalescent in 
above scenarios. The main reason of this phenomenon is 
that the adjacent targets may share the same measurement 
as their main measurement in the JPDA algorithm. 

The Exact Nearest Neighbor Probabilistic Data 
Association (EN-NPDA) algorithm has shown that 
associated events pruning may be an effective way to 
prevent track coalescence. EN-NPDA [2] involves the 
enumeration of all peak-to-target association hypotheses 
as JPDA, but only the most likely hypothesis is retained. 
While this approach inhibits compound coalescence, it 
was found to lead to track over commitment and an 
increased incidence of track divergence in the presence of 
clutter and absent target detections. Most of the modified 

JPDA algorithms avoiding track coalescence by means of 
appropriately pruning associated events or using a scaling 
factor to produce a new algorithm whose effect ranging 
between EN-NPDA and JPDA algorithm. The paper [3] 
proposed a Scaled JPDA (SJPDA) algorithm which 
introduced a scale factor. When the scale factor value is 
infinity, the algorithm is equivalent to the EN-NPDA 
algorithm. And when the scale factor value is one, the 
algorithm is equivalent to the JPDA algorithm. So when 
the scale factor value is an appropriate intermediate value, 
the SPDA algorithm not only can avoid track coalescence, 
but also can control track divergence in the presence of 
clutter and absent target detections. But the scale factor 
comes from the experience.  

In this paper, a K Nearest Neighbor Joint Probabilistic 
Data Association (KNNJPDA) algorithm is proposed. 
Through the Monte Carlo simulations, track coalescence 
is avoided and significantly improved efficiency is shown 
when the KNNJPDA algorithm is used to track targets. 

The paper is organized as follows. Target and 
measurement models are described in Section II, and the 
steps of the JPDA algorithm are described in Section III, 
the Principle and Steps of the Modified JPDA Algorithm 
are described in Section IV. Section V presents 
simulations that demonstrate the effectiveness of this 
approach, and conclusions are given in Section VI. 

II.  TARGET AND MEASUREMENT MODELS  

We consider c targets in single sensor system, the 
target states and measurements in the next time interval 
can be predicted by  

)1()1()1()( −+−−= kvkxkFkx tttt ,           (1) 

)()()()( kwkxkHkz t
j += ,                   (2) 

Where )(kxt is the n-dimensional state of the target at 

time k; )1( −kFt  is state transition matrix; )1( −kvt is a 

process noise vector which follows the multivariate 
normal distribution, );0( QN , where N denotes Gaussian 

distribution, and Q is the covariance matrix of the process 
noise vector, )(kH  is the measurement matrix, )(kw  is 

the measurement noise vector which is assumed to follow 
the multivariate normal distribution, );0( RN , where R is 
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the covariance matrix of the measurement noise vector. 
Let )(kZ  be the set of measurement vectors at frame k: 

)}(),...,(),({)( 21 kzkzkzkZ
km= ,            (3) 

km is the number of measurement vectors at time k. 

III.  STEPS OF THE JPDA ALGORITHM  

JPDA is a multi-target extension of Probabilistic Data 
Association [4-6] which considers each track in isolation. 
It takes into account the fact that a measurement may fall 
inside the intersection of two or more validation gates of 
several different targets and so could have originated 
from any of these targets or from clutter. 

Step 1: Target state initialization: 

)00(ˆ tx ， )00(tP  are the initial state vector and 

covariance, which are given by system. 
Step 2: Computing the state and covariance prediction:  

)11(ˆ)1()1(ˆ −−−=− kkxkFkkx ttt ,           (4) 

)1()]1()[11()1()1( −+−−−−=− kQkFkkPkFkkP tTtttt ,  (5) 

Step 3: Affirming validation measurements: 
t
kZ  is the set of validation measurements which 

originate from target t at time k [7]. It follows  

{ }kkj
t
k mjdkzZ ,...,1,)( 2 =≤= γ ,                    (6) 

)()]([)( 12 kvkSkvd j
t

tTj
tk

−= ,                     (7) 

Where γ is the gating size, )(kv j
t  is the measurement 

residual and )(kS j
t

 is the residual covariance. 

)1(ˆ)()()( −−= kkxkHkzkv t
j

j
t

,               (8) 

Ttt kHkkPkHkS )()1()()( −= ,                (9) 

Step 4: Generating the validation matrix and the 
feasible matrix: 

The validation matrix which is defined as follows: 

[ ], 1, 2,..., ; 1, 2,...,jt kj m t cωΩ = = = ,       (10) 

Where jtω  is binary element, and 1=jtω  stands for 

the measurement j lies in the validation gate of the target t. 
Index 0=t  stands for “no target.” and the corresponding 

column of Ω  has all units-each measurement could have 

originated from clutter or false alarm. km is the number of 

the validation measurements and c is the number of the 
targets. 

After generating validation matrix, we will split 
validation matrix to generate feasible matrices, which 
must follow two principles: 

a) There is only one nonzero element in every row of 
feasible matrix after splitting validation matrix; 

b) There is not more than one nonzero element in 
every column of feasible except the first column. 

Each joint event iθ  can be represented by a feasible 

matrix. 

ˆ ˆ( ) [ ( )]i jt iθ ω θΩ = ,                      (11) 

It consists of the units in Ω  corresponding to the 

associations assumed in event iθ .  

Step 5: Computing association probabilities: 

)(ˆ}{
1

ijt

n

i

k
ijt

k

ZP θωθβ ∑
=

= ,               (12) 

Where }{ k
i ZP θ is the probability of the joint feasible 

event,
kZ is the set of all validation measurements.  



 ⊂

=
otherwise

ijt

ijt
0

1
)(ˆ

θθ
θω ,             (13) 

Where jtθ  stands for the association event that )(kz j  

originate from target t. 
Step 6: State estimate: 

The state vectors )(ˆ kkxt and the covariance matrices 

)( kkPt  of the targets are updated as 

ˆ ˆ( ) ( 1) ( ) ( )t t t j
jt t

j

x k k x k k K k v kβ ′′= − + ∑ ,   (14) 

0( ) ( 1) (1 ) ( ) ( ) ( )t t t t t T
tP k k P k k K k S k K kβ ′′= − − −

( ){ ( ) ( ) ( )[ ( )] } ( )t j j T j j T t T
jt t t jt t jt t

j j j

K k v k v k v k v k K kβ β β′′ ′′ ′′+ −∑ ∑ ∑ , 

                                                                                        (15) 
1)]()[()1()( −−= kSkHkkPkK

ttt ,           (16) 

Set k=k+1, and go to Step 2. 

IV.  PRINCIPLE AND STEPS OF THE MODIFIED JPDA 

ALGORITHM 

A.  Principle of the Modified JPDA Algorithm  

The association possibilities of the target with every 
measurement will be computed in the KNNJPDA 
algorithm, but only the first K measurements whose 
association probabilities with the target are larger than 
others’ are used to estimate target’s state. When K=1, the 
new algorithm is equivalent to the EN-NPDA algorithm. 
And when K is given a large value, the algorithm is 
equivalent to the JPDA algorithm. So when K is given an 
appropriate intermediate value, the new algorithm not 
only can avoid track coalescence, but also can prevent 
track divergence in the presence of clutter and absent 
target detections. 

In SJPDA algorithm, an arbitrary positive scaling 
factor is introduced to multiply the maximum 
probabilities of every target associated with 
measurements. The scaling factor ranges from one to 
infinity. When the scale factor value is infinity, the 
algorithm is equivalent to the EN-NPDA algorithm. And 
when the scale factor value is one, the algorithm is 
equivalent to the JPDA algorithm. When the scale factor 
value is an appropriate intermediate value, the SJPDA 
algorithm can avoid track coalescence, and track 
divergence can be controlled slightly too. 
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B.  Steps of the Modified JPDA Algorithm  

Comparing with the traditional JPDA algorithm, the 
KNNJPDA algorithm adds one step: Association event 
pruning.  

Step: Association event pruning 
Comparing the association probabilities of a target 

with every measurement, the first K measurements whose 
association probabilities with the target are larger than 
others’ are looked as the last validation measurements of 

the target. For example, assuming that 11 21 1, ,...,
kmβ β β  

is the association probabilities of target 1 with every 
measurement and

11 21 1...
kmβ β β≥ ≥ ≥ , 

1 2( ), ( ),..., ( )Kz k z k z k  corresponding 
11 21 1, ,..., Kβ β β will 

be looked as the last validation measurements of target 1 

and 
( 1)1 ( 2)1 1, ,...,

kK K mβ β β+ +
will be set at 0.  

After pruning the association events, the association 
probabilities of each target with measurements are 
normalized. 

1

jt

jt K

jt
j

β
β

β
=

′ =

∑
,                           (17) 

This step will be added before the sixth step in the 
JPDA algorithm. 

Comparing with the traditional JPDA algorithm, the 
SJPDA algorithm also adds one step: Multiplying the 
Scaled factor. 

Step: Multiplying the Scaled factor 
Finding out the maximum probability measurement 

associated with the target. 
Assuming that

11 1
1
max

k
r j

j m
β β

≤ ≤
= ,

2 2 2
1
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β β
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1
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c
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β β
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= , so )(
1

kzr , )(
2

kzr
,…, )(kz

cr
 are 

respectively the exclusive measurements of target 1, 
target 2,…,target c.  

A factor is used to multiply the maximum probabilities 
of every target associated with measurements. The value 
of the factor ranges from one to infinity. 

1 1i ir rfactorβ β= × , 1,2,...,i c= ,1 factor≤ ≤ +∞ ,(18) 

This step will be added before the sixth step in the 
JPDA algorithm too. In Scaled JPDA algorithm, the scale 

factor must come from the experience. Through 
simulation test, the best tracking performance can be won 
when 300 800factor≤ ≤ .  

V.  SIMULATION TEST  

A.  Simulation Scenario Settings 

In case of two targets, we respectively use the JPDA 
algorithm and the KNNJPDA algorithm to track flight 
target a and target b in the cluttered environment. Two 
targets stay at constant velocity. Sampling cycle T is 1 
second, and gating size γ is 10, 60 sampling points for 
each target. There are 6 clutters coming into the targets’ 
associated gates at a sample on the average. 
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Parallel neighboring scenario (scenario 1): Target a 
and b flight from southwest to northeast in parallel. The 
initial positions are (0,0) and (0,600), x velocities of two 
targets are 300 m/s, the mean error of measurement is 300 
meters, y velocities of two targets are 100 m/s, the mean 
error of measurement is 100 meters.  

Small-angle crossing scenario (scenario 2): The 
initial positions of target a and b are respectively (0,0) 
and (0,600), x velocity of a target is 300 m/s, the mean 
error of measurement is 300 meters, y velocity of a target 
is 0 m/s, the mean error of measurement is 100 meters. 
The x velocity of b target is 300 m/s, the mean error of 
measurement is 300 meters, y velocity of b target is -50 
m/s, the mean error of measurement is 100 meters.  

B.  Simulation Results and Analysis Comparison Results 
and Discussion 

We use the JPDA algorithm to track flight targets for 
50 Monte Carlo runs in scenario 1 and 2, the simulation 
results as follows: 
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Figure 1.Trajectories of two targets using JPDA in scenario 1                           Figure 2.RMSE of position using JPDA in scenario 1 
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Figure 3.Trajectories of two targets using JPDA in scenario 2                           Figure 4.RMSE of position using JPDA in scenario 2 

 

Fig. 1 and Fig. 2 show the trajectories of two targets 
and the root mean squared error (RMSE) of position 
using the JPDA algorithm in scenario 1. The tracks of 
two targets gradually merge together and serious track 
coalescence happens in Fig. 1. The position RMSE of 
target a is very large in Fig. 2 and the maximum position 
error of target a is close to 800 m. So we can see that 
track coalescence will be caused using the JPDA 
algorithm in the parallel neighboring scenario.  

Fig. 3 and Fig. 4 show the simulation result using the 
JPDA algorithm in scenario 2. In Fig. 3, the trajectory of 
target a always tends to close with the trajectory of target 
b. The position RMSE of target a gradually changes to be 
very large after the 30 seconds. It is shown that track 
coalescence will be caused using the JPDA algorithm in 
the small-angle crossing scenario. 

 
 

 

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

1000

2000

3000

4000

5000

6000

7000

x/m

y
/m

Truth positions of target a

Truth positions of target b

Estimate positions of target a

Estimate positions of target b

 

0 10 20 30 40 50 60
0

100

200

300

400

500

600

N=60Error=299.8102(m)

N=60Error=555.3331(m)

times

R
M

S
E

 o
f 

p
o
s

it
io

n
/m

Maximum error of target a

RMSE of target a

Maximum error of target b

RMSE of target b

 
Figure 5.Trajectories of two targets using SJPDA in scenario 1( 300factor = ) Figure 6.RMSE of position using SJPDA in scenario 1( 300factor = ) 
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Figure 7.Trajectories of two targets using SJPDA in scenario 2( 300factor = ) Figure 8.RMSE of position using SJPDA in scenario 2( 300factor = ) 
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Then, we use the SJPDA algorithm to track flight 
targets for 50 Monte Carlo runs in scenario 1 and 2. Fig. 
5 and Fig. 6 respectively show the trajectories of two 
targets and the root mean squared error (RMSE) of 
position using the SJPDA algorithm in scenario 
1( 300factor = ). Comparing Fig. 5 with Fig. 1, we can 

see that the track coalescence is controlled in Fig. 5. At 
the same time, the position RMSE of target a is very 
small, but the position RMSE of target b is very large in 
Fig. 6. It is shown that the SJPDA algorithm can avoid 

track coalescence, but track divergence can’t be totally 
prevented using the SJPDA algorithm in the small-angle 
crossing scenario. 

Fig. 7 and Fig. 8 respectively show the trajectories of 
two targets and the root mean squared error (RMSE) of 
position using the SJPDA algorithm in scenario 
2( 300factor = ). In this case, we can see that the track 

coalescence can be also avoided by the SJPDA algorithm, 
but the trajectory of target b deviates from the real track 
and the tracking error is large.  
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Figure 9.Trajectories of two targets using KNNJPDA in scenario 1(K=1)      Figure 10.RMSE of position using KNNJPDA in scenario 1(K=1) 
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Figure 11.Trajectories of two targets using KNNJPDA in scenario 1(K=2)          Figure 12.RMSE of position using KNNJPDA in scenario 1(K=2) 
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Figure 13.Trajectories of two targets using KNNJPDA in scenario 1(K=3)           Figure 14.RMSE of position using KNNJPDA in scenario 1(K=3) 



50 A New Joint Possibility Data Association Algorithm Avoiding Track Coalescence  

Copyright © 2011 MECS                                                                                   I.J. Intelligent Systems and Applications, 2011, 2, 45-51 

Fig. 9 and Fig. 10 show the trajectories of two targets 
and the root mean squared error (RMSE) of position 
using the KNNJPDA algorithm (K=1) in scenario 1. It is 
shown that track coalescence is avoided in this case but 
the trajectory of target b deviates severely from the real 
track. This simulation result is similar to the simulation 
result of ENNPDA. 

When K=2, the simulation result of the KNNJPDA 
algorithm is shown in Fig 11 and Fig 12. The tracks don’t 
merge together in Fig. 11. In Fig. 12 the estimated 
position errors of two targets are small. It can be 
confirmed that the KNNJPDA algorithm (K=2) can avoid 
track coalescence, and ensure very good track precision 
in scenario 1.  

When K=3, the simulation result of the KNNJPDA 
algorithm is shown in Fig. 13 and Fig. 14. Slight track 
coalescence appears in Fig. 13 and the RMSE of target a 
in Fig. 14 is larger than it’s in Fig. 12. In fact, if K is 
given bigger value, track coalescence will be more 
serious and the RMSE of target a will be larger. When K

≥5, the simulation result of the KNNJPDA algorithm 
will be similar to JPDA’s. 

Comparing Fig. 11 and Fig. 12 with Fig. 5 and Fig. 6, 
we can see that the tracking precision of KNNJPDA is 
better than SJPDA’s in the parallel neighboring scenario.  
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Figure 15.Trajectories of two targets using KNNJPDA in scenario 2(K=1)         Figure 16.RMSE of position using KNNJPDA in scenario 2(K=1) 
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Figure 17.Trajectories of two targets using KNNJPDA in scenario 2(K=2)     Figure 18.RMSE of position using KNNJPDA in scenario 2(K=2) 
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Figure 19.Trajectories of two targets using KNNJPDA in scenario 2(K=3)     Figure 20.RMSE of position using KNNJPDA in scenario 2(K=3) 
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The simulation results of the KNNJPDA algorithm in 
scenario 2 are shown in Fig. 15-20. When K=1, the 
simulation result of the KNNJPDA algorithm is shown in 
Fig. 15 and Fig. 16. It can be seen that track coalescence 
is avoided in this case but the trajectory of target b 
deviates severely from the real track and track divergence 
is caused. 

When K=2, the simulation result of the new algorithm 
is shown in Fig. 17 and Fig. 18. Comparing Fig. 16 with 
Fig. 18, the position RMSE of target b in Fig. 18 is 
smaller than the position RMSE of target b in Fig. 16. It 
is confirmed that track divergence is controlled by the 
KNNJPDA algorithm when K=2. 

When K=3, the simulation result in the same case is 
shown in Fig. 19 and Fig. 20. It’s shown that track 
coalescence is avoided and the new algorithm ensures 
very good track precision in this case. In fact, when 
K=4,5,6, the simulation result of the KNNJPDA 
algorithm is similar to the simulation result when K=3. 

When K≥7, the simulation result of the KNNJPDA 
algorithm will be similar to JPDA’s. 

Comparing Fig. 19 and Fig. 20 with Fig. 7 and Fig. 8, 
we can see that the tracking precision of KNNJPDA is 
also better than JPDA’s in the small-angle crossing 
scenario. 

In addition, the time of the SJPDA algorithm for 50 
Monte Carlo simulation runs is approximately 34.38s in 
scenario 1, and the time of the KNNJPDA algorithm for 
50 MC simulation runs is approximately 27.66s in the 
same case. Thus we can see that the computation of 
SJPDA is bigger than KNNJPDA’s. 

V.  CONCLUSIONS 

In this paper, a KNNJPDA algorithm has been 
proposed and implemented. The association possibilities 
of the target with every measurement will be computed in 
the new algorithm, but only the first K measurements 
whose association probabilities with the target are larger 
than others’ are used to estimate target’s state. The results 
of simulation test show that, when K=2 or K=3, the new 
algorithm can avoid track coalescence and ensure good 
precision in all scenarios. When K=1, the new algorithm 
is equivalent to the ENNPDA algorithm and track 
divergence can’t be avoided in the presence of clutter. In 
parallel neighboring scenario, the best track precision can 
be achieved using the new algorithm when K=2, and the 
track effect of the new algorithm is similar to JPDA’s 

when K≥5. In small-angle crossing scenario, the best 
track precision can be achieved using the new algorithm 
when K=3,4,5,6, and the track effect of the new 

algorithm is similar to JPDA’s when K≥7.  
In addition, the simulation results of SJPDA have been 

predicted in this paper. Through comparing the SJPDA’s 

simulation results with the KNNJPDA’s, it has been 
confirmed that two algorithms all can avoid track 
coalescence but the performances of the KNNJPDA 
algorithm in tracking precision and computation are 
better than SJPDA’s.  
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