
I.J. Intelligent Systems and Applications, 2011, 5, 48-55
Published Online August 2011 in MECS (http://www.mecs-press.org/)

Copyright © 2011 MECS I.J. Intelligent Systems and Applications, 2011, 5, 48-55

Application of SQL RAT Translation
a Statement of RQP/RMP with an Object-oriented Solution

XU Silao

School of Computer (Software), Sichuan University, Chengdu, China
Email: writecoffee@gmail.com

WANG Song and HONG Mei

School of Computer (Software), Sichuan University, Chengdu, China
Email: {wangsong.itechs@gmail.com, hongmei@scu.edu.cn}

Abstract - Since we have already designed a flexible form of
representing the Relational Algebra Tree (RAT) translated
by the SQL parser, the application of this kind of object-
oriented representation should be explored. In this paper,
we will show you how to apply this technique to complicated
scenarios. The application of Reverse Query Processing and
Reverse Manipulate Processing related to this issue will be
discussed.

Index Terms - SQL, Reverse Relational Algebra Tree, ob-
ject-oriented, reverse query processing, reverse manipulate
processing.

I. INTRODUCTION

We have already provided an object-oriented means to
describe the relational algebra tree (RAT) parsed from the
SQL statement. Since an intuitive solution has been found,
why couldn’t we delve into its usage and explore more fl-
exible variation adapted for different scenarios.

Reverse Query Processing (RQP) [5], a tool generating
databases for testing database applications, helps to elim-
inate the daunting task of manual tester. An extension of
RQP is RMP [3] – Reverse Manipulate Processing. It can
be used for all the data manipulating statements in SQL
which provides an integrated measure to execute stored-
process unit testing automatically. It is wise to find a way
to depict the interim result of each processing stage, he-
nce that’s why we discuss the object-oriented way here
for their possible applications.

II. SOLUTIONS

A. Previous work
Our work on the SQL’s translating into relational alge-

bra tree can be found in [1] and we have chosen an obj-
ect-oriented way to depict the translating results. We dev-
ided the translating issue into 5 separate parts according
to their query type. Each query type is specified with
detailed example(s).

The [3] has extended the RQP algorithm to RMP. The
RMP helps us to resolve the limitation of RQP and its
Evaluator can translate the ‘DELETE’, ‘INSERT’ and
‘UPDATE’ manipulation into ‘SELECT’ statement with
added predicate constraint(s). Therefore, our Relational

Algebra Tree should be adjusted to Reverse Relational
Algebra Tree (RRA Tree) and also relationships between
classes in the SQL parser should be revised in order to
run the procedure more smoothly. Note that some other
literatures use the “Query Tree” term so as to depict the
query order more conveniently with mathematic symbols
or notations.

B. RMP Architecture
The architecture of our RMP system is shown in Fig. 1.

It combines the entire architecture of the relational al-
gebra translator with the RQP architecture supplemented
with an Evaluator. The following sections will respecti-
vely explain every key stage in detail.

Figure 1. Architecture of RMP

C. RMP Evaluating Algorithm
In reference [3], the evaluation of DELETE, UPDATE

and INSERT statements have been discussed and verified.
In order to adjust the evaluation to the naming process,
we should discuss the evaluating algorithm first. The alg-
orithm is presented in Table I.

We need to replace the DELETE, UPDATE and IN-
SERT keywords with customized ones which can be mat-

 Application of SQL RAT Translation a Statement of RQP/RMP with an Object-oriented Solution 49

Copyright © 2011 MECS I.J. Intelligent Systems and Applications, 2011, 5, 48-55

ched by our new SQL restricted grammar and recognized
by the SQL parser. In the parsing stage, we also need to
denote a new field in the Query class which can reflect its
deviation.

TABLE I. RMP EVALUATING ALGORITHM

function evaluate (sql : SQLStatement) : string
var resultStr : string;
begin
 case getFirstToken(sql) of
 DELETE:
 appendToken(resultStr, DEL_SLT);
 appendToken(resultStr, ASTERISK);
 append(resultStr, sql);
 INSERT:
 appendToken(resultStr, INS_SLT);
 appendToken(resultStr, INTO);
 if isDefaultTuples(sql) is TRUE then
 appendRelaAttr(resultStr, scanTuplesFromValues(sql));
 else if isPartialTuples(sql) is TRUE then
 appendRelaAttr(resultStr, scanTuplesFromRelaList(sql));
 else
 appendRelaAttr(resultStr, scanTuplesFromRelaList(sql));
 end if
 appendToken(resultStr, VALUES);
 while hasValues(sql) do
 appendValues(resultStr, getValues(sql));
 end while
 UPDATE:
 setStatementType(sql, SELECT);
 appendToken(resultStr, UPD_SLT);
 appendString(resultStr, remove(evaluate(sql), SELECT));
 setStatementType(sql, DELETE);
 appendString(resultStr, evaluate(sql));
 setStatementType(sql, INSERT);
 appendString(resultStr, evaluate(sql));
 SELECT:
 appendString(resultStr, toString(sql));
 end case;
 return resultStr;
end evaluate

upper-case items denote the keywords in the SQL grammar

D. Revised SQL Grammar
Because we need to include the DELETE, UPDATE a-

nd INSERT statement for our new RMP system, the ori-
gin EBNF [6] grammar should be revised so as to reco-
gnize all the SQL manipulations. The new restricted gra-
mmars are shown in Table II.

TABLE II. REVISED SQL RESTRICTED GRAMMAR

1 query → gb_query | ngb_query
2 ngb_query → unary_query | binary_query |

LPARAN unary_query RPARAN
3 unary_query → simple_query | exists_query |

complex_query
4 simple_query → SELECT selector

FROM relation_list
[WHERE simple_predicate]

5 del_simple_query → DEL_SLT selector
FROM relation_list
[WHERE simple_predicate]

6 ins_simple_query → INS_SLT selector
FROM relation_list
[WHERE simple_predicate]

7 upd_simple_query → UPD_SLT selector

FROM relation_list
[WHERE simple_predicate]

8 gb_query → unary_query GROUP BY gb_attr
[HAVING hav_condition]

9 exists_query → SELECT selector
FROM relation_list
WHERE exists_predicate

10 del_exists_query → DEL_SLT selector
FROM relation_list
WHERE exists_predicate

11 ins_exists_query → INS_SLT selector
FROM relation_list
WHERE exists_predicate

12 upd_exists_query → UPD_SLT selector
FROM relation_list
WHERE exists_predicate

13 complex_query → SELECT selector
FROM relation_list
WHERE left_term
comp_op ngb_query

14 del_complex_query → DEL_SLT selector
FROM relation_list
WHERE left_term
comp_op ngb_query

15 ins_complex_query → INS_SLT selector
FROM relation_list
WHERE left_term
comp_op ngb_query

16 upd_complex_query → UPD_SLT selector
FROM relation_list
WHERE left_term
comp_op ngb_query

17 binary_query → ngb_query set_op ngb_query
18 relation_list → ID relation_list |

COMMA relation_list | ε
19 gb_attr → attribute_spec_list
20 hav_condition → function_spec comp_op constant |

function_spec comp_op ngb_query
21 selector → attribute_spec_list
22 attribute_spec_list → attribute_spec_list COMMA

attribute_spec |
attribute_spec

23 function_spec_list → function_spec_list COMMA
function_spec |
function_spec

24 simple_predicate → LPARAN simple_predicate
boolean
simple_predicate RPARAN |
attribute_spec comp_op
attribute_spec |
attribute_spec comp_op constant

25 exists_predicate → EXISTS ngb_query
26 left_term → attribute_spec | constant
27 function_spec → ID LPARAN

attribute_spec_list RPARAN
28 attribute_spec → ID DOT ID
29 Boolean → AND | OR
30 set_op → UNION | MINUS | INTERSECT
31 comp_op → EQ | NOTEQ | LT | LTEQ | GT |

GTEQ
32 constant → NUM | STRING

upper-case items denote the tokens recognized by SQL scanner

We have omitted the revised extended SQL grammar
in order to save pages. But we should be aware of the
new tokens generated by RMP evaluator which should be
reflected to new extended grammar. Grammar <in_-
query>, <in_set_query>, <not_in_query>, <all_query>,

50 Application of SQL RAT Translation a Statement of RQP/RMP with an Object-oriented Solution

Copyright © 2011 MECS I.J. Intelligent Systems and Applications, 2011, 5, 48-55

<any_query>, <not_exists_query>, <contains_query>,
<does_not_contain_query>, <set_equality_query>, <set_-
inequality_query> and <compound_query> should be ap-
pended with duplicated items with ‘ins_’, ‘del_’ and
‘upd_’ prefix and customized first token like the item
5,6,7 in Table II.

E. Naming Transformation and Preprocessing
In reference [2], the objective of naming transforma-

tion is to eliminate SQL ambiguous syntax problem and
put the input into a form that can be accepted by the
extended grammar.

In the first case, the process is alternative according to
different application. In RMP, it is unnecessary to dis-
tinguish different instances of the same base relation. In
the second case and also the third case, the extension of
attribute names and variables eliminated are required.

Next stage, the preprocessing, includes two key steps.
The first step is that rewriting the asterisk with relation-
attribute pairs corresponding to the closure of all its sub-
query. We have no idea about how the database schema is,
so relations are required to be included in the input if
ASTERISK is an allowed keyword. In RQP and so as the
RMP, the input SQL statement is used to compare with
the database schema input at runtime. In order to prevent
extra conflict judging we have omitted the ‘*’ keyword.
The second step is that transforming the non-base query
into Group-by Query, Binary Query, Complex Query,
Simple Query and Exists Query. The entire transform-
ation discussion can be found in [2].

F. Parsing SQL into RA Tree and Postprocessing
In order to distinguish different Query types we need

to add a new field – RMPType to the Query class def-
inition. It is an enumeration type which is used for depi-
cting its origin SQL statement type before evaluation.
The Query hierarchy is shown in Fig. 2.

Query
+selector
+relation_list
+RMPType

SimpleQuery
+simple_predicate

GbQuery
+unary_query
+gb_attr
+hav_condition

UnaryQuery

ExistsQuery
+ngb_query

ComplexQuery
+comp_op
+left_term
+ngb_query

BinaryQuery
+set_op
+ngb_query_1
+ngb_query_2

NgbQuery

Figure 2. Hierarchy of SQL.

There are five base Query type generated from the
postprocessing stage. The class diagrams of each type are
shown in Fig. 3, Fig. 4, Fig. 5, Fig. 6 and Fig.7 respe-
ctively. Except for the RMPType field there is no big
difference from the ones in [1]. The following chapters
will discuss each Query type corresponding to its object-
oriented representation of the node of Relational Algebra

Tree and the postprocessing stage related to its final
output – Reverse Relational Algebra Tree.

The tree nodes in the RRA Tree should be disting-
uished from the RA Tree node. The Reverse Relational
Algebra (RRA) is a reverse variant of the traditional
relational algebra and depicted by symbol (operator) ma-
rked as op-1 [3].

1) Simple Query
Fig. 3 denotes the classes and their relationships in

Simple Query. From the association between class Fun-
ctionSpec and class Function, we can figure out that the
function field of FunctionSpec is nullable. When it is null,
the instance denotes a group of attributes without any
function applied, i.e., the attributes in projection item
“PJ[S.A, S.B]”. On the contrary, the attributes are agg-
regated by a specific function, i.e., “SUM(S.A, S.B)” in
projection item “PJ[SUM(S.A, S.B), S.C]”.

NgbQuery

UnaryQuery

Selector

+function_spec_list

Function

+name

Query

+selector
+relation_list
+RMPType

FunctionSpec

+function
+attribute_spec_list

Attribute

+name

Relation

+name

SimpleQuery

+simple_predicate

Boolean

+op

CompOp

+op

Constant

+num: int

AttributeSpec

+relation
+attribute

SimplePredicate

<<union>>+left: Left
<<union>>+right: Right
<<union>>+infix: Infix

1 1

1..*

1

0..1
1

1..*

1

1..*1

1

1

1
1

+left.simple_pledicate
0..1

1

0..*

1

+infix.boolean
0..1

1+infix.comp_op

0..1

1+right.constant
0..1

1

+right.attribute_spec

0..1

1

+left.attribute_spec
0..1

1

+right.simple_predicate

0..1

1

Figure 3. Class Diagram for Simple Query.

Especially, the fields in class SimplePredicate are of
union type. According to the grammar <simple_pre-
dicate>, we recognize that the combination of its fields
can be {simple_predicate, boolean, simple_predicate},
{attribute_spec, comp_op, attribute_spec} and {attrib-
ute_spec, comp_op, constant}. Therefore, there are two
possible kinds of attribute for field left in class Simple-
Predicate, three possible kinds of attribute for the field
right and two possibilities for the field infix.

There are two possible scenarios in the translation. The
first one is that the simple_predicate item is empty and
there is no other “external” relation. Another one is that
simple_predicate occurs, which involves further calc-
ulation of “external” relations in order to incorporate th-
em in the Cartesian product.

 Application of SQL RAT Translation a Statement of RQP/RMP with an Object-oriented Solution 51

Copyright © 2011 MECS I.J. Intelligent Systems and Applications, 2011, 5, 48-55

In the first case, we assume that the input string gen-
erated through the first three stages in SQLTranslation is:

SELECT F(R.A), S.B, T.C FROM R, S, T (1)

The SQL was translated into RRA Tree whose struc-
ture is shown in Fig. 4.

Just like the Cartesian product, the θ-join is a binary
operator. It connects two relations with specific predicate.
As a matter of fact, until being optimized the θ-join node
would never contain any predicate because it originally
represents the Cartesian product between two expressions.
After obtaining the Cartesian product of these three rela-
tions, the aggregation node and then the projection node
are constructed upon this binary tree. The top-down sequ-
ence of these nodes is consistent with that of the SQL
translation algorithm [1].

Figure 4. RRA Tree for Simple

Query, Case 1.

R S

π‐1 ሺR.Aሻ, R.C, S.A, S.B

σ‐1R.B ൌ S.A

S.A, S.BΧ‐1 ሺR.Aሻ

π‐1S.A, S.B

Χ‐1

1‐

1‐

Figure 5. RRA Tree for Simple

Query, Case 2.

In the second case, we need to assume that some
relations in this query have appeared in upper level. So,
we can embed this simple query into another kind of
query:

SELECT S.A, S.B FROM S WHERE EXISTS (2)
SELECT R.C, F(R.A) FROM R WHERE R.B = S.A.

Fig 5 is its corresponding relational algebra tree. Attr-
ibute ‘S.A’ and attribute ‘S.B’ are the “external” attributes
extracted from the upper level Exists Query. They group
the tuples of Cartesian product of ‘S’ with ‘Q’ by diff-
erent values of the tuples of S and the results are man-
ipulated by the aggregate function ‘F’.

2) Group-by Query
Fig. 6 is the class diagram of the group-by query. We

use the class HavCondition to represent the predicate of
Group-by Query. There are two possible kinds of comb-
inations of its fields. They are {function_spec, comp_op,
constant} and {function_spec, comp_op, ngb_query}. Be-
cause the first two fields of them are the same, we just
need a union type to represent the third field of class
HavCondition.

If the third field is a non-Group-by-Query, it means
that we have to deal with an unknown nesting query.
Because the class NgbQuery is an abstract class, we can
utilize the polymorphism of object-oriented language for
solving the nesting query problem.

We should notice that four cases of Group-by Query
should be distinguished. The first one is that the GROUP-
BY clause has no effect. The second one is that there is
no HAVING clause but the aggregate function should be
evaluated. The third one and the fourth one are disti-
nguished by the condition whether the HAVING clause
has a nesting query or not. Except the first case, the unary
query in group-by query should be changed into a form
that its projection should incorporate all the attributes of
its relations list order to correctly evaluate the functions.

The first case is simple and when we input the foll-
owing query we get the relational algebra tree shown in
Fig. 7.

SELECT R.A FROM R WHERE R.B > 7 (3)
AND R.C = ‘Tom James’ GROUP BY R.C

Query
+selector
+relation_list
+RMPType

Selector
+function_spec_list

Function
+name

NgbQuery

CompOp
+op

Constant
+num: int

Relation
+name

FunctionSpec
+function
+attribute_spec_list

Attribute
+name

UnaryQuery

HavCondition
+function_spec
+comp_op
<<union>>+right: Right

AttributeSpec
+relation
+attribute

GbQuery
+unary_query
+gb_attr
+hav_condition

1 1

1..*

1

1..*

1

0..1

1

+right.ngb_query

0..1

1

1 1

+right.constant
0..1

1

1

1

1

1

1..*1

1

1

1

1

0..1

1

1 1

Figure 6. Class Diagram for Group-by Query.

Figure 7. RRA Tree for Group-

by Query, Case 1.

π‐1 ሺR.Aሻ

R.BΧ‐1 ሺR.Aሻ

π‐1R.A, R.B, R.C

σ‐1R.C ൌ 7

Χ‐1

R

1‐

1‐

Figure 8. RRA Tree for Group-

by Query, Case 2.

In the second case, projection items of the unary_query
field in the group-by query should be rewritten by
incorporating all the attributes of the relations_list and
we have used a table to record the relation-attribute pairs

52 Application of SQL RAT Translation a Statement of RQP/RMP with an Object-oriented Solution

Copyright © 2011 MECS I.J. Intelligent Systems and Applications, 2011, 5, 48-55

occurred in the query while constructing the syntax tree.
For instance:

SELECT F(R.A) FROM R (4)
WHERE R.C = 7 GROUP BY R.B

is translated into a relational algebra tree shown in Fig. 8.
In the third case, we need to evaluate the aggregate

function in the HAVING clause and incorporate them
with that of the term unary_query. For instance,

SELECT F1(R.A) FROM R WHERE R.C = 7 (5)
GROUP BY R.B HAVING F2(R.C) > 2

is translated into a relational algebra tree shown in Fig. 9.
Function F1 and F2 apply to the tuples grouped by
attribute R.B.

In the fourth case, we need to evaluate the nesting
query in the HAVING clause. We embedded a simple
query into the group-by query as the following example:

SELECT F1(R.A) FROM R WHERE R.C = 7 (6)
GROUP BY R.B
HAVING F2(R.C) > SELECT S.C FROM S.

Figure 9. RRA Tree for Group-

by Query, Case 3.

Figure 10. RRA Tree for Group-by

Query, Case 4.

Its relational algebra tree is shown in Fig. 10. Two sub-
queries are linked by a semi-join with a predicate,
‘F2(R.C) > S.C’, extracted from the HAVING clause. In
addition, this semi-join can be transformed into a θ-join
following with a projection on its left term.

3) Exists Query
The class diagram that describes the Exists Query is

shown in Fig. 11. The key task is to interpret the term
ngb_query.

UnaryQuery
Query

+selector
+relation_list
+RMPType

NgbQuery
ExistsQuery
+ngb_query

1

1

Figure 11. Class Diagram for Exists Query.

Exists Query should be discussed in two cases. The
first case is that there is no connection between the field
ngb_query and the field relation_list in the class Exis-
tsQuery. Whether there is common relation or not is cal-

culated by method connect [2] and the “external” rel-
ations are obtained by method other [2]. For instance,

SELECT R.A FROM R WHERE (7)
EXISTS SELECT S.A FROM S WHERE S.B > 7

is translated into a relational algebra tree shown in Fig. 12.
In order to keep the integrity of the relational algebra tree
we retain the aggregation node which has no effect and
this will be eliminated in the postprocessing.

The second case is that these two fields are related.
From the example below, the relation set calculated by
method connect is {R} and the attribute set obtained from
method other is empty.

SELECT R.A FROM R WHERE EXISTS (8)
SELECT S.A FROM S WHERE S.B = R.A

 So, the term ngb_query has already dealt with all the
relations involved in this query and there is no “external”
relation. We can perceive this effect through Fig. 13.

Figure 12. RRA Tree for Exists

Query, Case 1.

π‐1R.A

Χ‐1

π‐1S.A, R.A, R.B

σ‐1S.B ൌ R.A

Χ‐1

S R

1‐

1‐

Figure 13. RRA Tree for Exists

Query, Case 2.

4) Complex Query

UnaryQuery

Query
+selector
+relation_list
+RMPType

NgbQuery

CompOp
+op

Attribute
+name

ComplexQuery
+comp_op
+left_term
+ngb_query

LeftTerm
<<union>>+term: Term

Constant
+num: int

1

1

1

1

0..1

11

1

0..1
1

Figure 14. Class Diagram for

Complex Query.

Figure 15. RRA Tree for

Complex Query.

The class diagram is shown in Fig. 14. The complex-
query contains a comparison between a left_term and a
nesting non-Group-by-Query. Being somewhat alike the
Exists Query, Complex Query, it uses the connect [2]
method to calculate the common relations and the other

 Application of SQL RAT Translation a Statement of RQP/RMP with an Object-oriented Solution 53

Copyright © 2011 MECS I.J. Intelligent Systems and Applications, 2011, 5, 48-55

[2] method to obtain the “external” attributes list and then
translate the comparison into a selection operation. We
use the following example to reflect this effect:

SELECT S.A FROM S WHERE S.C = (9)
SELECT R.C FROM R WHERE R.B = S.B.

Fig. 15 is the translation result and from this we can
recognize that relation ‘S’ is the connecting relation. The
sub-query has involved all the relations in this query and
the upper query just need to apply the selection ‘S.C =
R.C’ on that expression.

5) Binary Query
A Binary Query should be translated into two sub-

queries linked by a binary operator (INTERSECT, UNI-
ON, or DIFFERENCE) and its descriptive class diagram
is shown in Fig. 16. The Binary Query translation requ-
ires the sub-query to be associated with “external” attri-
butes calculated by method other [2] respectively in order
to become useful for upper level queries. For example,

Query
+selector
+relation_list
+RMPType

SetOp
+op

NgbQuery

BinaryQuery
+set_op
+ngb_query_1
+ngb_query_2

1

1

+ngb_query_1

1

1

+ngb_query_2

1

1

Figure 16. Class Diagram for

Binary Query.

π‐1R.A

Χ‐1

π‐1T.B, R.A, R.C

Χ‐1

T R

R

Χ‐1

S

π‐1S.B σ‐1T.C ൌ R.C

1‐ת

1‐

1‐1‐

Figure 17. RRA Tree for Binary
Query.

 SELECT R.A FROM R WHERE EXISTS (10)
(SELECT S.B FROM S INTERSECT
SELECT T.B FROM T WHERE T.C = R.C)

is translated into a relational algebra tree shown in Fig. 17.
The “external” attribute set of sub-query ‘SELECT S.B
FROM S’ is empty and the “external” attribute set of sub-
query ‘SELECT T.B FROM T WHERE T.C = R.C’ is
{R.A, R.C}. From the “external” attributes sets, we notice
that the first sub-query lacks of relation ‘R’ which is re-
quired in order to perform the intersection with the se-
cond sub-query. Hence an additional Cartesian product of
the first sub-query with ‘R’ is required.

6) Postprocessing
Except for the post-processing in [2], here we need to

eliminate the tree nodes which have no effect on the
expression, such as aggregation node missing the agg-
regate attribute, θ-join node linking only one expression
without predicate or selection node missing predicate.

In RQP, the intersection operation is not allowed. So,
we need find another way to transform the intersection
node to equivalent mutation. Because operation ‘A ∩ B’
is equal to ‘A − (A − B)’, Difference Operator can sub-
titute the intersection operation in RQP algorithm. The-
efore, the RRA Tree in Fig. 17 can be transformed into

the style in Fig. 18. Some redundant nodes are removed
but the format of the connecting line in previous diagram
is retained so as to reflect its change more clearly.

π‐1R.A

−-1

π‐1T.B, R.A, R.C

T R

R

S

π‐1S.B σ‐1T.C ൌ R.C

−-1

R

S

π‐1S.B

1‐

1‐

1‐

Figure 18. RRA Tree in Fig. 17 after Reducing the Difference Operation

 The semi-join node also needs to be transformed to a
θ-join format. The semi-join can be expressed by a θ-join
followed with projection onto the left term:

 (11)

The transformation result of the RRA Tree in Fig. 10
(Group-by Query, case 4) is shown in Fig. 19.

π‐1 ሺR.Aሻ

R.BΧ‐1 ሺR.Aሻ

R.BΧ‐1 ሺR.Cሻ

π‐1R.A, R.B, R.C

σ‐1R.C ൌ 7

R

π‐1S.C

S

‐1 ሺR.Cሻ S.C

π‐1R.A, R.B, R.C, ሺR.Cሻ

Figure 19. RRA Tree in Fig. 17 after Reducing the Semi-join.

π‐1R.A

−-1

π‐1T.B, R.A, R.C

T R

R

S

π‐1S.B σ‐1T.C ൌ R.C

−-1

R

S

π‐1S.B

1‐

1‐

1‐

Figure 20. RRA Tree in Fig. 17 after Reducing the Difference Operation

At last, and perhaps the most complicated transfor-
ation, we need to detect the comparison in selection node.
If the predicate is a comparison between the attribute in
left term (left child of the node) and the one in right term

54 Application of SQL RAT Translation a Statement of RQP/RMP with an Object-oriented Solution

Copyright © 2011 MECS I.J. Intelligent Systems and Applications, 2011, 5, 48-55

(right child), then the predicate in the selection node
should be added to the θ-join. This is for optimizing. The
RRA Tree can be simplified and we should “remove” the
θ-join without predicate for it is a common situation as
we can see in the example through the five type of Query.
We can look back to the example in Fig. 18. The sub-tree
of the Difference Operation node ‘－ -1’ which begins
with a ‘π-1’ node can be transformed to a new style shown
in Fig. 21.

π‐1R.A

−-1

π‐1T.B, R.A, R.C

T R

R

S

π‐1S.B
‐1T.C ൌ R.C

−-1

R

S

π‐1S.B

1‐

1‐

Figure 21. RRA Tree in Fig. 18 after Reducing the Empty θ-join.

G. Annotation and Traversal
Every node in the RRA Tree should have a reference

of the Query parsed by the SQLParser for obtaining the
attributes in the syntax tree structure. The node also has
its own instance of RQP processing data structure for the
bottom-up annotation and later processing. In the anno-
tation stage, the Annotator (see the QueryAnnotator mo-
dule in Fig. 1) will process each operator in RRA Tree
generating input schema computed and extracted from the
given output schema(s). Each operator should check the
correctness of the input and ensure that it has generated
valid output data. The detailed algorithm and compu-
tation can be found in Chapter 5 of [5].

In order to illustrate a comprehensive annotation for a
specific RRA Tree, we have cited the database schemas
‘Line-item’ and ‘Orders’ (which could also be found in [5]
as an illustrative example) as the input parameters. They
can be expressed by the following DDL forms.

CREATE TABLE Lineitem ((12)
lid INTEGER PRIMARY KEY,
name VARCHAR(20),
price FLOAT,
discount FLOAT
CHECK (1 >= discount >= 0),
l_oid INTEGER);

CREATE TABLE Orders((13)
oid INTEGER PRIMARY KEY,
orderdate DATE);

Also, a Group-by Query is employed to help establish
a RRA tree. The translation of the following query is like
that one of (5) whose RRA tree structure can help us to
understand the relationship of each operator:

SELECT SUM(price) (14)
FROM Lineitem, Orders

WHERE l_oid = oid
GROUP BY orderdate
HAVING AVG(price) <= 100;

Figure 22. Annotation of a Join-Operator

The RRA Tree should be traversed in a post-order.
Firstly, the two leaf nodes in the RRA Tree is annotated
with (12) and (13) setting the operation type to LEAF.
Their input-Schema fields are regarded as the output-
Schema of their upper node – Join Operation. Then a
series of computation of constraints and dependencies
should be carried out (interested reader can refer to
Section 5.1 in [5]) and the new inputSchema can be
passed onto its father node. In this way, the annotation
continues until it reaches the root node. Fig. 21 has
shown us a snap of the annotating process of the Join
Operator with inputs of Lineitem and Orders. Their DDL
schemas have been translated into objects instantiated
through syntax recognition. Objects are represented with
rectangles in Fig. 21. Those highlighted with bold and
wider lines are our RRA Tree nodes.

The ensuing processing stages of RQP/RMP are strai-
ghtforward: reversal in-order traversal of the RRA Tree
applying the top-down data initiation algorithm (with
model checking when needed). The entire descriptive alg-
orithm can be found in [5]. It is not necessary for us to
illustrate this process again here. Similar object repr-
esentation method can be derived from our annotation
illustration (see Fig. 22). Note that each stage, either the

 Application of SQL RAT Translation a Statement of RQP/RMP with an Object-oriented Solution 55

Copyright © 2011 MECS I.J. Intelligent Systems and Applications, 2011, 5, 48-55

annotation or data initiation, should focus on the SQL
parsing outcome for our RRA Tree representation dis-
cussed in Section F has been used as a frame of reference.

The Optimizer functions after the Annotator. From
RRA Tree perspective, it adjusts the structure pursuing
lower cost. In some way this is like the postprocessing in
parsing SQL. Since existing optimizing description [5]
and our former transmutation have been discussed, it is
redundant to present this issue again.

The RQP/RMP system ends up outputting the final
database instance with specific form depending on what
the experimenter wants to get at. The generated database
instances have been stored in MySQL 5.0 database man-
agement system in our experiment.

III. FUTURE WORK

The RQP algorithm can be applied to database gene-
ration, database app-testing, program verification, view
update, and etc. In the meanwhile, when we generate test-
ing data for stored-process, RQP algorithm do have limi-
tation. Because it cannot deal with other SQL statements
except for the SELECT. The RMP algorithm can solve
that problem nicely. The next step we need to do is to
apply the RMP algorithm to generate testing data for
stored-process in database and SQL statement embed in
programs. The database instance generated when the SQL
statement run in error will be taken into consideration
further.

IV. CONCLUSION

In this paper, we have stated the entire procedure of
RQP/RMP and displayed an intuitive object-oriented
model. The solutions presented in Chapter II have almost
covered all the processing scenarios in the RQP/RMP
algorithm. The probable application perspectives have
also been stated for both us and other further researches.

REFERENCES

[1] XU Silao, HONG Mei, Translating SQL Into Relational
Algebra Tree - Using Object-Oriented Thinking to Obtain
Expression Of Relational Algebra, in Proc. of IEEE Inte-
rnational Symposium on System Modeling, Simulation and
Engineering Mathematics (SMSEM), Wuhan City, Hu-bei,
China, 22-24 April 2011.

[2] Stefano Ceri, Georg Gottlob, Translating SQL Into Relat-
ional Algebra: Optimization, Semantics, and Equivalence
of SQL Queries, Software Engineering, IEEE Transactions,
vol. SE-11, issue 4, pp. 324 – 345, April 1985.

[3] FENG Liyun, HONG Mei, YANG Qiuhui, ZHOU Hongyu,
ZANG Kang, Data generation method of database system
test based on reverse query process, in Journal of Com-
puter Application, 2011 Vol. 31 (04): pp. 948 – 951, ISSN:
1001-9081.

[4] Carsten Binnig, Donald Kossmann, Eric Lo, Reverse
Query Processing, icde, pp.506-515, 2007 IEEE 23rd
International Conference on Data Engineering, 2007.

[5] C. Binnig, D. Kossmann, and E. Lo. Reverse Query Proc-
essing. Technical report, ETH Zurich, http://www.dbis.-
ethz.ch/research/publications/rqp.pdf, 2006.

[6] Agrawal, R., Alpha: an extension of relational algebra to
express a class of recursive queries, Software Engineering,

IEEE Transactions, vol. 14, issue 7, pp. 879 – 885, July
1988.

[7] John R. Levine,Tony Mason,Doug Brown, Lex & Yacc,
O’Reilly & Associates, 1992.

[8] Thomas Connolly and Carolyn Begg, Database Systemes:
A Practical Approach to Design, Implementation, and
Management, 4th ed., Pearson Education, 2005.

[9] S. C. Johnson, YACC: Yet another compiler compiler, Bell
Lab., Murray Hill, NJ, Comput. Sci. Tech. Rep. 32, 1975.

[10] Kenneth C. Louden, Compiler Construction: Principles
and Practice, PWS Publishing Company, 1997.

[11] N. Bruno, S. Chaudhuri. Flexible database generators[C],
in Proc. of Very Large Database, Trondheim, Norway,
ACM.2005:1097-1107.

XU Silao, born in Zhongshan,
Guangdong Province P. R. China in 1988,
is a bachelor student of Co-llege of
Software Engineering in Si-chuan
University (SCU), Sichuan Province P. R.
China and now is one of the senior student
served for Laboratory of Software
Automatic Testing, College of Computer
Sci-ence and Software Engineering, SCU
doing researches on Database Auto-matic
Testing and GUI Automatic Testing.

WANG Song, born in Bozhou, Anhui
Province P. R. China in 1988, is a bachelor
student of College of Software
Engineering in Sichuan University (SCU),
Sichuan Province P. R. China and now is
one of the members of Laboratory of
Software Automatic Testing, College of
Com-puter Science and Software Engi-
neering, SCU. His research interest
includes Distributed System Testing and
Database Automatic Testing..

HONG Mei, born in Zhoushan,
Zhejiang Province P. R. China in 1963,
earned her bachelor degree of Computer
Engineering in Chongqing University in
1984 and her master degree of Computer
Science in Sic-huan University (SCU) in
1998. She is now a professor of Computer
Sci-ence and the associate dean of Col-
lege of Computer Science and Sof-tware
Engineering, SCU. Her current major
research area includes Soft-ware
Engineering and Software Aut-omatic
Testing. She had once served as a visiting
scholar at the Dep-artment of Computer
Science in the University of Maryland,
College Pa-rk in 2007 engaging in
Software Quality Assurance and Software
Te-sting.

