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Abstract—A military decision maker is typically confronted 
by the task of determining optimal course of action under 
some constraints in complex uncertain situation. Thus, a 
new class of Combinational Constraint Optimization 
Problem (CCOP) is formalized, that is utilized to solve this 
complex Operation Optimization Problem. The object 
function of CCOP is modeled by Influence net, and the 
constraints of CCOP relate to resource and collaboration. 
These constraints are expressed by Pseudo-Boolean and 
Boolean constraints. Thus CCOP holds a complex 
mathematical configuration, which is expressed as a 0 1 
integer optimization problem with compositional constraints 
and unobvious optimal object function. A novel method of 
Genetic Algorithm (GA) combination of Boolean Constraint 
Programming (BCP) is proposed to solve CCOP. The 
constraints of CCOP can be easily reduced and transformed 
into Disjunctive Normal Form (DNF) by BCP. The DNF 
representation then can be used to drive GA so as to solve 
CCOP. Finally, a numerical experiment is given to 
demonstrate the effectiveness of above method. 
 
Index Terms—course of action optimization; influence nets; 
boolean and pseudo-boolean constraints; genetic algorithm; 
boolean constraint programming 
 

I.  INTRODUCTION 

Within military operations, targeting must be focused 
on creating specific effects to achieve the joint force 
commander’s objectives. A military decision maker is 
typically confronted by the task of determining optimal 
course of action under some constraints in a complex 
uncertain situation. The pre-requisite of this task is the 
modeling of cause-effect/relevance relationships among 
the variables existing in the environment. The use of 
probabilistic reasoning framework as a modeling tool for 
capturing such relationships has became more popular. 
Commonly referred to as Influence Net (IN) [1], the 
framework is proposed to overcome the intractability 
issues in Bayesian Network [2], and has been 
experimentally used in the area of Effects-Based 
Operations (EBO) [3]. Sajjad etc. have made some 
research on the problem of Influence nets based course of 
action optimization [4, 5], but constrains of which are not 
fully modeled. Thus, a new class of Combinational 
Constraint Optimization Problem (CCOP) is formalized 
in Influence Net, by introducing resource and 
collaboration constrains. 

The object function of CCOP cannot be described by 
analytic expression, thus traditional methods are useless 
for solving this class of Constraint Optimization Problem 
(COP). Evolutionary Algorithm (EA) is rather reliable 
and effective than traditional methods to solve COP that 
does not require obvious object of COP [6, 7]. Penalty 
function is the most widely used technique to handle 
constraints [8, 9]. However, its performance is highly 
dependent on the definition of penalty factors. Currently, 
Integration of optimization and constraint programming 
is a novel approach for solving COP [10]. The constraint 
programming is usually used to eliminate part of non- 
feasible solutions, which is implemented either before or 
middle optimization implementation. Because of their 
complementary strengths, they are profitably merged. 
Thus an optimization technique that combines the 
Genetic Algorithm (GA) with Boolean Constraint 
Processing (BCP) is presented for solving CCOP.  

The rest of this paper is organized as follows. The 
definition of CCOP is formalized in Section 2. The 
feasible solution space is reduced and transformed by 
Boolean Constraint Processing in Section 3. Section 4 
provides an improvable GA combination of BCP. A 
numerical experiment is given in section 5. Section 6 
provides conclusion and the future research directions. 

II.  PROBLEM DESCRIPTION & DEFINITIONS 

CAST logic 

The specification of a Bayesian Network requires an 
exponential number of parameters for model specification. 
As a model grows larger, this requirement presents a very 
big challenge to a system modeler. As an attempt to 
overcome this limitation, Chang et al. [11] developed a 
formalism called CAusal STrength (CAST) logic to elicit 
the large number of conditional probabilities from a small 
set of user-defined parameters. The logic has its roots in 
the Noisy-Or approach. 

The logic requires only a pair of parameter values for 
each dependency relationship between any two random 
variables. The values are converted into conditional 
probability tables and the resultant tables are used during 
the probability propagation phase. A brief explanation of 
the CAST logic is provided below with the help of an 
example shown in Figure 1. 



2 Genetic Algorithm Combination of Boolean Constraint Programming for Solving Course of Action  
Optimization in Influence Nets 

Copyright © 2011 MECS                                                                                       I.J. Intelligent Systems and Applications, 2011, 4, 1-7 

0.90, 0.66h g= = −

0.66,
0.66

h
g

= −
=

0.66,
0.66

h
g

= −
=

0.5b =

 
Figure 1.  An Influence Network with CAST logic parameters 

Figure 1 contains three edges. On each arc, two causal 
strengths denoted as h and g are specified. These numbers 
represent the probability that a specified state of a parent 
node will cause a certain state in the child node. Positive 
values on arcs are causal influences that cause a node to 
occur with some probability, while negative values are 
influences that cause the negation of a node to occur with 
some probability. For instance, the arc between B and D 
has values h = −0.66 and g = 0.66. The first value referred 
to as h, states that if B is true, then this will inhibit D to 
be true with probability 0.66, while the second value, 
referred to as g, states that if B is false, then this will 
cause D to be true with probability 0.66. Both h and g can 
take values in the interval (−1, 1). All non-root nodes are 
assigned a baseline probability, which is similar to the 
‘‘leak” probability in the Noisy-Or approach. This 
probability is the user-assigned assessment that the event 
would occur independently of the modeled influences in a 
net. For instance, the baseline probability of D is denoted 
as b = 0.5. 

There are four major steps in the CAST logic 
algorithm that convert the user-defined parameters into 
conditional probabilities. Once these steps are completed, 
the traditional probability calculations are performed to 
derive the cumulative likelihood of any event included in 
the Influence Net. The four steps that are performed for 
each conditioning case associated with the child event in 
the model are: 

(a) Aggregate positive causal strengths. 
(b) Aggregate negative causal strengths. 
(c) Combine the positive and negative causal strengths. 
(d) Derive conditional probabilities. 
As shown in Figure 1, there are eight conditional 

probabilities that need to be computed to obtain the 
marginal probability of D. Mathematically, the marginal 
probability of D is computed as 
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The four steps, described above, are used to calculate 
each of these eight conditional probabilities. For instance, 
to calculate the probability ( | )P D AB C¬ ¬ , the h value 

on the arc connecting B to D and the g value on the arc 
connecting A and C to D are considered. Hence, the set of 
causal strengths is denoted as C={−0.66, −0.66, 0.66}.  

Step 1 Aggregate the positive causal strengths 
In this step, the set of causal strengths with positive 

influence are combined. They are aggregated using the 
equation 

 
0

1 (1 )
c C c

PI c
∈ ∧ >

= − −∏   (1) 

Where c is the corresponding g or h value having 
positive influence and PI is the combined positive causal 
strength.  

Step 2 Aggregate the negative causal strengths 
In this step, the causal strengths with negative values 

are combined. The equation used for aggregation is 

 
0

1 (1 )
c C c

NI c
∈ ∧ <

= − +∏   (2) 

Where c is the corresponding g or h value having 
negative influence and NI is the combined negative 
causal strength. 

Step 3 Combine causal strengths 
In this step, aggregated positive and negative 

influences are combined to obtain an overall net influence. 
The difference of these aggregated influences is taken. 
The overall influence is obtained by taking the ratio of 
this difference and the corresponding promoting or 
inhibiting influence. Mathematically, 

 
( ) (1 )     
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Step 4 Derive conditional probabilities 
In the final step, the overall influence is used to 

compute the conditional probability value of a child for 
the given combination of parents. 

 

( |    )

(1 )   

         

P child set of parent states

baseline baseline AI PI NI

baseline baseline AI PI NI

=

+ − × ≥


− × <
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The steps explained above are repeated for the 
remaining seven conditional probabilities in (1). It should 
be noted that, if the experts had sufficient time and 
knowledge of the influences, then the conditional 
probability table for each node can be used instead of g 
and h values. Furthermore, after estimating the 
conditional probability table, if some entries do not 
satisfy the experts, then those entries can be modified and 
used for computing the marginal probability. 

Influence Nets 

Influence Nets are Directed Acyclic Graphs (DAG) 
where nodes in the graph represent random variables, 
while the edges between pairs of variables represent 
causal relationships. The modeling of the causal 
relationships is accomplished by connecting a set of 
actionable events and a set of desired effects through 
chains of cause and effect relationships. The strength of 
such relationships is specified using the CAST logic 
parameters instead of the probabilities. The required 
probabilities are internally generated by the CAST logic 
with the help of user-defined parameters. The Influence 
Nets are therefore appropriate for the following situations: 
i) for modeling situations in which it is difficult to fully 
specify all conditional probability values, ii) estimates of 
conditional probabilities are subjective, and iii) estimates 
for the conditional probabilities cannot be obtained from 
empirical data, e.g., when modeling potential human 
reactions and beliefs. 
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The following items characterize an IN while a formal 
definition is given in Definition 1. 

1. A set of random variables that makes up the nodes 
of an IN. All the variables in the IN have binary states. 

2. A set of directed links that connect pairs of nodes. 
3. Each link has associated with it a pair of CAST 

logic parameters that shows the causal strength of the link 
(usually denoted as h and g values). 

4. Each non-root node has an associated CAST logic 
parameter (denoted as the baseline probability), while a 
prior probability is associated with each root node. 

Definition 1 Influence Net 

An Influence Net is a four-tuple (V, E, C, B) where 
V: set of Nodes, 
E: set of Edges, 

C represents causal strengths: E→{(h, g) such that  

−1 < h, g < 1}, 

B represents baseline or prior probabilities: V→[0, 1]. 
Figure 2 shows an example of an Influence Net. Nodes 

A, B and C drawn as rectangles represent the actionable 
events (root nodes) while nodes D and E drawn as 
rounded rectangles represent the desired effect (non-root 
nodes). The directed edge with an arrowhead between 
two nodes shows the parent node promoting the chances 
of a child node being true, while the roundhead edge 
shows the parent node inhibiting the chances of a child 
node being true. The value denoted as h and g associated 
with arcs shows CAST logic parameters of causal 
strength. The value seen within non-root nodes shows 
CAST logic parameters of baseline probabilities. The text 
associated with the non-root nodes represent the 
corresponding conditional probability values obtained 
from above CAST logic parameters while the text 
associated with the root nodes represents the prior 
probabilities.  

The probability propagation in an IN is based on the 
“independence of parents” assumptions (similar to the 
loopy belief propagation [12, 13]). Thus, the marginal 
probability of a non-root node is computed with the help 
of its conditional probability table (CPT) and the prior 
probabilities of its parents. In this way, marginal 
probabilities are propagated in the forward direction, i.e., 
from the root nodes to the leaf nodes. 
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Figure 2.  A Sample Influence Net 

Modeling of CCOP 

The object of solving CCOP is finding best course of 
action from a set of actions under constraints, and these 
actions enable to engender maximum operation effect. 

The universality of CCOP containing n actions can be 
formalized as follow: 
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Where, Boolean variable xj describes whether the jth 
action is executed. Constant bi describes the total number 
of the ith kind of weapon that can be used by all the 
potential actions. Coefficient aij describes the quantity of 
the ith kind of weapon needed when executing the jth 
action. The Boolean function f(x1, x2,…,xn) that is usually 
expressed as Conjunction Normal Form (CNF), describes 
the collaboration constraints among actions.  

The actions of CCOP can be mapped to actionable 
nodes of IN one to one. That is, if the jth action is 
executed the priority probability distribution of jth 
actionable node is expressed as P(Aj = 1) = 1, and P(Aj = 
0) = 0; contrarily, P(Aj = 0) = 1, and P(Aj = 1) = 0.  

Assuming the effect node M of IN that represents the 
desired effect of mission, and then the object function 
obj(x1, x2, …, xn) of CCOP can be described as the margin 
probability of M, where M = 1. The best solution means 
that choosing a set of actions that not only satisfies all the 
constraints but also maximizes desired effects. 

The equation formula f(x1, x2, …, xn) = 1 is Boolean 
constraint, and the in-equation ai1x1+ ai2x2+…+ ainxn ≤ bi 
is Pseudo-Boolean constraint. 

III.  TRANSFORMATION & REDUCTION OF CONSTRAINTS 

For pseudo-Boolean constraint hi(x1, x2, …, xn) ≤ bi, 
where hi(x1, x2, …, xn) = ai1x1+ ai2x2+…+ ainxn, we define 
threshold Boole function as follow 

 
1 2

1 2
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0, ( , ,..., )

i n i

i n
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>
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Apparently, if {xk = τk} satisfies hi(x1, x2, …, xn) ≤ bi, it 
must satisfy gi(x1, x2, …, xn) =1. 

Then we define a Boolean function as follow: 

 1 2 1 2
1

( , ,..., ) ( , ,..., )
m

n i n
i

g x x x g x x x
=

= ∏   (7) 

For (7), if {xk = τk} satisfies all pseudo-Boolean 
constraints of CCOP, it must satisfy g(x1, x2, …, xn) = 1. 

According to Boole’s expansion theorem of literature 
[14], the following equation is derived: 

 1( , , , , ) ( )( )
k kk n k x k xg x x x x g x g¬= + ¬ +K K   (8) 

Where 

        1 1( , ,0, , ), ( , ,1, , )
k kx n x ng g x x g g x x¬ = =K K K K     (9) 

Theorem 3.1 For Boolean function g(x1, x2, ..., xn ), 
∀1≤ k ≤n, 

k k kx x xg g g¬ =  is satisfied. 
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Proof: 
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 So (8) can be reduced to： 

 1( , , , , )
k kk n k x xg x x x x g g¬= ¬ +K K  (10) 

Apply (10) repeatedly, g(x1, x2, …, xn ) can be reduced 
to a common Boolean function in which only x1, x2, …, xn 
included. The reduction process is as follows: 

1 2

1 2 2

1 2 3 1 3

2 3 3

1 2

2

( , ,..., )

(0, ,..., ) (1, ,..., )

(0,0, ,..., ) (0,1, ,..., )

(1,0, ,..., ) (1,1, ,..., )

... (0,0,..., 0) (1,1,...,1)
n

n

n n

n n

n n

n

g x x x

x g x x g x x

x x g x x x g x x

x g x x g x x

x x x g g

=

¬ +

= ¬ ¬ + ¬

+¬ +

= ¬ ¬ ¬ + +

K

K
14444444244444443

 

There, the formula like g(0,0, ...,0) is called 
discriminator, and ¬x1,¬x2, …,¬xn g(0,0, …,0) is called 
sub-item. 

Apparently, for any discriminator, it can be supposed 
that: 
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There, ¬x1,¬x3,¬x5 is the corresponding CNF of sub-
item. 
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If kc ≥ 1, g(x1,x2, …, xn) can be reduced to： 
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Finally, the constraints of CCOP can be expressed by a 
common Boolean function as follow: 

( ) ( ) ( )1 2 1 2 1 2, , , , , , , , , 1n n nh x x x g x x x f x x x⋅ ⋅⋅ = ⋅⋅ ⋅ ⋅⋅ ⋅ = (11) 

Where h(x1, x2, …, xn) only include x1, x2, …, xn.  
For solving CCOP easily, h(x1, x2, …, xn) needs to be 

transformed into its equivalence Disjunctive Normal 
Form (DNF) as follow:  

 1 2 1 2
1

( , , , ) ( , , , )
M

n k k k kl
k

DNF x x x S x x x
=

= ∑K K   (12)  

Where {xk1, xk2, …, xkl} is a subset of {x1, x2, …, xn}, 
the Boolean function Sk( xk1, xk2, …, xkl) is a conjunction, 
Μ  is the total number of elementary conjunction. 

Optimization algorithm based on DNF is designed in 
Section 4. The transformation from common Boolean 
function to DNF is mainly based on distributive law.  

According to the properties of DNF, every conjunction 
can correspond with one feasible solution space. Let Sk 
corresponds with Ωk. 

For instance, assuming S(x1, x2, x3) = x1∧x2∧¬x3 is a 
conjunction of DNF(x1, x2, …, xn), if x1 = 1, x2 = 1, x3 = 0, 
then, S(x1, x2, x3) = 1, and thus, DNF(x1, x2, …, xn) = 1. As 
a result the feasible solution space depending on S is: 

 ( ) { }{ }41,1,0, ,..., 0,1 ,4n kx x x k nΩ = ∈ ≤ ≤   (13) 

Thus the feasible solution space of CCOP can be 

expressed as
1

M

k
k =

Ω = ΩU . 

Apparently, Ωi ∩ Ωj may be not empty, thus if M is 
larger, then the feasible solution space is less compact. 

A minimization DNF has the least conjunction, thus if 
DNF(x1, x2, …, xn)  is enabled to transform minimization, 
then the feasible solution space may be more compact. 

The minimization of DNF can be captured by Quine-
Mccluskey (Q-M) method [15], which is presented by 
algebraization of Karnaugh Map algorithm.  

IV. Design of Genetic Algorithm 

The variables of CCOP hold Boolean character, thus 
the chromosomes in GA population take the form of 
binary strings. Each chromosome can be thought of as a 
point in the search space of candidate solutions. Because 
of binary coding, the traditional roulette wheel selection 
operator, single point crossover operator and single point 
mutation operator are utilized by GA. The CCOP is a 
class of maximum problem, and the value of its object 
function is between 0 and 1, so the finesse function of 
chromosome can be defined by object function directly. 

Furthermore, three new operators are introduced by 
improvable GA, for combination of BCP. These operators 
are Transformation & Reduction of Constraints, Creation 
of Initial Population and Feasible Solution Conversion 
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Operation. The primary process of GA combination of 
BCP is shown in Figure 3. 

 
Figure 3.  Process of GA combination of BCP 

Transformation & Reduction of Constraints has been 
addressed in Section III. The next two sub-sections will 
explain Creation of Initial Population and Feasible 
Solution Conversion Operation. 

Creation of Initial Population 

Definition 2 Free Variable 
Sk(xk1, xk2, …, xkl) is a conjunction of (12), the variables 

of  set Wk = {x1, x2, …, xn}/{xk1, xk2, …, xkl} are named as 
free variables, |Wk| is the number of free variables. 

For instance, assuming S(x1, x2, x3) = x1∧x2∧¬x3 is a 
conjunction of (12), the number of free variables is n−3. 

TABLE I.  CREATION OF INITIAL POPULATION 

Algorithm 1: Creation of Initial Population 

Step1:   Setting k = 0 and the size of population is C; 
Step2:  Computing all unitary proportion of free variables:  

1 2

| |

| || | | |

2

2 2 2

l

m

W

l WW W
P =

+ + +K
, 1 ≤ l ≤ Μ; 

Step3: Utilizing roulette wheel selection to select a conjunction Sl 
included (12).  
Step4: Creating a chromosome randomly based on the feasible solution 
space Ωl. k = k + 1, if k = C, stop, if not, go to Step3. 

In Algorithm 1, the conjunction containing more free 
variables has greater probability to be chosen. This can 
ensure the uniformity of initial population. 

Feasible Solution Conversion Operation 

Definition 3 Filter Constant 
Sk(xk1, xk2, …, xkl)  is a conjunction of (12), the value of 

variables in the set of {xk1, xk2, …, xkl} satisfies Sk = 1, 
and the value of free variables is 0 or 1 denoted as ∗. The 
values according to the above rules will produce a binary 
string, which is defined as Sk-correlated Filter Constant. 

For instance, assuming S(x1, x2, x3) = x1∧x2∧¬x3 is a 
conjunction of (12), S-correlated filter constant is 
110∗…∗ (the number of ∗ is n−3). 

Definition 4 Filter Operation 
Sk(xk1, xk2, …, xkl) is an item of (12), the Sk-correlated 

Filter Constant is filterk = t1t2…tn, list = τ1τ2…τn is a 
chromosome, then Filter Operation is defined as follow. 

 
1

n

k i i
i

S ch t τ
=

⊕ = ⊗∑   (14) 

Where, if ti = τi or ti = ∗, then ti⊗τi = 1, else ti⊗τi = 0. 

Assuming a S-correlated Filter Constant is 110∗…∗, 
for the chromosome ch = 1000…0, S ⊕ ch = 1; while for 
the chromosome ch = 1101…1, S ⊕ ch = 0. 

Apparently, for every chromosome ch, if there exists a 
conjunction Sk of (12) that satisfies Sk⊕ch = 0, then, the 
corresponding solution of ch is a feasible solution. 

Definition 4 Feasible Solution Conversion Operation 
Sk(xk1, xk2,…,xkl) is an item of (12), ch = τ1τ2…τn is a 

chromosome whose solution is non-feasible. Feasible 
Solution Conversion Operation is defined as follow: 

 ,
kch S ch= e   (15) 

Where, if filterk[i] = *, then ch’[i] = ch[i], else ch’[i] = 
filterk[i] (1 ≤ i ≤ n). filterk is a Sk-correlated filter constant. 

TABLE II.  FEASIBLE SOLUTION CONVERSION OPERATION  

Algorithm 2: Feasible Solution Conversion Operation 

Step1: Setting k = 1, current population set is pop[k], the size of 
population is C; 
Step2: If k = C, stop; if not, choosing the chromosome pop[k]; 
Step3: Doing Filter Operation with pop[k] and every conjunction 
respectively, and the results are stored in array res[Μ]; 
Step4: If there exists an element which is 0 in res[Μ], goto Step2; if not, 
go to Step5; 
Step5: Selecting conjunction S of the least element of res[Μ] randomly, 

doing Feasible Solution Conversion Operation [ ] [ ]pop k S pop k= e , 

then go to Step2. 

In Algorithm 2, we make the least changes of the 
original chromosome in the conversion from non-feasible 
to feasible solution. This can keep the diversity of 
population. 

V. SIMULATION & RESULTS 

This section presents an example to illustrate the 
feasibility and effectiveness of GA combination of 
Pseudo-Boolean constraint processing.  

There are three kinds of weapons that used in this 
example, and they are denoted as weapon1, weapon2, and 
weapon3, respectively. The weapon requirements of 
every action are listed in Table 3. 

TABLE III.  WEAPON REQUIREMENTS  

Weapon Requirements 
Action 

Weapon1 Weapon2 Weapon3 

A01 0 0 4 
A02 4 8 0 

A03 0 0 2 
A04 6 10 0 
A05 0 0 6 
A06 0 0 4 

A07 4 8 0 
A08 6 12 0 
A09 8 12 0 
A10 0 0 4 

A11 0 0 4 
A12 0 0 2 
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Where the total number of weapon1 is 18, the total 
number of weapon2 is 36, and the total number of 
weapon3 is 24. 

We assume that there are 12 potential actions, and the 
collaboration among actions is as follows: 

• A01 and A02 can’t be selected together; 
• If A03 is selected, A06 must be selected; 
• A04 and A07 can’t be selected together; 
• Only one of A11 and A12 can be selected; 
• If A10 is selected, A08 must be selected; 
• If A05 is selected, A09 must be selected. 

The IN modeling of the influences of these potential 
actions to the mission is shown in Figure 4. 

B01(0.0)

B02(0.0)

B04(0.0)

B03(0.0)

Mission(0.5)

C01(0.5)

C03(0.5)

C02(0.5)

B05(0.0)

B06(0.0)

B07(0.0)

A01

(0.65, 0.00)−

(0.66, 0.00)−

(0.50, 0.00)−

(0.66, 0.00)−

(0.65, 0.00)−

(0.75, 0.00)−

(0.80, 0.00)−

(0.65, 0.00)−

(0.85, 0.00)−

(055, 0.00)−

(0.85, 0.00)−

(0.75, 0.00)−

(0.85, 0.85)
−

(0.65, 0.65)
−

(0.65, 0.65)
−

(0.65, 0.65)−

(0.45, 0.45)
−

(0.50, 0.50)
−

(0.65, 0.65)
−

(0.65, 0.65)−

(0.65,
0.65)

−

(0
.6

5,
0.

65
)

−

A02

A03

A04

A05

A06

A07

A08

A09

A10

A11

A12

 
Figure 4.  The IN of actions to mission 

The CCOP of this example is formalized as follow: 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

{ }

1 2 12

1 3 5 6 10 11 12

2 4 7 8 9

2 4 7 8 9

1 2 3 6 5 9 10 8

4 7 11 12 11 12

max   ( , ,..., )

4 2 6 4 4 4 2 18

8 10 8 12 12 36

4 6 4 6 8 24
. .

1

0,1 , 1,2,...,12i

obj x x x

x x x x x x x

x x x x x

x x x x x
s t

x x x x x x x x

x x x x x x

x i

+ + + + + + ≤
 + + + + ≤
 + + + + ≤
 ¬ ∨ ¬ ∧ ¬ ∨ ∧ ¬ ∨ ∧ ¬ ∨
∧ ¬ ∨ ¬ ∧ ∨ ∧ ¬ ∨ ¬ =

 = =

   

obj is computed by the margin probability of effect 
node Mission, where the value of Mission is 1. 

This paper compares GA combination of Boolean 
constraint processing named GA_1 with GA combination 
of penalty function named GA_2.  

The population size, maximum generation, crossover 
probability and mutation probability of both GAs are 100, 
50, 0.90, and 0.10 respectively. 

For GA_1, Transformation & Reduction of Constraints 
is executed firstly, and the constraints can be expressed as 
a DNF which consists of 80 conjunctions. Part of the 
conjunctions is listed in Table 4. 

TABLE IV.  SOME ELEMENTARY CONJUNCTIONS  

Conjunction Filter Constant Free Variable 

¬x2∧¬x3∧¬x4∧¬x5∧¬x10∧x11∧¬x12 ∗0000∗∗∗∗010 x1x6x7x8x9 

¬x2∧¬x3∧¬x4∧¬x5∧x8∧x11∧¬x12 ∗0000∗∗1∗∗10 x1x6x7x9x10 

¬x2∧¬x4∧¬x5∧x6∧x8∧x11∧¬x12 ∗0∗001∗1∗∗10 x1x3x7x9x10 

… … … 

¬x1∧¬x3∧¬x4∧¬x7∧x8∧x9∧¬x11∧x12 0∗00∗∗011∗01 x2x5x6x10 

For GA_2, the Boolean constraint can be transformed 
into numerical constraint as follow refer to [10]. 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 6 5 9 10 8 4 7

11 12 11 12 1 2 3 6 5 9

11 12 10 8 4 7 11 12

1 2 1 1

1 2 2 1

x x x x x x x x x x

x x x x x x x x x x

x x x x x x x x

¬ ∨ ¬ ∧ ¬ ∨ ∧ ¬ ∨ ∧ ¬ ∨ ∧ ¬ ∨ ¬ ∧

∨ ∧ ¬ ∨ ¬ = ⇔ − − − + − +

+ − + − − − − ≥

The penalty function of GA_2 is defined as follow. 

 

( )( )( )

( )( )( )( )

1 1 2 12 1 3 5 6 10 11 12

2 1 2 12 2 4 7 8 9

3 1 2 12 2 4 7 8 9

4 1 2 12 1 2 3 6 5 9

11 12 10 8 4 7 11 12

( , , , ) 4 2 6 4 4 4 2 24

( , , , ) 8 10 8 12 12 36

( , , , ) 4 6 4 6 8 18

( , , , ) 1 2 1 1

1 2 2

f x x x x x x x x x x

f x x x x x x x x

f x x x x x x x x

f x x x x x x x x x

x x x x x x x x

fu

= + + + + + + −

= + + + + −

= + + + + −

= − − − − + − +

+ − + − − − −

K

K

K

K

4

1 2 12 1 2 12
1

( , ,..., ) exp( max( ( , ,..., ),0))i
i

n x x x M f x x x
=

= − ×∑

  

Then, the fitness function of GA_2 is defined as follow. 

 1 2 12 1 2 12( , ,..., ) ( , ,..., )fit obj x x x fun x x x= ×  (16)  

The result of GA_1 is 101011111110, that is, the 

selected actions are A01，A03，A05，A06，A07，

A08，A09，A10 and A11, and the obj is 0. 7555. The 
result of GA_2 is 10110101011, that is, the selected 

actions are A01，A03，A04，A06，A08，A11 and 
A12, and the obj is 0. 7487. The process of simulation is 
shown in Figure 5. 

 
Figure 5.  Process of simulation 

As shown in Figure 5, the optimization result of GA_1 
is better than GA_2.  

The chromosomes contained within population of 
GA_1 are all feasible solutions, while some 
chromosomes are generally non-feasible solutions in 
every population of GA_2. Thus, the search effectiveness 
of GA_1 is better than GA_2 potentially. 

 On the other hand, the penalty function of GA_2 
easily reduces the diversity of population, which may 
result in the phenomenon of premature convergence. 
While BCP injected GA enables population to keep 
diversity effectively. Thus the convergence velocity of 
GA_1 is slower than GA_2. Further, the optimal solution 
found by GA_1 is more probable. 



 Genetic Algorithm Combination of Boolean Constraint Programming for Solving Course of Action  7 
Optimization in Influence Nets 

Copyright © 2011 MECS                                                                                       I.J. Intelligent Systems and Applications, 2011, 4, 1-7 

VI. CONCLUSIONS 

This paper overcomes the limitation of Influence Nets 
based course of action optimization that lacking in fully 
considering the constraints among actions, and presents a 
new class of CCOP in Influence Net by introducing 
resource and collaboration constraints. Then, a novel 
method of GA combination of BCP is presented to solve 
CCOP. The feasibility of improvable GA has been proved 
by mathematics, and then this paper presents an example 
to illustrate the effectiveness of the GA above. The 
research has been applied in the domain of military. 
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