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Abstract—This is a new series of study to define and prove
multidimensional vector matrix mathematics, which
includes four-dimensional vector matrix determinant, four-
dimensional vector matrix inverse and related properties.
There are innovative concepts of multi-dimensional vector
matrix mathematics created by authors with numerous
applications in engineering, math, video conferencing, 3D
TV, and other fields.

Index Terms—multidimensional vector matrix, four-
dimensional vector matrix determinant, four-dimensional
vector matrix inverse

. INTRODUCTION

This paper brings a new branch of mathematics called
multidimensional vector matrix mathematics and its new
subsets, four-dimensional vector matrix determinant and
four-dimensional vector matrix inverse. The traditional
matrix mathematics [1] that engineering, science, and
math students are usually introduced to in college handles
matrices of one or two dimensions. Ashu M. G. Solo [2]
also defined some multidimensional matrix algebra
operations. Multidimensional matrix mathematics extends
the classical matrix mathematics to any figure of
dimensions.

Matrix inversions are very significant means in many
fields of combinatory and special functions principle.
When dealing with combinatorial sums, application of
matrix inversion may help to simplify problems, or
propose new identities. At this point it seems suitable to
set forth a little on the history of matrix inversions and
inverse relations, specifically, since H. W. Gould’s name
is inevitably tied with it [7]. In fact, Riordan provided
lists of known matrix inversions and devoted two
chapters of his book to inverse relations and their
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application in his book [8] in the 1960s. As time passes,
people brought to light an increasing number of such
explicit matrix inversions. Gould spared no effort to study
an outstanding part of these inverse relations in a series of
papers [9], [10], [11], [12]. This study culminated in the
important discovery, jointly with Hsu, of a very general
matrix inversion [13], which possessed a great deal of
inverse relations and properties of, what is currently
called, Gould-type and Abel-type as special cases on
matrix inversion [7].

The problem detected a g-analogue of their equation
was immediately settled henceforth by Carlitz [20]. The
importance of Carlitz’ matrix inversion firstly showed up
when Andrews [14] dug up that the Bailey transform [15],
[16] is equivalent to a certain matrix inversion that is just
a very unusual condition of Carlitz’. The Bailey
transform is one of the corner stones in the development
of the theory of hyper geometric series, corresponding to
the inversion of two infinite lower-triangular matrices.
However, Carlitz did not propose any applications of
related definitions even earlier. A few years later, Gasper
and Rahman proved a bibasic extension of that matrix
inversion [17], [18], which unifies the matrix inversions
of Gessel and Stanton, and Bressoud. Gessel and Stanton
[6] used it to derive a great number of basic hyper
geometric summations and transformations, and identities
of Rogers-Ramanujan type. The end of this line of
development came with the attempt of the first author to
combine all these recent matrix inversions into one
formula. Indeed, in 1989, he discovered a matrix
inversion, published in [19], which subsumes most of
Riordan’s inverse relations and all the other
aforementioned matrix inversions, as it contains them all
as special cases [7]. Based on these theories and papers,
multidimensional vector matrix extends traditional matrix
math to any figure of dimensions. Therefore, the
traditional matrix mathematics is a subset of
multidimensional vector matrix mathematics.

This paper mainly brings forward the definition of
four-dimensional vector matrix determinant and the four-
dimensional vector matrix inverse. We adopt the form
that is different from the definition of two-dimensional
matrix. But the properties of two-dimensional matrix
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20 Inverse Operation of Four-dimensional Vector Matrix

determinant and inverse can be extended to the four-
dimensional vector matrix. The extension of classical
matrix mathematics to any figure of dimensions has
various applications in many branches of engineering,
math, image compression, coding and other fields. We
should  promote the  other  applications  of
multidimensional vector matrix math that could not be
done without his multidimensional vector matrix
mathematics.

Our group has proposed the definition of
multidimensional vector matrix, multiplication of multi-
dimensional vector matrices, multidimensional Walsh
orthogonal transform and traditional discrete cosine
transform [3]. The multidimensional vector matrix model
will reduce the time redundancy, space redundancy and
color redundancy. Their application in color image
compression and coding is more and more common and
widespread. For one thing, it conquers the restriction of
traditional two-dimensional matrix multiplication. For
another thing, it carries on high efficiency of traditional
matrix transform in the aspect of removing redundancy of
color space. By means of multi-dimensional vector
matrix model, color image data can be expressed and
processed in a unified mathematical model, and better
compression results are received.

In Section 2, a multi-dimensional vector matrix model
will be introduced, and the related properties will be
discussed. In Section 3, we will propose the definitions
of four-dimensional vector matrix determinant and
inverse. Verification the truth of formula with regard to
the four-dimensional vector matrix determinant and
inverse will be also given in the same Section. In Section
4, the related properties of four-dimensional vector

matrix determinant and inverse will be introduced.
Section 5 concludes this paper.
Il. PROPOSED THEORY
Based on the multidimensional vector matrix

definition proposed by our group, we will further study
four-dimensional ~ vector matrix  adjoin  matrix,
determinant, inverse matrix and related properties.
Therefore, nothing more than the basic definition is
presented.

A. The Definition of Multi-dimensional Vector Matrix:

An array of numbers( )in two directions (one

8itip
direction has M entries and the other direction has N
entries) is called two-dimensional matrix, and the set of

all such matrices is represented as My, - An array of

numbers (ayi,..i,, ) in N directions (each direction has

1; entries, 1<i<n . |; can be called the order in this
direction) is called multi-dimensional matrix, and the set
of all such matrices is denoted as My xyx..x1,, [4]-

If the dimensions of multi-dimensional matrix
MKqxKox-xKy are separated into two sets and the matrix

is denoted as M, ,  where m+n=r .

- -
1%1 9% IpxJ1xJ ox-+xJp
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My o - can be denoted as m;, where |
131 9% Iy xJ1xJ ox-+-xJp

and J are for the vectors, 1=(13,12.1m), 3=(31 320 In) -

M, - - can be called multi-dimensional
131 9% Iy xJ1xJ ox-+xJp

vector matrix separated according to the vector I, and J,
multidimensional vector matrix in short [4].

A multi-dimensional matrix has various relevant
multi-dimensional vector matrices, whereas a multi-
dimensional vector matrix has unique relevant multi-
dimensional matrix.

B. Multi-dimensional Vector Identity Matrix:

Let Ay be a multidimensional vector matrix,
where 1=(1p12,.1m) , 3=(J1, 32, 3pn) - If vector 1=J |
then Ay is called multidimensional vector square matrix
[5].

Let Gij :{1 i:j.

) »  Wwhere i=j
0 i#j

represents vector

1=(120 2000 m) + I=(J1, J2.dp) , I it has the same
dimension, the meanings of i=j is that m=n |,
and iy j

= jl’i2 = j2,....im =1in-

If Ay = (sj), Ay is said to be multi-dimensional
vector identity matrix, denoted asE, , or E simply.

C. Equality of Multi-dimensional Vector Matrices:

If both and

At 2% i) g

B|1x|2x...x|n:(biliz,,,in)llxlZX_"XIn are  multi-dimensional

matrices of yxipx.x1, orders, and the corresponding
entries of them are equal, that
IS, ajjip.inDigip.in (SiSIL 1<ip<igies Isipsty) ,  then
Agx) px..x1, 1S SaId to be equal to B x.x,» Which is

denoted as A=B [4].
If we suppose 11=1,=.=1, , then multi-dimensional

matrix A« ,x.x1, 1S called multidimensional square

matrix.

A multi-dimensional matrix is called zero multi-
dimensional matrix if all its entries are zeroes, and is
denoted as zero.

If the corresponding multi-dimensional matrices of
two multi-dimensional vector matrices are equal, then the
others two multi-dimensional vector matrices are also
equal.

D. Addition of Multi-dimensional Vector Matrices:

Let and

A|1><| 2%l n:(ailiZ'"in)|l><| 2%.XIp

be two multi-dimensional

Blpt e n:(biliz”'i“)llxl %% p

matrices of jyx1ox..x1, orders. A multi-dimensional matrix
Clyxt %Xl of 1xiox.x1, orders is called the sum of

A|1><| ZX---X| n and B|1><| 2><...><| n-

Crpa e n:(Ci1i2---in):(""iliz---in+bi1i2---in)IlXI x.xlp
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Inverse Operation of Four-dimensional Vector Matrix 21

Which is denoted as,
Claxtox.xin = Algxl ox..x1 + B)1x1 px..xIpy -

The sum of two multi-dimensional matrices is their
entry-by-entry sum. So we can find that the dimensions
of these two multi-dimensional matrices must be the
same, and the order number of each dimension must be
the same [4].

Because the addition of multi-dimensional matrices
can be formulated as an addition between their entries,
that is the addition of numbers. So it is not difficult to
verify the properties as follows.

For any multi-dimensional matrix A x.x1, »

Bipxipxxly AN Cppwyox.xypy OF 11x12x.x1 Orders:

(1361 .t + Byt .xi n)+°.1x. Xl

:A|1><|2><---><| n +(B|1x| 2%..X| n+c|1><| 2%..X| n)

At xt n *BIpxt gkt TBI et e x i A pxx

zero  multi-

A|1><|2><---><|n+0:A|1><|2><---><|n , 0 IS
dimensional matrix of jyxjox.x1,, orders.
. Multi-dimensional matrix (-ai.:., : is
( aI:I-Iz"'ln)|]_><|2><...><| n
multi-dimensional matrix

denoted

called
of

negative
A1t 2.1 n | i) ’

121 2% X1 n
by*A|1><| XXt

ObVIOUSIY, A1) px..xiy H{~A1px1 px..xi J0

Now that we define the concept of negative matrix of
multi-dimensional matrix, we can conclude the
subtraction:

Alx1 gt ~Blyxt 93 x n TR 9. x| n+('B|1x| 2% x| n) .
Similarly,
A<l e x ] n FBIx 9% n =C1x T %Xy
= Byyx) 92 x1 1 ZC11x1 9% x Iy = AIxd 9% X1y .
E. Scalar Multiplication of Multi-dimensional Vector
Matrices

A multi-dimensional matrix (maig;,..i,) is
12X1 2%.xI

called the result of scalar multiplication of multi-

dimensional  matrix Ay ox.xi = ( and

aigi.. '”)lelzxn-xln

real number m , denoted as MA| 1] gx.x1
Scalar-multiplying a matrix is to multiply each entry
of that matrix by m .
It is not difficult to verify the properties as follows:

* (M)A 1) x.ooxt n =MA 1 gl FNA ¢ 9xx g

(At 21 B1 gt 2.ox1 =) el gt MBI 1 .1
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* m(nA|1><|2><...><|n):mnA|l><|2><...><|n

Where m and n are any numbers, and A1 9% x1 and

are any multi-dimensional matrices of

B|:|_><|2><...><|n
11x1 2%..XI p orders.

For multi-dimensional matrix and multi-dimensional
vector matrix, the results of equality, addition and scalar
multiplication operation are the same. But for the
operations followed, we must partition the dimensions of
a multidimensional matrix into two parts, each of which
is taken as a vector.

F. Multiplication of Multi-dimensional Vector Matrices
Let Ay and Byy be two multi-dimensional vector
matrices, in  which 1=(1312..1m) » 3=(31 3204 3n)
U=(UgU2.Usg) » V=(Viva.vy) , If 3=U , then aj; and
Byy are multiplicative.
Let A be ixL matrix and B j be LxJ matrix. The
result of multiplication of A, and B ; is defined as a

1xJ matrix [4] c= ('1 i 7J-n),

_Za”

' I ln
Which is denoted as ¢|; = A B .

Z Za, (1)

Al Ik |1 Ik hdn

L L
For simplicity, the signal > ---> (--) is rewritten as

[ I

Z(---) and the signal ai.—> is rewritten as
i

N
- im 2+l
g, - If no specified, this kind of form is default.

Several items are worth the whistle in the
multiplication of matrices:

1. Matrices multiplication is not commutative. In
matrix multiplication, multiplier and multiplicand are not
commutative. The main reason is that syy Ay may not

make sense when Aj;eyy makes sense. Moreover, even
though both of them make sense, they may not be equal.
But in some cases, AjjByy Mmay be equal to Byy A .
When AjjByy=BuvAyy » Ay and pyy are said to be
commutative. Obviously, commutative matrices must be
square matrices with the same orders.

2. The cancellation law of multiplication does not
hold. When A B j=A; CLy , it must not be deduced that
BLy=CLu -

3. The multiplication of two non-zero matrices may
be zero matrix.

G. Multi-dimensional Vector Matrix Transpose

The definition of multi-dimensional vector matrix
transpose

T
A3 =AJl

For any matrices A and By , there are some properties
as follows:
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22 Inverse Operation of Four-dimensional Vector Matrix

(A ) =Al
T T
. (Au +By ) =Ay +B1y  =Ay+By
(mAg )T =magy T=may,
T
. (AIJTBIJT) =BT Ay =By Ayl

H. Kronecker Multiplication of Multi-dimensional Vector
Matrices

Let and

A|1><| 2X..X]| n:(ailiz...in)llxl %Xl

be two multi-

B39 {0 112 In) ey e

dimensional matrices, whose dimensions are the same.

The block matrix A®B:( it ; is called
1131%12J 2%.-XIndn

multiplication  of

aigig-inB)
the  Kronecker A 1x1 px..xI

and Bj;xj x.xj, - The symbol ® denotes Kronecker

multiplication of multi-dimensional matrices. It is
obvious that the Kronecker multiplication is only relative
to the sequence of data and not the mode where the
dimensions are partitioned [4].

The nuclear matrix of 2M-dimensional vector matrix
orthogonal transformation,

CU:(%NZMMVNZNM)
I'=(NLN2NMm). 3 = (NLN2N M)

Cugu2-umviv2--vm
1

{2 Refug)clum)
NIN2--NMm
2vp+l 2o+l 2upm +1
roos 2 urr  (varlupr  (2vm H)ume
2N1 2N2 2NMm
1
= =0
o(ui)=y ~2 i
1 uj=others
uj=0,1,..,N1-1 vj=0,1,..,N1-1

ui=01..,Nj-1 vi=0,1,...,Nj-L,M,Nje N i=12.,M

Based on these theories of multidimensional vector
matrix and definitions of two-dimensional matrix
determinant, we will further define the four-dimensional
vector matrix determinant and inverse.

I11. FOUR-DIMENSIONAL VECTOR MATRIX DETERMINANT
AND INVERSE

The multidimensional vector matrix determinant for a
one-dimensional matrix is undefined. The
multidimensional vector matrix determinant for a two-
dimensional square matrix is calculated using the
traditional methods. The multidimensional vector matrix
determinant of a two-dimensional non-square matrix is
undefined.

Hence, at first, a four-dimensional vector matrix
which can be calculated determinant should be a four-
dimensional ~ vector  square  matrix.  Secondly,

Copyright © 2011 MECS

commutative matrices must be square matrices with the
same orders.
For instants,
- — — - —>
matrix Amanmxn:[ailizjljzje -
mxnxmxn

a four-dimensional vector square

, including 1<ijzm

1<ip<n , 1<j;<m and 1<jy<n.

For a four-dimensional square vector MatrixX A, nxmen »

all the elements of four vector directions where the

- >

menxmeen 1S located can be

element a;;, j, j, in the matrix A

cancelled. The other elements are regularly collected in a
matrix with the orders of (mxn-1)and then its determinant

can be calculated. The matrix determinant can be called
- - - -
the cofactor of the element a; ;, j, j, , denoted as mjyj, j, j, -

then
- - - -
itz iy ip=()L (1) Jniz (] l_l)m-]z}MiliZjljZ
A|1|2 1112 can be said the vector cofactor of the
- -
elementa; ;, iio

For example, a four-dimensional square vector matrix

Agnaxans With the orders of two.
> oo
a1112 a1212
27 22 5 o>

al111 ai2iljaz112 a2212

-5 oo
[a2111 a2211

- |
Aox2x2x2| =

> ]

al122 a1222
ondend B
a1121 ai221jap122 az222]
> oo

a2121 a2221 AP

2x2x2x2

The vector cofactor of the element ag;1; :
> -1+ |+ (1-1)x2+1 >
A =)L DR Aap2e ]y 2y 2

The vector cofactor of the element a5 5, :

- 21241 4] (2-1)x2+2 -
Az (2222l 2 on o

A. The Definition of Four-dimensional Vector Square
Matrix Determinant

For a four-dimensional vector square matrix, each
element of any vector direction is multiplied by its vector
cofactor and then all the products are added. The product
can be called the four-dimensional vector square matrix
determinant.

> 5 o o

|1Z Z allllelelllzlllz

j1=12,.m

j9=12,...n

BN
Amxnxmxn

So we can prove the definition of the above formula.
Due to the addition of multi-dimensional vector matrices,
the four-dimensional vector square matrix determinant
can be rewritten.
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RGN
Amxnxmxn

—>—

>

—>—
aliill

-

>
al11l

- =

-
al111

-
Lamill
+

>
a1111

Because of the definition of four-dimensional vector

aln o

[amill -

Laml11l -

Lami1l
+

-
Lami1l -
+

—
ainil

-
amnill

>

alim

-

amimi "

- |

ainll

i
amnil

-

alimi -

- >

amlml

-
alni11l

- -
amnll

>

alimi -

- >

amiml

> |
alnll

- >
amnll

- -
allmi -

- >
amiml

>
aini1

- >
amnll

-

alimli "

- >

amiml

Inverse Operation of Four-dimensional Vector Matrix

-
a111n+t0+.+0

>
O+.+amiin+.+0

—>—
allmn "
S
alnml e
: amlmn
-
amnmi.
-
agtin - 0
0 0
- -
alimn
— ;
alnml - -
: amlmn
- =
amnml
-
0 - ain
0 - 0
- >
alimn
- ;
alnml i
: amlmn
- =
amnml
0 0
- =
amiin - 0
- =
allmn
E—_ ;
alnml - =
: amimn
- >
amnml
0 - 0
- >
0 - amnin
- -
allmn
So |
alnml - -
: amlmn
- >
amnml

square matrix determinant, we can conclude

BN
Amxnxmxn

> oo

be defined,

> oo
=a111nAllin +-.+aininAlnin +..+amlinAmilin +.

-
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-

[E——
- O+.+ainin--+0
-
O+..4+0+amn1n
-
alnmn
-
amnmn
- -
mxnxmxn
-
alnmn
- =
amnmn |
> o>
mxnxmxn
-]
alnmn
- =
amnmn |
- -
mxnxmxn
N
alnmn
- >
amnmn |
-
mxnxmxn
-
alnmn
- >
amnmn |
- >
mxnxmxn

N
- +amn nlAmnnl

The four-dimensional vector matrix determinant can also

23

N mn s 5 5 o i1=12,...m
Amxnxmxn= £ 2 aijjip i1ipAii2 riz i2=1,2,..,n
j1lip=l o
If the order of n=m,
S5 5 m m - o o o j1:1,2,...,m
Amxmxmxm[= Z Z J112AI1I21112 jo=L2,..,m
Likewise,
mm 5 5 5 5 i1=1,2,..,m
Amemximem|= Z Z qiniz fpigMi2 i1l j,-12,..m

Similarly, all elements of any vector direction in the
four-dimensional vector square matrix are multiplied by
the vector cofactor of corresponding elements in another
vector direction and then all the products are added. The
result is zero.

N N BN
Aj1ip11Aj1jo11+ -+ ajgigInAjyjoln +.. +a,1,2mnA1112mn—0

- > o T T
al1|:|_|2Al:|.j:|_]2Jr Jra:l.n|:|_|2A1nj:|_]2Jr +amn|1|2Amn1112

by the certain

First, we should calculate the ‘Amxnxmxn

vector cofactor,

- -
ailln " alnin-
N IR : . :
a1l o ainil ->— -
: . : amlin " a@mnln
> -
— — | |l@mlll ~° amnll
Amxnxmxn|™] N NS
allmn - alnmn
> — ; ;
alimi - ailnml - - -
: - : amlmn “° a@mnmnJ
- -
amimi * amnmi e

S5 oo S5 oo 5> oo > o
=a111inAllin +..+aininAlnin +.-@miinAmlln + ..+ amninAmnin

Secondly, we replace the elements of the other
certain vector direction in the sides of the above equation.

P e e 4
That IS ailizln:ailiz ml-
> -
allin - alnin:
[ >— >-T :
a1111 - ainll - -
: - : amlin “° amniln
- -
— - | [laml1l * amnll
Amxnxmxn|7| RN 55
allmn *°° alnmn
- — ; ‘ :
aliln *° alnln- - - >
: . : amlmn *° a@mnmn]
- - > -
amlln ° amnin mxnxmxn

S5 > S5 > 5> > BN (N
=a11inAlimi+..+aininAlnml+..amlinAmiml+ ... + amnin Amnmi

=0
If the order of n=m,
- - > >
a|1|211A]1J211+ +a|1|21mA11]21m+ +a|1|2mmA11]2mm—0

5> 5 o > > 5 o e
a11j5ipALl jpj, = +almigipAlm j; jo+-+ammigipAmm j; j,=0
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24 Inverse Operation of Four-dimensional Vector Matrix

In conclusion,

e > o > [ |A i=ipiz=io
ai1i211Aj1j211+---+ai1i2mnAjljZmn:{ 2

0 ir#jpiz#in
ALl - = [ A i1=iiz=i;
ALLigip AL jyJy - +amnigi A iy J5~ { i1#pi2% i @)

B. The Definition of Four-dimensional Vector Square
Matrix Inverse

The multidimensional vector matrix inverse for a one-
dimensional matrix is undefined. The multidimensional
vector matrix inverse of a two-dimensional matrix exists
if it is a square matrix and has a nonzero determinant, and
is calculated using the standard means in traditional
matrix math. For the four-dimensional vector matrix,
each four-dimensional vector square matrix with a
nonzero determinant is necessary. Firstly, we define the
four-dimensional vector adjoin matrix.

The definition of four-dimensional vector adjoin
matrix,

T
N %*: - -
Amxnxmxn |1I21112 —> -

xNXmxn
If a four-dimensional vector square matrix
Amxnxman 1S invertible, and ‘Amjnxmjn <0, then
— —>’1: 1 e (4)
Amxnxmxn S S [Amxnxmxn
Amxnxmxn

. . .
If four-dimensional vector square matrix Ay nxmen 1S
invertible, the four-dimensional vector square matrix

> > e be That

A existed.
mxnXmxn

inverse

i > o5 o H_l:E
Amxnxmanmanmxn

determinant of the equation.

We also calculate the

TRAL S Ay e ).

N
Amxnxmxn W - (‘Amanmxn

Contrarily, if the four-dimensional vector square

matriX‘Aanmen¢0 we can find,

A - - 1 N o
mxnxmxn N S [Amxnxmxn
Amxnxmxn

_ 1 N o * A - -
S S [Amxnxmxn mxnxmxn
Amxnxmxn

=E

So we can also prove the formula. If a four-
, . O ,
dimensional vector square matrix A, .«m.n 1S invertible,

- -
and ‘Amxnxmxn =0, then

Copyright © 2011 MECS

1 %
> o T 1 > o
Amxnxmxn S S [Amxnxmxn

Amxnxmxn

If the order of n=m,

-1 1

> o L N
Amxmxmxm S S [Amxmxmxm
Amxmxmxm

IV. THE PROPERTIES OF FOUR-DIMENSIONAL VECTOR
MATRIX DETERMINANT AND INVERSE

In the Section 3, we have defined the formula of
four-dimensional vector matrix determinant and inverse.
So we can conclude the properties of four-dimensional
vector matrix determinant and inverse.

1. A four-dimensional vector square matrixX Aq nxmen -

> 7T

BN
Amxnxmxn

Amxnxmxn[~

For a four-dimensional vector square Matrix Aq, nxmn »

e T

m n
= _Z 2 aI1I2J1]2A|1|2J112
i1=ljo=1

‘Amanmxn
— E— T
=a1111A1111+- Jf’sllnllAlnll+ +amn11Amni11

n 5 5 5 -
>  Bitiz iripAiniz it

j1=1lio=
NN > o
31111A1111 +a111nA111n+ +alimnAllmn
ST § - 2o
Amxnxmxn i 1za11]2i1i2AJ]_J2I1I2

> 5 > S > oS
=a1111A1111+-+ain11AIn 11+-+amn11Amn11

e
= Z Z aJ1J2I1I2AJ112|1|2
i=Liz=1
NN e - o
a1111A1111+ -+2111nAl1ln +.. +allmnAllmn

N

Amxnxmxn

So ‘Amanmxn

2. If four-dimensional vector square matrix Aqow«men IS

invertible, 220, and 2 Am.nxman IS also invertible, then

i 171 SN
Amxnxmxn | =7 Amxnxmxn

We have known,

1T 5 515 >

“Amxnxmxn Amxnxmxn= E

NN
Amxnxmxn Amsnxmsxn

1 B 1 -
[iAmanm?n) A o 5o AS o [ﬂAmanmjn):E
A mxnxXmxn A mxnxXmxn

If 2Amunxmn 1S iNvertible,

B | 1
(lAmanmxnj _ﬂAmanmjn '

1.J. Intelligent Systems and Applications, 2011, 5, 19-27



Inverse Operation of Four-dimensional Vector Matrix 25

. , ORI
3. If four-dimensional vector square MatriX Aq.nxmen
T , ,
and 4 >~ are both invertible, then
mxnxmxn
-1 T
I g . - - 1
Amxnxmxn Amxnxmxn
- o o :
If Apnxmxn IS iNvertible,
- - N N et £

A - = A =
mxnxmxnNAmxnxmxn ~ Amxnxmxn  “mxnxmxn

We calculate the transpose of the equation,
T T
> -1 ﬁﬁT_ﬁﬁTaa'l_E
Amxnxmxn Amscnxmxn | =\ Amscnxmxn Amxnxmxn -

.
If the four-dimensional vector matrix [Am_x)nxm_;nj is

invertible,
-1 T
> o7 4 - -1
Amxnxmxn Amxnxmxn

4. If four-dimensional vector matrix Ay nxmy

mxn and

RN

— - - - -
Bmxnxmxn aré both invertible and four-dimensional

e

vector square MatriX  ApxmenBrenxmen 1S also
invertible, then
> o —>71,—> >1 ., 51
AmxnxmxnBmxnxmxn | “Bmunxmxn  Amxnxmxn
If four-dimensional vector square matrix A. ..o
q Amxnxmxn
and By, nxmyan are both invertible,
N N 1, LA
AmxnxmxnBmxnxmxn J| Bmxnxmxn  Amxnxmxn
= Amx B B S o o7
MXNXMxXN| PMxnXmxn= mynxmxn Amxnxmxn
T S U i
= AmxnxmxnEmsxnxmxn Amxnxmsn
e T
= Amxnxmxn Amxnxmsn
= E
Similarly,
5 1 I O NN _E
Bmxnxmxn Am_x)nxm_x)n AmxnxmxnBmxnxmxn |7
If the four-dimensional vector matrix
AmenximenBrenmen 1S invertible,
1

-> —>—>71,—>—>'1—>—>'
AmxnxmxnBmxnxmxn | TBmunxmxn Amxnxmxn
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5. If four-dimensional vector square matrix Aqowmen 1S

invertible, (2

> - _l]Am?nxmjn:UNlT .

In traditional matrix mathematics, if a matrix
possesses an inverse and that matrix is multiplied by its
inverse, the product is an identity matrix with the same
dimensions.

Because multidimensional vector matrices are a
concatenation of two-dimensional matrices, if a four-
dimensional vector matrix has an inverse and that four-
dimensional vector matrix is multiplied by its inverse,
then the product will be a four-dimensional vector
identity matrix with the same dimensions.

Due to the definition of four-dimensional vector

matrix inverse ( 4 ) and ‘Amjnxmjnw , if this

- * L . . - .
matrix , > — is the four-dimensional vector adjoin
Amxnxmxn

matrix, we can conclude

N -> =
Amxnxmxn | Amxnxmxn

1 N 0¥ A - -
S S [Amxnxmxn mxnxmxn
Amxnxmxn

An11 “ Alnln
o . :
A1l Allin ——> ——>
PN : AinnL * Alnm
——> —>—>
_ 1 Al - Al
- - ——> -
Arxnxmx Am1l - Amin
r . : .. :
A1l - Antin NN NN
AN : Amnt - Amm
—->— —>—> - -
| LArinl " Arlmn Jmnxmn
[ —>— —>— ]
allln * alnln
- — ; ’ :
al11l - ainil —>—> -
: . : amlin “° amnin
- >
N amlil - amnll]
> -
allmn *° alnmn
—>—> — :
aliml - alnml - i
: : : amlmn “*° amnmn
- - - -
L amiml “* amnml Jmxnxmxn
0 -> o ]
Amxnxmxn
- - Sl )
Amxnxmxn 0l lo - 0
0 .0
_ 1
B -> o
Amxnxmxn 0 0
- -
0 0 o ‘Amanmxn
> o
‘Amanmxn 0 >
L “mxnxmxn
= UNIT

Due to the multiplication of multi-dimensional vector
matrices (1) and the formula of four-dimensional vector
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matrix  determinant and that s

o)

=UNIT .

@),
I e
Amsnxmxn |Amxnxmxn

For example, the four-dimensional vector matrix
Agroxaes With two orders is given. By means of the

program’s operation, we can calculate the four-
dimensional vector inverse matrix.
-1

- o> o> o
A2x2x2x2A2x2x2x2
. 11 B}
40 40
_9 1l 9
23 40 4020 a0
{l 2}4 1 i E
|13 4 40 40
2 3 19
1 2)4 1 40 40
3 4 A S S
2x2%X2x2 40 40 | 20 E
e 1 NN
40 40 12x2x2x2
0 1
1 0o o
0 0
B 0 0
|:0 0} 0 1
-> -
10 2x2x2x%x2

UNIT

6. The determinant of four-dimensional vector identity

matrix ‘ is 1.

-
Amxnxmxn

if a matrix is an
two-dimensional

In traditional matrix mathematics,
identity matrix, the determinant of
matrix is 1.

Similarly, multidimensional vector matrices are a
concatenation of two-dimensional matrices, if a four-
dimensional vector matrix is a four-dimensional vector
identity matrix, the result of four-dimensional vector

N
identity matrix determinant is 1. That IS‘Aanxmxn =1.
For example,
- —>—>
allin * alnln
[ 5> S : ’ :
aliii11 - ainil > - >
: - : amlin " amnin
- B
— - [aml1l ** amnill
Amxnxmxn| = NN N
allmn " alnmn
- N : :
allmi - alnml - = - -
: . : amimn ° amnmn]
- > - >
amiml ~° amnml m_><>n><m_><)n
0 1
’l 0 . : :
N . 0 0
L0 0
B 0 0
0 o] |¢ :
: . 0 1
- -
1 0 mxnxmxn

Copyright © 2011 MECS

Inverse Operation of Four-dimensional Vector Matrix

7. The other properties of multidimensional vector
matrix determinant and inverse.

There are still many properties of two-dimensional
matrix that can be extend to the four-dimensional vector
matrix.

If all the elements of any vector direction are zero in a

four-dimensional vector square Matrix A nxmen » then

|Amanmxn|_
If one vector direction is proportional to another
vector direction of a four-dimensional vector square

ma’[l’IX Amxnxmxn ’ then | Amanmxn | =

If one vector direction is a linear combination of one
or more other vector directions of a four-dimensional

vector square MatriX A nxmen + theN | Amnxmen | =
If two vector directions of a four-dimensional vector
square matrix Aqn«mmn '€ interchanged, the sign of the

determinant of the matrix A, xmn iS changed.

A four-dimensional vector square MatriX Am nxmen

inverse which it is an invertible matrix can be unique.

> o

If four-dimensional vector square Matrix Aq.oxmoen IS

> o>

-1
-1
invertible, [Amxnxmjn j =Amxnxmxn *

There are various properties of four-dimensional
vector matrix determinant and inverse to prove the
correctness  of  four-dimensional ~ vector  matrix
determinant and inverse definition in this paper.
Meanwhile, we run successfully the corresponding
program to verify the definition of the four-dimensional
vector matrix determinant and inverse.

V. CONCLUSION

On the basis of newly operation laws of
multidimensional vector matrix, we define the four-
dimensional vector matrix determinant, inverse and
related properties in this model. We also prove the
correctness of these associated formulas by mathematics
and program. In this program, followed by the definitions
and certification of four-dimensional vector matrix, we
have successfully run related program and get the rational

result which the four-dimensional vector matrix

A Multiplied by the four-dimensional - vector

matrix inverse , > =  is equal to the four-
mxnxmxn

dimensional vector identity matrix.

In this paper, we have introduced mainly the theory of
multi-dimensional vector matrix, the four-dimensional
vector matrix determinant and inverse. The future work is

to extend the four-dimensional vector matrix
inverse o >~ ~ to multidimensional vector matrix
mxnxXmxn

; - -
inverse Ampxma. xmpxmixmz._mn

theories and definitions on multidimensional

. We will apply adopted

vector
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- - -
MArIX Amyxmy xmpxmgxma._mp -
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