
I.J. Intelligent Systems and Applications, 2011, 5, 19-27 
Published Online August 2011 in MECS (http://www.mecs-press.org/) 

Copyright © 2011 MECS                                                                                   I.J. Intelligent Systems and Applications, 2011, 5, 19-27 

Inverse Operation of Four-dimensional Vector 
Matrix 

 
H J Bao 

School of Communication Engineering, Jilin University, Changchun, China  
Email: baohj09@mails.jlu.edu.cn 

 
A J Sang and H X Chen 

School of Communication Engineering, Jilin University, Changchun, China  
Email: sangaj@jlu.edu.cn 
Email: chenhx@jlu.edu.cn 

 
 

Abstract—This is a new series of study to define and prove 
multidimensional vector matrix mathematics, which 
includes four-dimensional vector matrix determinant, four-
dimensional vector matrix inverse and related properties. 
There are innovative concepts of multi-dimensional vector 
matrix mathematics created by authors with numerous 
applications in engineering, math, video conferencing, 3D 
TV, and other fields.  
 
Index Terms—multidimensional vector matrix, four-
dimensional vector matrix determinant, four-dimensional 
vector matrix inverse 
 

I.  INTRODUCTION 

This paper brings a new branch of mathematics called 
multidimensional vector matrix mathematics and its new 
subsets, four-dimensional vector matrix determinant and 
four-dimensional vector matrix inverse. The traditional 
matrix mathematics [1] that engineering, science, and 
math students are usually introduced to in college handles 
matrices of one or two dimensions. Ashu M. G. Solo [2] 
also defined some multidimensional matrix algebra 
operations. Multidimensional matrix mathematics extends 
the classical matrix mathematics to any figure of 
dimensions. 

Matrix inversions are very significant means in many 
fields of combinatory and special functions principle. 
When dealing with combinatorial sums, application of 
matrix inversion may help to simplify problems, or 
propose new identities. At this point it seems suitable to 
set forth a little on the history of matrix inversions and 
inverse relations, specifically, since H. W. Gould’s name 
is inevitably tied with it [7]. In fact, Riordan provided 
lists of known matrix inversions and devoted two 
chapters of his book to inverse relations and their 

application in his book [8] in the 1960s. As time passes, 
people brought to light an increasing number of such 
explicit matrix inversions. Gould spared no effort to study 
an outstanding part of these inverse relations in a series of 
papers [9], [10], [11], [12].  This study culminated in the 
important discovery, jointly with Hsu, of a very general 
matrix inversion [13], which possessed a great deal of 
inverse relations and properties of, what is currently 
called, Gould-type and Abel-type as special cases on 
matrix inversion [7].  

The problem detected a q-analogue of their equation 
was immediately settled henceforth by Carlitz [20]. The 
importance of Carlitz’ matrix inversion firstly showed up 
when Andrews [14] dug up that the Bailey transform [15], 
[16] is equivalent to a certain matrix inversion that is just 
a very unusual condition of  Carlitz’. The Bailey 
transform is one of the corner stones in the development 
of the theory of hyper geometric series, corresponding to 
the inversion of two infinite lower-triangular matrices. 
However, Carlitz did not propose any applications of 
related definitions even earlier. A few years later, Gasper 
and Rahman proved a bibasic extension of that matrix 
inversion [17], [18], which unifies the matrix inversions 
of Gessel and Stanton, and Bressoud. Gessel and Stanton 
[6] used it to derive a great number of basic hyper 
geometric summations and transformations, and identities 
of Rogers-Ramanujan type. The end of this line of 
development came with the attempt of the first author to 
combine all these recent matrix inversions into one 
formula. Indeed, in 1989, he discovered a matrix 
inversion, published in [19], which subsumes most of 
Riordan’s inverse relations and all the other 
aforementioned matrix inversions, as it contains them all 
as special cases [7]. Based on these theories and papers, 
multidimensional vector matrix extends traditional matrix 
math to any figure of dimensions. Therefore, the 
traditional matrix mathematics is a subset of 
multidimensional vector matrix mathematics.  

This paper mainly brings forward the definition of 
four-dimensional vector matrix determinant and the four-
dimensional vector matrix inverse. We adopt the form 
that is different from the definition of two-dimensional 
matrix. But the properties of two-dimensional matrix 
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determinant and inverse can be extended to the four-
dimensional vector matrix. The extension of classical 
matrix mathematics to any figure of dimensions has 
various applications in many branches of engineering, 
math, image compression, coding and other fields. We 
should promote the other applications of 
multidimensional vector matrix math that could not be 
done without his multidimensional vector matrix 
mathematics.   

Our group has proposed the definition of 
multidimensional vector matrix, multiplication of multi-
dimensional vector matrices, multidimensional Walsh 
orthogonal transform and traditional discrete cosine 
transform [3]. The multidimensional vector matrix model 
will reduce the time redundancy, space redundancy and 
color redundancy. Their application in color image 
compression and coding is more and more common and 
widespread. For one thing, it conquers the restriction of 
traditional two-dimensional matrix multiplication. For 
another thing, it carries on high efficiency of traditional 
matrix transform in the aspect of removing redundancy of 
color space. By means of multi-dimensional vector 
matrix model, color image data can be expressed and 
processed in a unified mathematical model, and better 
compression results are received. 

In Section 2, a multi-dimensional vector matrix model 
will be introduced, and the related properties will be 
discussed.  In Section 3, we will propose the definitions 
of four-dimensional vector matrix determinant and 
inverse. Verification the truth of formula with regard to 
the four-dimensional vector matrix determinant and 
inverse will be also given in the same Section. In Section 
4, the related properties of four-dimensional vector 
matrix determinant and inverse will be introduced. 
Section 5 concludes this paper. 

II. PROPOSED THEORY 

Based on the multidimensional vector matrix 
definition proposed by our group, we will further study 
four-dimensional vector matrix adjoin matrix, 
determinant, inverse matrix and related properties. 
Therefore, nothing more than the basic definition is 
presented. 

A.  The Definition of Multi-dimensional Vector Matrix: 
An array of numbers ( )1 2ai i in two directions (one 

direction has M entries and the other direction has N 
entries) is called two-dimensional matrix, and the set of 
all such matrices is represented as MM N× .An array of 
numbers ( )1 2ai i inL in n directions (each direction has 

I i entries, 1 i n≤ ≤ . I i can be called the order in this 
direction) is called multi-dimensional matrix, and the set 
of all such matrices is denoted as 1 2M I I In× × ×L [4]. 

If the dimensions of multi-dimensional matrix 
1 2M K K Kr× × ×L are separated into two sets and the matrix 

is denoted as
1 12 2

M I I J JJI m n
→ →

× × × × × ×L L
, where m n r+ = . 

1 12 2
M I I J JJI m n

→ →
× × × × × ×L L

 can be denoted as M IJ , where I 

and J are for the vectors, ( ), ,...,1 2I I I I m= , ( ), ,..., 1 2J J J J n= . 

1 12 2
M I I J JJI m n

→ →
× × × × × ×L L

can be called multi-dimensional 

vector matrix separated according to the vector I, and J, 
multidimensional vector matrix in short [4].  

A multi-dimensional matrix has various relevant 
multi-dimensional vector matrices, whereas a multi-
dimensional vector matrix has unique relevant multi-
dimensional matrix. 

B.  Multi-dimensional Vector Identity Matrix: 
Let AIJ  be a multidimensional vector matrix, 

where ( ), ,...,1 2I I I I m= , ( ), ,..., 1 2J J J J n= . If vector I J= , 
then AIJ is called multidimensional vector square matrix 
[5]. 

Let 1
0

i j
ij i j
δ

=⎧
=⎨ ≠⎩

， where i j= represents vector 

( ), ,...,1 2I I I I m= , ( ), ,..., 1 2J J J J n= , if it has the same 
dimension, the meanings of i j=  is that m n=  , 
and , , ....1 1 2 2i j i j i jm n= = = .  

If AIJ = ( )ijδ , AIJ is said to be multi-dimensional 
vector identity matrix, denoted as IIE , or E simply. 

C.  Equality of Multi-dimensional Vector Matrices: 
     If both ( )... ...1 2 1 2 ...1 2

A aI I I i i in n I I I n
=× × × × × ×

 and 

( )... ...1 2 1 2 ...1 2
B bI I I i i in n I I I n

=× × × × × ×
 are multi-dimensional 

matrices of ...1 2I I I n× × × orders, and the corresponding 
entries of them are equal, that 
is, ... ...1 2 1 2a bi i i i i in n= ( )1 ; 1 ;...; 11 21 2i i iI I I nn≤ ≤ ≤ ≤ ≤ ≤  , then 

...1 2AI I I n× × ×  is said to be equal to ...1 2BI I I n× × × , which is 
denoted as A=B [4]. 

If we suppose ...1 2I I I n= = = , then multi-dimensional 
matrix ...1 2AI I I n× × × is called multidimensional square 
matrix.  

A multi-dimensional matrix is called zero multi-
dimensional matrix if all its entries are zeroes, and is 
denoted as zero. 

If the corresponding multi-dimensional matrices of 
two multi-dimensional vector matrices are equal, then the 
others two multi-dimensional vector matrices are also 
equal. 

D.  Addition of Multi-dimensional Vector Matrices: 
Let ( )... ...1 2 1 2 ...1 2

A aI I I i i in n I I I n
=× × × × × ×

and

( )... ...1 2 1 2 ...1 2
B bI I I i i in n I I I n

=× × × × × ×
be two multi-dimensional 

matrices of ...1 2I I I n× × × orders. A multi-dimensional matrix 
...1 2CI I I n× × × of ...1 2I I I n× × × orders is called the sum of 

...1 2AI I I n× × ×  and ...1 2BI I I n× × × .  

( ) ( )... ... ... ...1 2 1 2 1 2 1 2 ...1 2
C c a bI I I i i i i i i i i in n n n I I I n

= = +× × × × × ×
, 
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Which is denoted as，  

...1 2CI I I n× × × = ...1 2AI I I n× × × + ...1 2BI I I n× × × . 

The sum of two multi-dimensional matrices is their 
entry-by-entry sum. So we can find that the dimensions 
of these two multi-dimensional matrices must be the 
same, and the order number of each dimension must be 
the same [4]. 

Because the addition of multi-dimensional matrices 
can be formulated as an addition between their entries, 
that is the addition of numbers. So it is not difficult to 
verify the properties as follows. 

For any multi-dimensional matrix ...1 2AI I I n× × × , 

...1 2BI I I n× × ×   and ...1 2CI I I n× × ×  of ...1 2I I I n× × × orders: 

•  
( )

( )
... ... ...1 2 1 2 1 2

= ... ...... 1 2 1 21 2

A B CI I I I I In n I I I n

A B CI I I I I In nI I I n

+ +× × × × × × × × ×

+ +× × × × × ×× × ×

 

 

•   =... ... ... ...1 2 1 2 1 2 1 2A B B AI I I I I I I I I I I In n n n+ +× × × × × × × × × × × ×   

• 0... ...1 2 1 2A AI I I I I In n+ =× × × × × × , 0 is zero multi-
dimensional matrix of ...1 2I I I n× × × orders. 

•  Multi-dimensional matrix ( )...1 2 ...1 2
ai i in I I I n

−
× × ×

 is 

called negative multi-dimensional matrix 
of ( )... ...1 2 1 2 ...1 2

A aI I I i i in n I I I n
=× × × × × ×

, denoted 

by ...1 2AI I I n− × × × .  

Obviously, ( ) 0... ...1 2 1 2A AI I I I I In n+ − =× × × × × × . 

Now that we define the concept of negative matrix of 
multi-dimensional matrix, we can conclude the 
subtraction:  

( )= -... ... ... ...1 2 1 2 1 2 1 2A B A BI I I I I I I I I I I In n n n− +× × × × × × × × × × × × .  

Similarly, 
=... ... ...1 2 1 2 1 2

=... ... ...1 2 1 2 1 2

A B CI I I I I I I I In n n

B C AI I I I I I I I In n n

+× × × × × × × × ×

⇔ −× × × × × × × × ×

  

. 

E.  Scalar Multiplication of Multi-dimensional Vector 
Matrices 
A multi-dimensional matrix ( )...1 2 ...1 2

mai i in I I I n× × ×
is 

called the result of scalar multiplication of multi-
dimensional matrix ( )... ...1 2 1 2 ...1 2

A aI I I i i in n I I I n
=× × × × × ×

and 

real number m , denoted as ...1 2mAI I I n× × × . 
Scalar-multiplying a matrix is to multiply each entry 

of that matrix by m . 
It is not difficult to verify the properties as follows: 

( )• ... ... ...1 2 1 2 1 2m n A mA nAI I I I I I I I In n n+ = +× × × × × × × × ×  

( )• ... ... ... ...1 2 1 2 1 2 1 2m A B mA mBI I I I I I I I I I I In n n n+ = +× × × × × × × × × × × ×  

( )• ... ...1 2 1 2m nA mnAI I I I I In n=× × × × × ×  

Where m and n are any numbers, and ...1 2AI I I n× × ×  and 

...1 2BI I I n× × ×  are any multi-dimensional matrices of 
...1 2I I I n× × × orders. 

For multi-dimensional matrix and multi-dimensional 
vector matrix, the results of equality, addition and scalar 
multiplication operation are the same. But for the 
operations followed, we must partition the dimensions of 
a multidimensional matrix into two parts, each of which 
is taken as a vector. 

F.  Multiplication of Multi-dimensional Vector Matrices 
Let AIJ and BUV be two multi-dimensional vector 

matrices, in which ( ), ,...,1 2I I I I m= , ( ), ,...  1 2J J J J n= ， , 
( ), ,...1 2U U U U s= ， , ( ), ,...1 2V V V V t= ， , If J U= , then AIJ and 

BUV are multiplicative. 
Let AIL  be I L×  matrix and BLJ be L J× matrix. The 

result of multiplication of AIL and BLJ  is defined as a 

I J× matrix [4]
1 1

C ci i j jm n
→ →⎛ ⎞=⎜ ⎟

⎝ ⎠L L
, 

  
1

1 1 1 1 1 11

k

m n m k k nk

LL

i i j j i i l l l l j jl l
c a b a b→ → → → → →= =∑ ∑ ∑il lj

LL L L L L L
L     (1) 

Which is denoted as CIJ = AIL BLJ . 

For simplicity, the signal ( )
1

1

k

k

LL

l l
∑ ∑L L  is rewritten as 

( )
L
∑ L  and the signal 

1 2 1 2
ai i i l l lm k

→ →
L L

 is rewritten as 

ail .If no specified, this kind of form is default. 
Several items are worth the whistle in the 

multiplication of matrices: 
1. Matrices multiplication is not commutative. In 

matrix multiplication, multiplier and multiplicand are not 
commutative. The main reason is that B AUV IJ may not 
make sense when A BIJ UV makes sense. Moreover, even 
though both of them make sense, they may not be equal. 
But in some cases, A BIJ UV  may be equal to B AUV IJ . 
When A B B AIJ UV UV IJ= ， AIJ  and BUV  are said to be 
commutative. Obviously, commutative matrices must be 
square matrices with the same orders. 
      2. The cancellation law of multiplication does not 
hold. When A B A CIL LJ IL LU= , it must not be deduced that 
B CLJ LU= . 

3. The multiplication of two non-zero matrices may 
be zero matrix. 

G.  Multi-dimensional Vector Matrix Transpose 
The definition of multi-dimensional vector matrix 

transpose 

TA AIJ JI=  

For any matrices AIJ and BIJ , there are some properties 
as follows: 
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 ( )TTA AIJ IJ• =   

 ( )TT T T TA B A B A BIJ IJ IJ IJ JI JI• + = + = +   

 ( )T TmA m A mAIJ IJ JI• = =    

( )TT T T TA B B A B AIJ IJ IJ IJ JI JI• = =   

H.  Kronecker Multiplication of Multi-dimensional Vector 
Matrices 
Let ( )... ...1 2 1 2 ...1 2

A aI I I i i in n I I I n
=× × × × × ×

and

( )... ...1 2 1 2 ...1 2
B b j j jJ J J n n J J J n

=× × ×
× × ×

be two multi-

dimensional matrices, whose dimensions are the same. 
The block matrix ( )...1 2 ...1 21 2

A B Bai i in J J JI I I n n
⊗ =

× × ×
is called 

the Kronecker multiplication of ...1 2AI I I n× × ×  
and ...1 2BJ J J n× × × . The symbol ⊗  denotes Kronecker 
multiplication of multi-dimensional matrices. It is 
obvious that the Kronecker multiplication is only relative 
to the sequence of data and not the mode where the 
dimensions are partitioned [4]. 

The nuclear matrix of 2M-dimensional vector matrix 
orthogonal transformation, 

( )
( ) ( )

... ...1 2 1 2

, ,..., , , ,...,1 2 1 2

C cIJ u u u v v vM M

I JN N N N N NM M

=

= =
 

, ( ) ( ) ( )

( ) ( ) ( )

... ...1 2 1 2
1
22 ...1 2...1 2

2 1 2 1 2 11 1 2 2cos cos ... cos
2 2 21 2

cu u u v v vM M

M
c c cu u uMN N N M

v u v u v uM M
N N N M

π π π

⎛ ⎞
=⎜ ⎟⎜ ⎟
⎝ ⎠

+ + +
×

  

 

 

                ( )
1 0
2i

1

uic u
othersui

⎧ =⎪=⎨
⎪ =⎩

  

    

 

0,1, ..., 1 0,1, ..., 11 1

0,1, ..., 1 0,1, ..., 1, , , 1, 2, ...,

u N v Ni i

M i Mu N v N N Ni i i i i

= − = −

∗= − = − ∈ =

 

 
 

Based on these theories of multidimensional vector 
matrix and definitions of two-dimensional matrix 
determinant, we will further define the four-dimensional 
vector matrix determinant and inverse. 

III. FOUR-DIMENSIONAL VECTOR MATRIX DETERMINANT 
AND INVERSE  

The multidimensional vector matrix determinant for a 
one-dimensional matrix is undefined. The 
multidimensional vector matrix determinant for a two-
dimensional square matrix is calculated using the 
traditional methods. The multidimensional vector matrix 
determinant of a two-dimensional non-square matrix is 
undefined.  

Hence, at first, a four-dimensional vector matrix 
which can be calculated determinant should be a four-
dimensional vector square matrix. Secondly, 

commutative matrices must be square matrices with the 
same orders.  

For instants, a four-dimensional vector square 
matrix 1 2 1 2aA j jm n m n i i

m n m n

→ →⎛ ⎞→ → =⎜ ⎟× → →× × ⎝ ⎠ ×× ×
, including 1 1 mi ≤≤ , 

1 2 ni ≤≤ , 1 1 mj ≤≤  and 1 2 nj ≤≤ . 

For a four-dimensional square vector matrix Am n m n
→ →

×× × , 
all the elements of four vector directions where the 
element 1 2 1 2a j ji i

→ → in the matrix Am n m n
→ →

×× ×  is located can be 

cancelled. The other elements are regularly collected in a 
matrix with the orders of ( )1m n× − and then its determinant 
can be calculated. The matrix determinant can be called 
the cofactor of the element 1 2 1 2a j ji i

→ → , denoted as 1 2 1 2M j ji i
→ → , 

then 

( ) ( )( ) 1 11 2 1 2-11 2 1 21 2 1 2
n nj ji iA Mj j j ji i i i

→ → → →⎡ ⎤⎡ ⎤− + + − +⎣ ⎦ ⎣ ⎦=  

1 2 1 2A j ji i
→ → can be said the vector cofactor of the 

element 1 2 1 2a j ji i
→ → . 

For example, a four-dimensional square vector matrix 

2 2 2 2A
→ →

×× × with the orders of two. 

1112 1212

1111 1211 2112 2212

2111 2211
2 2 2 2

1122 12 22

11 21 12 21 2122 2222

2121 2221 2 2 2 2

a a

a a a a

a a
A

a a

a a a a

a a

→→ →→⎡ ⎤
⎢ ⎥
⎢ ⎥→→ →→⎡ ⎤ →→ →→
⎢ ⎥⎢ ⎥⎣ ⎦

⎢ ⎥→→ →→
⎢ ⎥⎣ ⎦→ → =×× × →→ →→⎡ ⎤

⎢ ⎥
⎢ ⎥→→ →→⎡ ⎤ →→ →→
⎢ ⎥⎢ ⎥⎣ ⎦

⎢ ⎥→→ →→ → →⎢ ⎥⎣ ⎦ × × ×

        

 

The vector cofactor of the element 1111a
→→ : 

( ) ( )( ) 1 1 2 1 1 1 2 111111 1111 1111A M M
→→ →→ →→− × + + − × +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦= − =  

The vector cofactor of the element 12 22a
→→ :   

( ) ( )( ) 2 1 2 1 2 1 2 212122 2122 2122A M M
→→ →→ →→− × + + − × +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦= − =−  

A.  The Definition of Four-dimensional Vector Square 
Matrix Determinant 
For a four-dimensional vector square matrix, each 

element of any vector direction is multiplied by its vector 
cofactor and then all the products are added. The product 
can be called the four-dimensional vector square matrix 
determinant. 

1 21 2 1 21 21 11 2

m n
aA A j jj jm n m n i ii i

i i

→ →→ →→ → = ∑ ∑×× ×
= =

 
1,2,...,1
1,2,...,2

mj
nj

=
=

 

So we can prove the definition of the above formula. 
Due to the addition of multi-dimensional vector matrices, 
the four-dimensional vector square matrix determinant 
can be rewritten. 
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0 ... 0 0 .. ... 0111 1 1

1111 1 11
0 ... 00 ... 11 ... 0 1

111 11

11 1

1

Am n m n

a an n n

a a n
a am n mn n

a am mn

a amn nmn

a am mn mnmn

m n m n

→ →
×× ×

→→ →→⎡ ⎤
+ + + + + +⎢ ⎥

⎢ ⎥
→→ →→⎡ ⎤ ⎢ ⎥

⎢ ⎥ →→ →→⎢ ⎥
+ + ++ +⎢ ⎥⎢ ⎥ + +⎣ ⎦

⎢ ⎥
→→ →→⎢ ⎥

⎢ ⎥⎣ ⎦
=

→→ →→⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
→→ →→⎢ ⎥

⎢⎣ ⎦

→ →
× × ×

L

N M O M
L

L
M O M

L

L

N M O M

L
11 1 1 1

1 1 1

a am nm

a am m mnm

→→ →→⎡ ⎤
⎢ ⎥

⎥⎢ ⎥
⎢ ⎥
→→ →→⎢ ⎥

⎢ ⎥⎣ ⎦

L

M O M

L

        

 

     

0111

0 01111 1 11

111 11

11 1

11 1 1 1
1

1 1 1

a n

a a n

a am mn

a amn n mn

a am n m
a am mn mn mn

a am m mn m m n m n

→→⎡ ⎤
⎢ ⎥
⎢ ⎥

→→ →→⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥

→→ → →⎢ ⎥
⎢ ⎥⎣ ⎦=

→ → → →⎡ ⎤
⎢ ⎥
⎢ ⎥

→→ →→⎡ ⎤ ⎢ ⎥
⎢ ⎥ → → → →⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥

→ → → →⎢ ⎥ → →⎢ ⎥⎣ ⎦ × × ×

L

N M O M
L L

M O M

L

L

N M O M
L

L
M O M

L

        

 

0 1 1

0 01111 1 11

111 11
...

11 1

11 1 1 1
1

1 1 1

a n n

a a n

a am mn

a amn n mn

a am n m
a am mn mn mn

a am m mn m m n m n

→→⎡ ⎤
⎢ ⎥
⎢ ⎥

→→ →→⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥

→→ → →⎢ ⎥
⎢ ⎥⎣ ⎦

+ +
→ → → →⎡ ⎤

⎢ ⎥
⎢ ⎥

→→ →→⎡ ⎤ ⎢ ⎥
⎢ ⎥ → → → →⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥

→ → → →⎢ ⎥ → →⎢ ⎥⎣ ⎦ × × ×

L

N M O M
L L

M O M

L

L

N M O M
L

L
M O M

L

        

     

 

0 0

11 11 1 11
011

111 11...

11 1

11 1 1 1
1

1 1 1

a a n
a m n

a am mn

a amn n mn

a am n m
a am mn mn mn

a am m mn m m n m n

⎡ ⎤
⎢ ⎥
⎢ ⎥

→→ →→⎡ ⎤ ⎢ ⎥
⎢ ⎥ → →⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥

→ → → →⎢ ⎥
⎢ ⎥⎣ ⎦+ +

→ → → →⎡ ⎤
⎢ ⎥
⎢ ⎥

→ → →→⎡ ⎤ ⎢ ⎥
⎢ ⎥ → → → →⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥

→ → → →⎢ ⎥ → →⎢ ⎥⎣ ⎦ × × ×

L

N M O M
L

L
M O M

L

L

N M O M
L

L
M O M

L

        

 

 

0 0

1111 1 11
0 1

111 11...

11 1

11 1 1 1
1

1 1 1

a a n
amn n

a am mn

a amn n mn

a am n m
a am mn mn mn

a am m mn m m n m n

⎡ ⎤
⎢ ⎥
⎢ ⎥

→→ →→⎡ ⎤ ⎢ ⎥
⎢ ⎥ → →⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥

→→ → →⎢ ⎥
⎢ ⎥⎣ ⎦+ +

→ → → →⎡ ⎤
⎢ ⎥
⎢ ⎥

→→ →→⎡ ⎤ ⎢ ⎥
⎢ ⎥ → → → →⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥

→ → → →⎢ ⎥ → →⎢ ⎥⎣ ⎦ × × ×

L

N M O M
L

L
M O M

L

L

N M O M
L

L
M O M

L

        

 

Because of the definition of four-dimensional vector 
square matrix determinant, we can conclude 

... ... ...111 1 1 11 1111 1 1 11 1

Am n m n

a a a aA A A An n n m n mn nn n n m n mn n

→ →
×× ×

→→ →→ →→ → →→→ →→ →→ → →
= + + + + + +

 
      

The four-dimensional vector matrix determinant can also 
be defined, 

1 21 2 1 21 21 11 2

m n
aA A j jj jm n m n i ii i

j j

→ →→ →→ → = ∑ ∑×× ×
= =

 1,2,...,1
1,2,...,2

mi
ni

=
=

 

If the order of n=m,  

1 21 2 1 21 21 11 2

m m
aA A j jj jm m m m i ii i

i i

→ →→ →→ → = ∑ ∑×× ×
= =

 
1,2,...,1
1,2,...,2

mj
mj

=
=

 

Likewise, 

     1 21 2 1 21 21 11 2

m m
aA A j jj jm m m m i ii i

j j

→ →→ →→ → = ∑ ∑×× ×
= =

 1,2,...,1
1,2,...,2

mi
mi

=
=

 

Similarly, all elements of any vector direction in the 
four-dimensional vector square matrix are multiplied by 
the vector cofactor of corresponding elements in another 
vector direction and then all the products are added. The 
result is zero.  

... ... 011 111 11 2 1 2 1 21 2 1 2 1 2

... ... 011 111 11 2 1 2 1 21 2 1 2 1 2

a a aA A An mnn mnj j j j j ji i i i i i

a a aA A An mnn mnj j j j j ji i i i i i

→ → → → → →→ → → → → →
+ + + + =

→ → → → → →→ → → → → →
+ + + + =

 

First, we should calculate the Am n m n
→ →

×× × by the certain 

vector cofactor, 
.111 1 1

1111 1 11
11 1

111 11

11 1

11 1 1 1
1

1 1

a an n n

a a n
a am n mn n

a am mn
Am n m n

a amn n mn

a am n m
a am mn mnmn

am m mn m n m n

→→ →→⎡ ⎤
⎢ ⎥
⎢ ⎥

→→ →→ ⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥ →→ →→
⎢ ⎥⎢ ⎥ ⎣ ⎦

⎢ ⎥
⎢ ⎥→→ →→
⎢ ⎥→ → ⎣ ⎦=×× × →→ →→⎡ ⎤

⎢ ⎥
⎢ ⎥

→→ →→ ⎢ ⎥
⎢ ⎥→→ → →
⎢ ⎥⎣ ⎦

→→ → →
× × ×

L

N M O M
L

L
M O M

L

L

N M O M
L

L
M O M

L

        

1a m

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥→→
⎢ ⎥⎣ ⎦

 

... ... ...111 1 1 11 1111 1 1 11 1a a a aA A A An n n m n mn nn n n m n mn n
→→ →→ →→ → →→→ →→ →→ → →

= + + + + +

   Secondly, we replace the elements of the other 
certain vector direction in the sides of the above equation. 
That is 1 11 2 1 2a an mi i i i

→ → → →
= . 

.111 1 1

1111 1 11
11 1

111 11

11 1

.111 1 1
1

11

a an n n

a a n
a am n mn n

a am mn
Am n m n

a amn n mn

a an n n
a am mn mn mn

am n m m n m n

→→ →→⎡ ⎤
⎢ ⎥
⎢ ⎥

→→ →→ ⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥ →→ →→
⎢ ⎥⎢ ⎥ ⎣ ⎦

⎢ ⎥
⎢ ⎥→→ →→
⎢ ⎥→ → ⎣ ⎦=×× × →→ →→⎡ ⎤

⎢ ⎥
⎢ ⎥

→→ →→ ⎢ ⎥
⎢ ⎥→ → → →
⎢ ⎥⎣ ⎦

→→ → →
× × ×

L

N M O M
L

L
M O M

L

L

N M O M
L

L
M O M

L

        

1a n n

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥→→
⎢ ⎥⎣ ⎦

 

... ... ...11 1 1 1 1 1 1111 1 1 11 1

0

a a a aA A A Am n m m m mn mn n n m n mn n
→→ →→ →→ → →→→ →→ →→ →→

= + + + + +

=
If the order of n=m, 

... ... 011 111 11 2 1 2 1 21 2 1 2 1 2a a aA A Am mmm mmj j j j j ji i i i i i
→ → → → → →→ → → → → →

+ + + + =

... ... 011 111 11 2 1 2 1 21 2 1 2 1 2a a aA A Am mmm mmj j j j j ji i i i i i
→ → → → → →→ → → → → →

+ + + + =  
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In conclusion, 

,    1 21 2...   11111 2 1 21 2 1 2 0 ,      1 21 2

A j ji i
a aA A mnmnj j j ji i i i j ji i

= =⎧→ → → →→ → → → ⎪+ + =⎨ ≠ ≠⎪⎩
 (2) 

,    1 21 2...   1111 1 2 1 21 2 1 2 0 ,      1 21 2

A j ji i
a aA Amnmnj j j ji i i i j ji i

= =⎧→ → → →→ → → → ⎪+ + =⎨ ≠ ≠⎪⎩
 (3) 

B.  The Definition of Four-dimensional Vector Square 
Matrix Inverse 
The multidimensional vector matrix inverse for a one-

dimensional matrix is undefined. The multidimensional 
vector matrix inverse of a two-dimensional matrix exists 
if it is a square matrix and has a nonzero determinant, and 
is calculated using the standard means in traditional 
matrix math. For the four-dimensional vector matrix, 
each four-dimensional vector square matrix with a 
nonzero determinant is necessary. Firstly, we define the 
four-dimensional vector adjoin matrix. 

The definition of four-dimensional vector adjoin 
matrix,  

1 2 1 2

T
A j ji iAm n m n m n m n

→ →∗ ⎛ ⎞→ → =⎜ ⎟ → →×× × ⎝ ⎠ ×× ×
 

If a four-dimensional vector square matrix 
Am n m n

→ →
×× ×  is invertible, and 0Am n m n

→ → ≠×× × , then 

   1 1
A Am n m n m n m n

Am n m n

− ∗→ → → →=× ×× × × ×→ →
×× ×

          (4) 

If four-dimensional vector square matrix Am n m n
→ →

×× ×  is 
invertible, the four-dimensional vector square matrix 
inverse 1

Am n m n
−→ →

×× ×
can be existed. That 

is 1
EA Am n m n m n m n

−→ → → → =× ×× × × ×
. We also calculate the 

determinant of the equation.  

That is 1
1A Am n m n m n m n

−→ → → → =×× × ×× ×
 ( 0Am n m n

→ → ≠×× ×  ). 

Contrarily, if the four-dimensional vector square 
matrix 0Am n m n

→ → ≠×× × , we can find, 

1

1

A m n m n A m n m n
A m n m n

AA m n m nm n m n
A m n m n

E

⎛ ⎞
⎜ ⎟∗→ → → →⎜ ⎟×× × ×× ×⎜ ⎟→ →
⎜ ⎟×× ×⎝ ⎠

⎛ ⎞
⎜ ⎟∗ → →→ →⎜ ⎟= ×× ××× ×→ →⎜ ⎟

×⎜ ⎟× ×⎝ ⎠

=

 

 

So we can also prove the formula. If a four-
dimensional vector square matrix Am n m n

→ →
×× ×  is invertible, 

and 0Am n m n
→ → ≠×× × , then 

 1 1
A Am n m n m n m n

Am n m n

− ∗→ → → →=× ×× × × ×→ →
×× ×

 

If the order of n=m,   

          1 1
A Am m m m m m m m

Am m m m

− ∗→ → → →=× ×× × × ×→ →
×× ×

 

IV. THE PROPERTIES OF FOUR-DIMENSIONAL VECTOR 
MATRIX DETERMINANT AND INVERSE 

 In the Section 3, we have defined the formula of 
four-dimensional vector matrix determinant and inverse. 
So we can conclude the properties of four-dimensional 
vector matrix determinant and inverse. 

1.  A four-dimensional vector square matrix Am n m n
→ →

×× × , 

 T
A Am n m n m n m n
→ → → →=×× × ×× ×

. 

For a four-dimensional vector square matrix Am n m n
→ →

×× × ,  

1 21 2 1 21 21 11 2

... ...11 11 1 11 1111 11 1 11 11

1 21 2 1 21 21 11 2

... ..11111111 11 11 11

m n
AaA j jj j i im n m n i i

i i

a a aA A An mnn mn
m n

a A j jj j i ii i
j j

a A nnAa

→ →→ →→ → ∑= ∑×× ×
= =

→→ →→ → →→→ →→ → →
= + + + +

→ →→ →
= ∑ ∑

= =

→→→→→→ →→= + + +

          

          

          . 1111a A mnmn
→ →→ →

+

 

1 21 2 1 21 21 11

... ...1111 1 11 111111 1 11 11

1 21 2 1 21 21 11 2

... 1111111111 1111

m nT
Aa j jj j i iA i im n m n j j

a a aA A An mnn mn
m n

a A j jj j i ii i
i i

a nnAa

→ →→ →→ → ∑= ∑×× × = =

→→ →→ →→→→ →→ →→
= + + + +

→ →→ →
= ∑ ∑

= =

→→→→→ →→= + +

            

            

           ... 1111aA A mnmn
→ →→→→

+ +

 

So T
A Am n m n m n m n
→ → → →=×× × ×× ×

 . 

2.   If four-dimensional vector square matrix Am n m n
→ →

×× ×  is 

invertible, 0λ≠ , and Am n m nλ
→ →

×× × is also invertible, then 
1 -11

A Am n m n m n m nλ
λ

−→ →⎛ ⎞ → →=⎜ ⎟×× × ×× ×⎝ ⎠
 

We have known, 
-1 -1

EA AA Am n m n m n m nm n m n m n m n
→ → → →→ → → →= =× ×× × × ×× ×× × × ×

 

-1 -11 1A A EA Am n m n m n m nm n m n m n m n
λ λλ λ

⎛ ⎞ ⎛ ⎞→ → → →⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟→ → → →= =⎜ ⎟ ⎜ ⎟× ×× × × ×⎜ ⎟ ⎜ ⎟× ×⎝ ⎠ ⎝ ⎠× × × ×⎝ ⎠ ⎝ ⎠
 

If Am n m nλ
→ →

×× ×  is invertible, 
-11 1 AAm n m n m n m n

λ λ

−→ →⎛ ⎞ → →=⎜ ⎟×× × ×⎝ ⎠ × ×
. 
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3.  If four-dimensional vector square matrix Am n m n
→ →

×× ×  

and T
Am n m n
→ →

×× ×
 are both invertible, then 

1 -1 TT
A Am n m n m n m n

−⎛ ⎞ ⎛ ⎞→ → → →=⎜ ⎟ ⎜ ⎟× ×× × × ×⎝ ⎠ ⎝ ⎠
 

If Am n m n
→ →

×× × is invertible,  

-1 -1
EA AA Am n m n m n m nm n m n m n m n

→ → → →→ → → →= =× ×× × × ×× ×× × × ×
 

We calculate the transpose of the equation,  

-1 -1T TT T
EA AA Am n m n m n m nm n m n m n m n

⎛ ⎞ ⎛ ⎞→ → → →⎛ ⎞ ⎛ ⎞→ → → →= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟× ×× × × ×× ×× × × ×⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

If the four-dimensional vector matrix
T

Am n m n
→ →⎛ ⎞

⎜ ⎟×× ×⎝ ⎠
is 

invertible, 

1 -1 TT
A Am n m n m n m n

−⎛ ⎞ ⎛ ⎞→ → → →=⎜ ⎟ ⎜ ⎟× ×× × × ×⎝ ⎠ ⎝ ⎠
 

4. If four-dimensional vector matrix Am n m n
→ →

×× ×  and 

Bm n m n
→ →

×× ×  are both invertible and four-dimensional 

vector square matrix A Bm n m n m n m n
→ → → →

× ×× × × × is also 
invertible, then  

1 -1 -1
A B B Am n m n m n m n m n m n m n m n

−→ → → →⎛ ⎞ → → → →=⎜ ⎟× ×× × × × × ×× × × ×⎝ ⎠
 

If four-dimensional vector square matrix Am n m n
→ →

×× ×  

and Bm n m n
→ →

×× ×  are both invertible, 

-1 -1

-1 -1

-1

-1

A B B Am n m n m n m n m n m n m n m n

BA B Am n m n m n m n m n m nm n m n

A E Am n m n m n m n m n m n

A Am n m n m n m n

E

⎛ ⎞→ → → →⎛ ⎞ → → → →⎜ ⎟ ⎜ ⎟× ×× × × × × ×× × × ×⎝ ⎠ ⎝ ⎠

⎛ ⎞→ → → → → →→ →= ⎜ ⎟× ×× × × × ×⎜ ⎟ × ××× ×⎝ ⎠

→ → → → → →= × ×× × × × ×× ×

→ → → →= ×× × ×× ×

=

 

 

 

 

 

 

Similarly,  

-1-1
EA A Bm n m n m n m nBm n m n m n m n

⎛ ⎞ → → → →⎛ ⎞→ →⎜ ⎟→ → =⎜ ⎟× ×× × × ××× ×⎜ ⎟× ⎝ ⎠× ×⎝ ⎠
 

If the four-dimensional vector matrix 
A Bm n m n m n m n
→ → → →

× ×× × × × is invertible, 

1 -1 -1
A B B Am n m n m n m n m n m n m n m n

−→ → → →⎛ ⎞ → → → →=⎜ ⎟× ×× × × × × ×× × × ×⎝ ⎠
 

5.  If four-dimensional vector square matrix Am n m n
→ →

×× ×  is 

invertible, 1
UNITAA m n m nm n m n

−⎛ ⎞ → →→ → =⎜ ⎟ ×× ××× ×⎝ ⎠
. 

In traditional matrix mathematics, if a matrix 
possesses an inverse and that matrix is multiplied by its 
inverse, the product is an identity matrix with the same 
dimensions.  

Because multidimensional vector matrices are a 
concatenation of two-dimensional matrices, if a four-
dimensional vector matrix has an inverse and that four-
dimensional vector matrix is multiplied by its inverse, 
then the product will be a four-dimensional vector 
identity matrix with the same dimensions.  

Due to the definition of four-dimensional vector 
matrix inverse （ 4 ） and 0Am n m n

→ → ≠×× × , if this 

matrix Am n m n
∗→ →

×× ×
is the four-dimensional vector adjoin 

matrix, we can conclude 
1

1

A m n m nA m n m n

A m n m nA m n m n
A m n m n

−⎛ ⎞ → →→ →⎜ ⎟ ×× ××× ×⎝ ⎠

⎛ ⎞
⎜ ⎟∗ → →→ →⎜ ⎟= ×× ××× ×⎜ ⎟→ →
⎜ ⎟×× ×⎝ ⎠

 

 

1 11 1 1

1111 111
1 1 1

1 11 1 11

11 1

111 11
1

1 1 × × ×

A An n n

A A n
A Anm nmn

A Am mn

Am n m n A Amn mn n

A Am m n
A Amnm mnmn

Am m m n m n

→→ →→⎡ ⎤
⎢ ⎥
⎢ ⎥

→→ →→ ⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥ →→ →→
⎢ ⎥⎢ ⎥ ⎣ ⎦

⎢ ⎥
⎢ ⎥→→ →→
⎢ ⎥⎣ ⎦=

→ → →→ →→⎡ ⎤
×× × ⎢ ⎥

⎢ ⎥
→→ →→ ⎢ ⎥

⎢ ⎥→→ →→
⎢ ⎥⎣ ⎦

→→ → →

L

N M O M
L

L
M O M

L

L

N M O M
L

L
M O M

L 1Am mn

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥→→
⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

 

111 1 1

1111 1 11
11 1

111 11

11 1

11 1 1 1
1

1 1 1

a an n n

a a n
a am n mn n

a am mn

a amn n mn

a am n m
a am mn mnmn

a am m mnm m n m n

→→ →→⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥→→ →→⎡ ⎤
⎢ ⎥⎢ ⎥ →→ →→
⎢ ⎥⎢ ⎥ ⎣ ⎦

⎢ ⎥
⎢ ⎥→→ →→
⎢ ⎥⎣ ⎦×

→→ →→⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥→→ →→⎡
⎢ ⎥⎢ →→ →→
⎢ ⎥⎢ ⎣ ⎦

⎢
→→ →→ → →

⎣ × × ×

L

N M O M
L

L
M O M

L

L

N M O M
L

L
M O M

L

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎤⎢ ⎥⎥⎢ ⎥⎥⎢ ⎥⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎦⎣ ⎦

 

0

0 0 0

0 0
1

0 0

0 0 0

0

Am n m n

Am n m n

Am n m n

Am n m n

Am n m n
m n m n

⎡ ⎤⎡ → → ⎤
⎢ ⎥⎢ ⎥×× ×
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎡ → → ⎤⎢ ⎥⎢ ⎥
⎢ ⎥×⎢ ⎥× × ⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥

⎣ ⎦⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎣ ⎦⎢= ⎢→ → ⎡ ⎤⎢×× × ⎢ ⎥⎢ ⎢ ⎥⎢ ⎢ ⎥⎢ ⎡ ⎤ ⎢ ⎥⎢ ⎢ ⎥ → →⎢ ⎥⎢ ⎢ ⎥ ×⎢ ⎥× ×⎢ ⎣ ⎦⎢ ⎥
⎢ ⎢ ⎥
⎢ → →⎢ ⎥
⎢ → →×⎢ ⎥× ×⎣ ⎦⎣ ⎦ × × ×

L

N M O M
L L

M O M

L

L

N M O M

L L
M O M

L

      

UNIT

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

 

Due to the multiplication of multi-dimensional vector 
matrices (1) and the formula of four-dimensional vector 
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matrix determinant (2) and (3), that is 
1

UNITAA m n m nm n m n
−⎛ ⎞ → →→ → =⎜ ⎟ ×× ××× ×⎝ ⎠

. 

For example, the four-dimensional vector matrix 

2 2 2 2A
→ →

×× × with two orders is given. By means of the 
program’s operation, we can calculate the four-
dimensional vector inverse matrix. 

1
2 2 2 2 2 2 2 2

1 1
40 40

9 1 11 9
2 3 40 40 40 40

1 2 4 1 1 11
3 4 40 40

2 3 11 9
1 2 40 404 1

1 11 1 13 4
2 2 2 2 40 40 40 40

9
40 2 2 2 2

A A
−→ → → →

× ×× × × ×

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎢ ⎥− −⎢ ⎥⎡ ⎤⎡ ⎤ ⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥⎢ ⎥⎡ ⎤ ⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦= ⎢ ⎥

⎡ ⎤ ⎡ ⎤⎢ ⎥ −⎢ ⎥ ⎢ ⎥⎢ ⎥⎡ ⎤ ⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥ → → ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ×× × ⎢ ⎥⎣ ⎦

− → →
× × ×

 

   

      
1
40

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

    

0 1
1 0 0 0
0 0

0 0
0 0 0 1
1 0 2 2 2 2

U N IT

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎡ ⎤ ⎣ ⎦⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

= ⎢ ⎥
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥⎡ ⎤ ⎣ ⎦⎢ ⎥⎢ ⎥ → →

⎢ ⎥⎣ ⎦⎣ ⎦ × × ×

=

     
 

6.  The determinant of four-dimensional vector identity 
matrix Am n m n

→ →
×× ×  is 1. 

In traditional matrix mathematics, if a matrix is an 
identity matrix, the determinant of two-dimensional 
matrix is 1. 

Similarly, multidimensional vector matrices are a 
concatenation of two-dimensional matrices, if a four-
dimensional vector matrix is a four-dimensional vector 
identity matrix, the result of four-dimensional vector 
identity matrix determinant is 1. That is 1Am n m n

→ → =×× × .  

For example, 
111 1 1

1111 1 11
11 1

111 11

11 1

11 1 1 1
1

1 1

a an n n

a a n
a am n mn n

a am mn
Am n m n

a amn n mn

a am n m
a am mn mn mn

am m mn m n m n

→→ →→⎡ ⎤
⎢ ⎥
⎢ ⎥

→→ →→ ⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥ →→ → →
⎢ ⎥⎢ ⎥ ⎣ ⎦

⎢ ⎥
⎢ ⎥→→ → →
⎢ ⎥→ → ⎣ ⎦=×× × → → → →⎡ ⎤

⎢ ⎥
⎢ ⎥

→→ →→ ⎢ ⎥
⎢ ⎥→ → → →
⎢ ⎥⎣ ⎦

→ → → → →
× × ×

L

N M O M
L

L
M O M

L

L

N M O M

L
L

M O M

L

        

1a m

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥→
⎢ ⎥⎣ ⎦

                   

0 1

1 0
0 0

0 0

0 0

0 0
0 1

1 0 × × ×m n m n

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥ ⎣ ⎦

⎢ ⎥
⎢ ⎥⎣ ⎦=

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥ ⎣ ⎦

⎢ ⎥ → →⎢ ⎥⎣ ⎦

L

N M O ML
LM O M

L

L

N M O ML
LM O M

L

        

1=  

7.  The other properties of multidimensional vector 
matrix determinant and inverse. 
There are still many properties of two-dimensional 

matrix that can be extend to the four-dimensional vector 
matrix. 

If all the elements of any vector direction are zero in a 
four-dimensional vector square matrix Am n m n

→ →
×× × , then 

| Am n m n
→ →

×× × | = 0.  
If one vector direction is proportional to another 

vector direction of a four-dimensional vector square 
matrix Am n m n

→ →
×× × , then | Am n m n

→ →
×× × | = 0.  

If one vector direction is a linear combination of one 
or more other vector directions of a four-dimensional 
vector square matrix Am n m n

→ →
×× × , then | Am n m n

→ →
×× × | = 0.  

If two vector directions of a four-dimensional vector 
square matrix Am n m n

→ →
×× × are interchanged, the sign of the 

determinant of the matrix Am n m n
→ →

×× × is changed. 

A four-dimensional vector square matrix Am n m n
→ →

×× ×  
inverse which it is an invertible matrix can be unique. 

If four-dimensional vector square matrix Am n m n
→ →

×× × is 

invertible, 
11

AA m n m nm n m n

−−⎛ ⎞ → →→ → =⎜ ⎟ ×× ××× ×⎝ ⎠
. 

There are various properties of four-dimensional 
vector matrix determinant and inverse to prove the 
correctness of four-dimensional vector matrix 
determinant and inverse definition in this paper. 
Meanwhile, we run successfully the corresponding 
program to verify the definition of the four-dimensional 
vector matrix determinant and inverse.  

V.  CONCLUSION 

On the basis of newly operation laws of 
multidimensional vector matrix, we define the four-
dimensional vector matrix determinant, inverse and 
related properties in this model. We also prove the 
correctness of these associated formulas by mathematics 
and program. In this program, followed by the definitions 
and certification of four-dimensional vector matrix, we 
have successfully run related program and get the rational 
result which the four-dimensional vector matrix 
Am n m n
→ →

×× ×  multiplied by the four-dimensional vector 

matrix inverse 1
Am n m n

−→ →
×× ×

is equal to the four-
dimensional vector identity matrix. 

In this paper, we have introduced mainly the theory of 
multi-dimensional vector matrix, the four-dimensional 
vector matrix determinant and inverse. The future work is 
to extend the four-dimensional vector matrix 
inverse 1

Am n m n
−→ →

×× ×
 to multidimensional vector matrix 

inverse
1

1 2... 1 2...Am m m m mm nn

−→ →
× ×× × . We will apply adopted 

theories and definitions on multidimensional vector 
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matrix 1 2... 1 2...Am m m m mm nn
→ →
× ×× × . 
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