
I.J. Intelligent Systems and Applications, 2012, 2, 58-65 

Published Online March 2012 in MECS (http://www.mecs -press.org/) 

DOI: 10.5815/ijisa.2012.02.07 

Copyright © 2012 MECS                                                             I.J. Intelligent Systems and Applications, 2012, 2, 58-65 

 

 

 

E.V.Krishnamurthy  
Australian National University,  
Canberra, ACT 0200, Australia. 
Evk.Krishnamurthy@anu.edu.au 

 
 
 

Abstract- We describe a mult iset of agents based 

modeling and simulation paradigm for synthetic biology. 

The multiset of agents –based programming paradigm, 

can be interpreted as the outcome arising out of 

deterministic, nondetermin istic or stochastic interaction 

among elements in a mult iset object space, that includes 

the environment. These interactions are like chemical 

reactions and the evolution of the multiset can emulate 

the system biological functions. Since the reaction rules 

are inherently parallel, any number of actions can be 

performed cooperatively or competit ively among the 

subsets of elements, so that the elements evolve toward 

equilibrium or emergent state. Pract ical realization of this 

paradigm for system biological simulat ion is achieved 

through the concept of transactional style programming 

with agents, as well as soft computing (neural- network) 

principles.  Also we briefly describe currently available 

tools for agent-based-modeling, simulation and animat ion. 

 

Index Terms - Agent-based model, biological cell, 

chemical reaction model, motifs, simulation, Tools  

 

I. INTRODUCTION  

Biological Cells live in a very complex environment and 

receive many different signals - physical chemical, 

biological- and they need to monitor and respond to these 

signals within a reasonable time for survival and growth, 

by producing appropriate proteins on demand.  The cell 

use special proteins called ―Transcription factors‖ (TF) to 

internally represent the set of external environmental 

states. TF can be active or inactive and they can bind to 

the DNA to change the transcription rate of specific 

target genes, the rate at which mRNA is produced. These 

proteins act on the external environment and internal 

structure. Some proteins themselves act as TF that can 

activate or repress other genes. The above aspect of 

cellu lar cognition is analogous to the behavior of a 

multiset of agents carrying out concurrent transactions 

which besides being computational are also demand 

driven monitoring devices, as explained below.  

    

 

      The multiset of agents –based programming paradigm,  

can be interpreted as the outcome arising out of 

deterministic, nondetermin istic or stochastic interaction 

among elements in a mult iset object space, which 

includes the environment. These interactions are like 

chemical react ions and the evolution of the multiset can 

mimic the b iological evolution. Since the reaction rules 

are inherently parallel, any number of actions can be 

performed cooperatively or competit ively among the 

subsets of elements, so that the elements evolve toward 

an equilibrium or an emergent state.  

 

      Practical realizat ion of this paradigm is achieved 

through the concept of transactions. Hence, this paradigm 

is widely applicable to all conventional algorithms, 

evolutionary algorithms, genetic algorithms, neural 

networks, self-organized criticality and act ive walker 

models (swarm and ant intelligence), DNA computing 

and modeling living systems. Further, the occurrence of 

motifs in systems biology, pioneered by Uri A lon [3]-

such as auto-regulation, single input multi-output mode 

(SIM), dense overlapping regulons  (DOR), Bifan, Feed 

forward loop (FFL), combinatorial logic and perceptron –

like behavior, can be direct ly simulated using agents. 

Based on this analogy we can model several other 

systems biology aspects to synthesize biological systems. 

In this sense we can simulate in silico many synthetic 

biological problems, [5],[14].  

 

      In  Sect ion II we briefly state Ulon’s [3] approach to 

motif-based systems biology. Section III describes an 

agent-based paradigm and its role in mode ling, 

simulation and animation. In Section IV we describe how 

Motif based approach can be used for growing special 

purpose Genetic regulatory networks with specified goals, 

based on Genetic programming [3,9]. Bio inspired 

computing, Synthetic biology, Artificial life have all 

common aims realizing collective intelligence and natural 

computing They all use common tools: rule based 

systems, classifiers, Monte-Carlo, Simulated annealing, 

Genetic/Evolutionary  algorithms. In  Section  V we briefly  

describe currently available tools for agent-based 

modeling and simulation. Section V1 contains the 

conclusion. 



 Agent-based Models in Synthetic Bio logy: Tools for Simulation and Prospects 59 

Copyright © 2012 MECS                                                             I.J. Intelligent Systems and Applications, 2012, 2, 58-65 

II. THE MOTIF APPROACH 

 

The motif approach was  pioneered by Uri A lon [3] and 

his colleagues. In a very lucid book, Alon [3] has 

examined transcription, transduction and communicat ion 

networks in Systems Bio logy and has found that the 

following primitives are universally present: Feed-

forward loops (FFL)- both coherent and incoherent, 

autoregulation (single loop), Multi-output FFL, Bifan. 

These motifs are very well suited for agent- based 

simulation (ABS), using transactional style programming 

and soft-computing principles. This approach will be 

useful from the point of view of understanding the basic 

aspects of cognition in cells to start with.  

 

III. MULTI-SET OF AGENTS PARADIGM  

 

   The AOIS (Agent-Oriented System Community) defines 

an agent as a system that is capable of perceiving events in 

its environment or representing information about the 

current state of affairs and of acting in its environment  

guided by perceptions and stored information, Woolridge 

[30], Lucena et al. [18]. The multiset-agent system consists 

of several single agent-systems . Murthy and 

Krishnamurthy [19].  Thus if N agents are involved: 

 i = 1,2, , , N, each of the agents will be denoted with a 

label (i). Here, we will restrict ourselves to the definition  

that the agent is a software module having the transactional 

programming model [16] with all the important features -

such as: atomicity of commitment, short duration 

transactions, sensing and aborting, and its own thread of 

control. 'Th is ensures that the process of matching and the 

follow-up actions satisfy the four important ACID 

properties: Atomicity (indiv isibility and either all or no  

actions or carried out), Consistency (before and after the 

execution of a transaction), Isolation (no interference 

among the actions), Durability (no failure). Once all the 

actions are carried out and committed the next set of 

conditions are considered.  

As a result of the actions followed  by commitment, we may  

revise or update and obtain a new database for each agent; 

this may satisfy new conditions of the text and the actions 

are repeated by initiating a new set of transactions. These 

set of transformat ions halt when there are no more 

transactions executable or the databases does not undergo a 

change for two consecutive steps indicating a new 

consistent state of the databases.  

  However, if the interaction condition holds for several 

disjoint subsets of elements in the database at the same 

time, the actions can take place independently and 

simultaneously. This leads to cooperative parallelis m; e.g. 

vector parallelism, pipeline parallelism. 

 

A, Relation to Turing Machine taking advice  

  The agent - based paradigm is capable of solving 

problems that can  be solved by Turing machine taking 

advice. This behavior arises due to interaction among the 

agents and the environment, endless communicat ion and 

computation among agents and possibility for auto 

regulation. Such a system contains many cycles and the 

metric entropy (Lyapunov exponent) is positive-See 

Murthy, Krishnamurthy [19]. Such a system performs  

interactive- nonuniform computation with multip le inputs 

and outputs, and varying memory and instructions. Hence 

they are as powerful as evolving machines, as described 

in the works of Van  Leewen , W iedermann , Wegener, 

see Sekanina [23]. Note that Natural computing has the 

creative ability to upgrade its system whenever, and 

wherever required thus corresponding to the Turing 

machine taking advice and hence such a machine is more 

powerful to solve problems beyond Turing computable 

limits. The interactive agent paradigm provided with rule 

basis and performing nonuniform computation is thus a 

very powerful modelling tool. 

   

B. Features of agents transactional paradigm   

  The multiset of agents paradigm (MAP) consists of the 

following features Murthy and Krishnamurthy [19]. 

(i) A multiset M that contains evolving agents (called the 

agent-space) whose information is structured in an 

appropriate way to suit the problem at hand. Unlike a 

passive data structure each agent is capable of  

autonomous computing. 

(ii) A set of interaction rules that prescribes the context 

for the applicability  of the rules to the agents. Each rule 

consists of a left -hand side (a pattern or property or 

attribute) describing the conditions under which the 

agents can communicate and interact, and a right hand 

side describes the actions to be performed by the agents, 

if the ru le becomes applicab le, based on deterministic, 

fuzzy or probabilistic criteria, Murthy and Krishnamurthy 

[19]. 

(iii) A control strategy that specifies the manner in which  

the agents will be chosen and interaction rules will be 

applied, the kinetics of the ru le- interference (inhibition, 

activation, diffusion, chemotaxis) and a way of resolving 

conflicts that may arise when several rules match at once.  

 (iv ) An agent by itself or another coordinating agent 

evaluates the performance of the agents to determine the 

effectiveness of rule application.  

 (v) Interaction -Based: The computations are interpreted 

as the outcome of interacting agents to produce new 

agents (or same agents with modified attributes) 

according to specific ru les. Hence the intrinsic (genotype) 

or genetic constitution of an organism and acquired  

properties due to interaction (phenotype) with the 

environment can both be incorporated in the agent space. 

Since the interaction rules are inherently parallel, any 

number of actions can be performed cooperatively or 

competitively among the subsets of agents, so that the 

new agents evolve toward an equilibrium or unstable or 

chaotic state. 

(vi)Content-based activation of rules: The next set of 

rules to be invoked is determined solely by the contents 

of the agent-space, as in the context  of chemical reactions. 

(vii) Pattern matching : Search takes place to b ind the 

variables in such a way  to satisfy the left hand side of the 

rule. It is this characteristic of pattern (or attribute) 



60 Agent-based Models in Synthetic Bio logy: Tools for Simulation and Prospects  

Copyright © 2012 MECS                                                             I.J. Intelligent Systems and Applications, 2012, 2, 58-65 

matching that gives the agent-based paradigm its 

distinctive capabilities for nature-inspired computing. 

 (viii) Choice of objects, and actions: 

We can several types of objects, as the basic elements of 

computation to perform suitable actions on them by 

defining a suitable topology, geometry or a metric space. 

 

C. 1nteraction among Agents  

  In o rder to use the mult i-agent paradigm to realise 

cooperative and competitive computational tasks, we need 

to consider how the agents can interfere with each other.  

1. Enab ling dependence (ED): Agent  A(i) and agent A(j) 

are called enable dependent (or dataflow dependent) if the 

messages from A (i) creates the required precondition in  

A(j) to carry out a specific action .These messages can be  

chemical concentration, voltages or communication  

messages.  

2.Inhib it dependence (ID): Agents A (i) and A (j) are 

called inhibit dependent, if the actions of A (i) creates the 

required precondition in A(j) to  prevent  it from executing  

a specific action. Inhib ition may  be due to  negative 

weights in connective links or stop signals or other 

computable entities. 

3. INTRAN Conflict (IC) : Agents A (i) and A (j) are 

opposition dependent (also called data-output dependent) 

through A(k)), if the order in which A (i) and A (j) enable 

A(k)  and update A(k) produce different results in A(k);  

that is the objects A(i) and A  (j) perform operations on  

A(k) that are not order reversib le. That is, local 

serializability (o r commutability) is not ensured in the 

INTRAN with in A(k), if the actions are carried out  within  

an agent in different partial order.  

4. EXTRAN Conflict (EC): Agents A (i) and A(j) are data 

antidependent through A(k) if the order in which A(i)  

enables  (inhibits) A(k), and A(j) enables (inhib its) A(k) 

result in different external act ions (EXTRAN) by A(k) on  

the environment. That is the temporal order in which  

informat ion arrives from the environment and other agents 

affects the global serializability (commutability)  of the 

actions of an agent.  

Remark: ED and ID: 

The two properties ED and ID are crucial for modelling  

any life-like system  which requires both positive and 

negative regulation and molecular switches. These rules 

permit  an agent to enable itself (autocrine signalling for 

development or for autocatalysis), and also an agent A(i) 

to enable A(j) and A (j) to enable A(i) cyclically. 

  For example, A(i) can create the required precondition in 

A(k), so that A(j) can enable A(k). Also, A(i) can inhibit  

the required precondition in A(k) so that A(j) is prevented 

from enabling A(k). 

Example: In cellular signal processing, proteins whose 

conformat ion can be altered by the equilibrium binding of 

a regulatory ligand switches between active and inactive 

states when the concentration of the regulator varies. Also 

situations such as- two ligands whose binding sites in a 

protein are coupled can reciprocally affect each others 

binding or proteins that can simultaneously bind two 

ligands - can be modelled by ED and ID. 

   Note that various types of Petri net models, are used 

currently in Systems Biology, Cardelli [6], Pinney et 

al.[22], Effroni et al [8], Harel [11], Aviv and Shapiro [4].  

The agent models are more general and provide greater 

flexibility and also help in animation [25]. 

 

D, Concurrency and Conflicts 

  In distributed computing and transaction processing: we 

require that the following two conditions are satisfied for 

global serialization when concurrent operations take place. 

1. At each agent the actions in local actions are performed  

in the non-conflicting order (Local serializab ility or 

commutativity). 

2. At each agent the serialization order of the tasks dictated 

by every other agent is not violated. That is, for each pair 

of conflicting act ions among transactions p and q, an  

action of p precedes an action of q  in  any local schedule, if 

and only if, the preconditions required for p do not conflict  

with those preconditions required for execution of the 

action q in  the required ordering of all tasks in  all agents   

(Global serializability). 

  The above two conditions require that the preconditions 

for actions in different agents A(i) and A(j)  do not 

interfere or cause conflicts. These conditions are 

necessary for the stabilization of the multi-agent systems 

that the computations are locally and globally consistent. 

Termination: For the termination of agent –based 

program, the interaction among the agents must come to a 

halt. When the entire set of agents halt we have an 

equilibrium state (or a fixed po int) also called stability 

while dealing with exact computation in a deterministic 

system.  

Non–termination, instability, multip le equilibria and 

chaos: These cases arise when the agents continue to 

interact indefinitely  as in chemical oscillations, biological 

reactions, game theoretic p roblems, and cellular signal 

processing. Then the multiagent-system can have several 

attractors or equilibrium states. It is also possible that the 

evolution of the agent system is sensitive to initial 

conditions leading to chaos and self-organization. 

Conflicts: Resolution or compromise? In agent -based 

modelling of behaviour, under concurrency, the conflicts 

arising in INTRAN and EXTRAN may require resolution 

or to an agreeable compromise. Th is situation can arise in  

animation and robotics. For example, the actions, ―fold  

your right arm‖ or ―stretch your right arm‖ are conflict ing 

concurrent actions. We can achieve a compromise by 

keeping the arm folded half –way. Alternatively, one can 

blend the behaviour of actions, e.g., as in the actions 

―walk‖ and  ―run‖, if the quantitative parameters can be 

suitably averaged over. These rules should be based on 

the problem domain. 

 

E. Agent-based Graph Motifs  

   Some of the basic mot ifs that occur [3] in  abundance in 

many different biological networks have the following 

functions: 

Enabling, Inhibiting, Cycles, Fork, Bifan, Diamond, 

Feed-forward loop, Feedback loop, Regulated feedback 

Autocatalysis, Bi-stable, Oscillator ,Repressilator  



 Agent-based Models in Synthetic Bio logy: Tools for Simulation and Prospects 61 

Copyright © 2012 MECS                                                             I.J. Intelligent Systems and Applications, 2012, 2, 58-65 

(Cyclically linked inh ibitors. This occurs in  production of 

proteins). 

To describe all the above functions, we require temporal 

logical connectives such as:  before, meets, overlaps, 

starts, during (contained in), finishes, coincident or their  

― inverse relations‖ after, met by,  overlapped by, started 

by, contained by,  finished by, coincident and also the 

relative timing of events. Note that the order of execution 

is necessary as illustrated in the following examples of 

temporal description of events occurring in the motifs. 

Hence, in p ractice, we need to use the concurrent 

programming (or multithreading) style of t ransaction 

processing to handle these aspects effectively, with a 

built in determin istic, non-deterministic or stochastic 

control. The transaction processing approach among 

interacting agents permits concurrent or partial o rder or 

total order execution with  suitable time synchronization, 

as well as,  in animation, [19].  

 

F. Temporal (partial, total) order consistency  

Agents can check for temporal consistency among events, 

synchronize them and can vary  the temporal order of 

execution, if the time intervals are suitably assigned in 

their ru le basis, with transactional style programming 

using locks or timestamps. For example agent A can 

enable agent B, which  can delay  its output to the next  

agent C in a deterministic, or probabilistic manner or 

non-determin istically delay until the agent C is in a 

position to receive this message-based on demand driven 

principle. Also agents can carry out last in first out order 

(LIFO) of execution and first in first out order (FIFO) of 

execution. 

 

G. Production, Demand and Consumption rule  

  The Savageau rule [3], states that ―A biosystem 

generates an amino acid, if that amino acid is not 

commonly  availab le in the environment ‖. That is the 

system produces amino acids that are demand driven- the 

higher the demand and the less it is available in the 

environment, the system produce it more. Th is is realised 

by the producer-consumer model using interacting agents 

thus: 

1. A monitoring agent checks the availability of the 

required amino acid in the environment. It enables the 

producer agent to produce the required amino acids. 

2.There is a producer agent that generates amino  acids 

and puts them in a buffer agent. 

3. There is a consumer agent that consumes the amino 

acids from the buffer agent. 

4. The buffer agent checks the consumption of amino 

acids from the buffer. If the buffer is full it inhib its the 

producer agent; if the buffer is empty, it enables the 

producer agent to produce. If the buffer is partly fu ll it  

optimises the rate of consumption and production. 

   

H. Special Purpose Agents in Simulation 

  Agents can be designed to realize special purpose 

functionalities. In build ing cellu lar bio logical models  

based on agents, it will be more convenient to use special 

purpose agents –such as sensor agents, goal agents, skill 

agents and compose these modules to build reusable, 

composable, blendable behavior. In this context, we may  

recall that in cell system biology, the protein  networks  

organize themselves into special purpose proteins thus: 

Alberts et al [2],  Cardelli [6], Wooley and Lin [29],  

Lauffenberger et al. [17]. 

1.Relay proteins: simply pass the message to the next  

signalling component 

2.Messenger proteins: carry the signal from one part  of the 

cell to another. 

3.Adaptor proteins: Link one signalling protein to another 

4.Amplifier proteins: Increase the signal levels  causing a 

signal cascade 

5.Transducer proteins: Convert the signal from one fo r to  

another 

6.Bifurcation protein: Spread the signal from one pathway 

to another 

7.Integrator proteins: Receive two or more signals and 

integrate them and transmit them. 

8.Latent gene regulatory proteins: These are activated at  

the cell surface by activated receptors and then migrate to  

the nucleus to stimulate gene transcription. 

9.Modulator proteins: These modify the intracellular 

signalling proteins and thereby regulate the s trength of the 

signal along the pathway. 

10.Anchoring proteins: Maintain a specific signalling  

proteins at a precise location in the cell by tethering them 

to a membrane of the cytoskeleton. 

11. Scaffold proteins: These are adaptor or anchoring 

proteins that bind multiple signalling p roteins together in  a 

functional complex and often hold  them at a specific 

location. 

In animating protein -based computing, it is required to 

perform simple self-assembly, in  which each agent has one 

or more b inding sites to which ligands (a molecule that 

binds to a specific site on a protein) can bind , when they 

have complementary matching shapes. Once they match 

they can either inhibit or enable the action of the agents 

deterministically or stochastically. Signalling p roteins  can 

bind to one another in mult iple combinations like Lego-

bricks with the protein forming a 3-Dimensional network 

of interactions that determines the route followed  by the 

signalling pathways. Agent-based animation can be helpfu l 

to understand specific sequence of reactions. Also the 

above special purpose agents can be useful. 

 

I. Agents and Avatars in Animation 

  Agents consist of information objects and an associated 

script that knows what to do with the information and 

how to deal with the environment. They behave like 

actors and have intentions and actions. Agents are 

autonomous and they have a built in control to act, only  if 

they want to.  In addition, agents are flexib le, proactive 

and have mult ithreaded control. The above aspects make 

agents suitable for reactive an imation. In reactive 

animation, Efroni et al.[8], Harel [11] the system has to 

react to various kinds of events, signals and conditions 

that are often distributed and concurrent. Also they can be 

time crit ical exh ibit ing both digital and analog (or hybrid) 

behaviour. In addition the reactive system, as in  cell 



62 Agent-based Models in Synthetic Bio logy: Tools for Simulation and Prospects  

Copyright © 2012 MECS                                                             I.J. Intelligent Systems and Applications, 2012, 2, 58-65 

biological system can contain components that signal 

each other and also repeatedly created and destroyed. 

Expansion of simulation to animation can be useful for 

teaching purposes -for example,  in cell bio logy in which  

the molecules are involved in various interactions with 

other cells through cell-signalling cascades. 

Cell signalling cascades consist of several steps of 

activation and inhib ition, A lberts et al. [2]. These are 

usually illustrated in static form as a series of steps. 

Animat ion can introduce each step individually and in  

order to emphasize multip le effects of one protein and the 

cellu lar location of each effect. The animat ion 

emphasises the partial o rder of events, the binding of 

ligands and the accompanying reactions and the 

movements along with the timing of the events. Ideally, 

such a realization would require a total manifestation of 

the real object and the events that are occurring in time 

and the reactions of the associated objects. This can be 

achieved through the introduction of ―Avatar‖ which is 

realised as an extension of the Agent model by including 

a body with a desired geometry and related functions. 

The body provides for the visualization part of the events.  

A scheduler that is controlled  by one or more agents 

carries out the actions or animation on the body. Thus 

Avatar provides a visible part of the environment; it  

cannot perceive or react  to events on its own. 

 

 

J. Percolation  

  In many modelling situations involving particles (for 

example, when ―Help yourself and suppress thy 

neighbour‖(competitive policy), or attraction and repulsion  

dependencies are used. These dependencies can be 

modelled using a combination of Enable (Activation) and  

Inhibit dependence rules [3]. 

  Also percolation-like situation (cooperative transition, in  

which the sharpness of response increases (decreases) with  

an increase in the number of effector  (inhib itor) molecu les 

that must bind to a target molecule can be modelled, 

Alberts et al [2]. In interactive an imation of b iological 

molecules static illustrations are not satisfactory. 

Transactional agents can enable us to animate the binding  

of certain molecules, accompanied by other actions. In 

particular, cell signalling pathways that involve inhibitory, 

binding, and activation steps can be animated without the 

inherent ambiguit ies arising in  the order, timing and the 

interpretation of the events. 

 

K. Examples from System Biology  

  In systems biology, the components are chemical 

concentration- based,  and the activation of any 

component is based on the threshold of chemical 

concentration, as well as, its rate of change. In fact the 

activation function that results from two other 

concentrations is a weighted sum.  Th is activation 

function when subjected to a threshold can decide 

whether the ultimate outcome is anactivation or 

inhibit ion .In fact a given motif can compute various 

logical functions or other functions depending upon the 

weights and the threshold. To illustrate this we consider 

examples of simple one layer and two layer neural 

networks.  

  It is well-known that a neural network consists of an 

input set of variables usually real numbers. These inputs 

are then mult iplied by weighting functions and added . 

The resulting sum is then compared against a threshold 

function  t;  if the sum is greater than or equal to t the out 

put is one ; otherwise zero.  A single layer neural network 

consists of a single set of inputs, weighting functions and 

summing device and a threshold function as described 

above. If these arrangements are repeated at several level 

it is called a multilayer neural network. 

   For example, if a  threshold neural logic gate receives 

inputs x1 and x2 and if these are weighted by multip liers 

a1 and a2 respectively and added to form y= a1.x1+a2.x2, 

then the functions computed by this logic gate for the 

following cases, using the threshold function t(y) will be 

analysed below.  We assume that by 0≤x1≤1, and 0≤x2≤1.  

The output region of these networks depend on the choice 

of the parameters (weights) a1 and a2. These weights 

along with the choice of the threshold play a role in 

determining the activation function. 

 

Case 1:  x1 and x2 are either 0 or 1; a1=a2=0.7, If t (y) ≥ 

0.8, the output is 1; otherwise the output is 0. This is 

logical AND.  

 

Case 2: x1 and x2 are either 0 or 1; a1=a2= 0.1, If t(y ) ≥ 

0.1,the output is 1 ;otherwise the output is 0 . This is 

logical OR. 

 

Case 3: x1 and x2 are either 0 or 1;  a1= a2= - 0.5.  If t(y) 

≥ - 0.1 the output is 1 ;otherwise the output is 0. This is 

logical NOR. 

 

Case 4:x1 and x2 are either 0 or 1; a1= 0.5, a2 = - 0.5 .If 

t(y) ≥ - 0.8 the output is 1;  otherwise the output is 0. Th is 

is a logical NAND. 

 

Case 5: x1 and x2 are either 0 or 1; a1= 0.5, a2 = - 0.5 .If 

t(y) ≥ 0.1 the output is 1; otherwise the output is 0. Th is 

is a  logical function  ( x1 and Not x2). 

 

 

Case 6: Restrict to a single input by setting: x1= 0 

Then with a1= 0, x2 is 0 or 1;  a2=  - 0.5 , and the 

condition  if t (y ) ≥ -  0.1, then output is 1; otherwise 0. 

Then the outputs when x2=0 or 1 will give a logical NOT 

 

Consider now a two layer neural network consisting of 

the following inputs and weights at the two-levels.  

  

Inputs: (x1,x2), weights a1, a2, b1, b2, c1,c2 and 

summing over takes place thus: 

y1= a1.x1+b2.x2;   y2= b1.x1+a2.x2;   and z = 

c1.y1+c2.y2. 

Let  x1, x2 can be  either 0 or 1 for the fo llowing values 

of a1,a2.b1,b2,c1 and c2, and the following thresholds 

t(y1), t(y2), t(z ). 

a1=a2=b1=b2= 1  ; c1=0.6  and c2 =   - 0.2 



 Agent-based Models in Synthetic Bio logy: Tools for Simulation and Prospects 63 

Copyright © 2012 MECS                                                             I.J. Intelligent Systems and Applications, 2012, 2, 58-65 

 If  t(y1)≥ 0.4 the output is 1 ;otherwise 0. If t (y2)≥ 1.2   , 

its output is 1 ; otherwise 0.  

Also; t( z) ≥ 0.5 it outputs 1; otherwise 0.  

The function computed is Exclusive OR function . This is 

because:  

 

Input(x1,x2) = (0,0): Then y1= 0, y2= 0 and so output 

t( y1)  =0, and output of t ( y2)= 0.  

Then z= 0 and its output is 0. 

 

Input(x1,x2) = (0,1)  : then y1=1, y2=1 and so output of 

t(y1)=1 and output of t( y2)=0, since t(y2) is 1.2. 

Then z= 0.6-0.0  = 0.6 ≥  0.5; so its output is 1. 

 

Input(x1,x2) =  (1,0): then y1= 1,y2=1 and so output of 

t(y1)=1, output of t(y2) =0 since t( y2) is 1.2. 

Then z= 0.6-0= 0.6≥ 0.5. Hence output is 1.  

Input(x1,x2) =Input (1,1): then y1= 2, y2= 2 and so 

output of t(y1)=1 , t ( y2)= 1, 

and so z= 0.6- 0.2= 0.4 < 0.5  and output is 0.  

 

Thus an identically looking motif can generate various 

functions in various different ways, and the many layer 

networks can produce different outputs depending upon 

the chemical concentration levels and threshold functions. 

If the inputs and outputs are stochastic in nature, the 

functions computed are no longer easily determinable.  

 

IV. MOTIF-BASED GROWTH FOR TUNING 

CIRCUITS 

 

    Recent advances in Cell biology reveals that Nature 

has always concentrated on devising special purpose 

computing elements having both the analog and digital 

features, and explo iting cooperative and competitive 

schemes using percolation like threshold phenomena, 

positive feedback leading to self-enforcement, 

nonlinearity, and short and long range signalling to  

facilitate interaction using disordered protein networks. 

For accomplishing any special task, the protein machines 

are interconnected through softwiring, and are temporally  

and spatially  coordinated through linked  processes to 

achieve maximal efficiency. This problem is solved using 

Genetic programming with motifs as the subgraphs in  

growing  a graph. 

  Growing a graph until it reaches self-organized  

criticality through interaction is closely related to Genetic 

Programming (GP), Koza [15], Goldberg [9]. In GP each 

program construct is  a tree constructed from tasks, 

functions and terminal symbols. Then we perform 

crossover and mutation by swapping program sub-trees 

leading to feasible programs, taking care of the nature 

and type of the task. These operations resemble 

Metropolis-Hastings-Monte-Carlo methods to create 

transitivity in a graph from a g iven node to a desired 

attractor node. The GP operations correspond to an 

ergodic move-set in the space of graphs with a g iven set 

of parameters and repeatedly generating the moves and 

accepting them with probability p or reject ing them with 

probability (1-p).  

Suitable move-sets are: creation of new nodes, aging and 

annihilation of nodes, Mutation -movement of edges from 

one place to another, mating -swapping edges of the form 

(s,t),(u,v) to (s,u),(t,v), adding new edges based on a cost 

function. Such moves can create a phase transition (or 

percolation) to reach  a global goal through successive 

local goals. An important aspect in GP is the fitness of 

the individual program generated locally and globally. In  

self-organization, ideally, one requires that the fitness is a 

self-awareness function i.e. the indiv idual who does the 

work evaluates itself, ensuring that the global fitness is 

guaranteed. This is widely prevalent in  Nature for 

activities such as: nest building (stigmergy), food 

searching (foraging). For specified  goals or for vary ing 

modularity this approach can be used to achieve special 

purpose genetic regulatory systems [3]. This approach is 

similar to using neural network methods. 

  As stated in A lon [3] the bio logical networks are 

modularly organized. In this sense, the conventional GP 

techniques as described above cannot capture the manner 

of biological evolution , since the random switching of 

edges, can destroy modularity. Agent-based simulat ion 

can retain the modular structure and vary the required 

connections to achieve a required goal. 

 

V.    MULTI-AGENT ARCHITECTURE AND 

TOOLKITS 

 

Shakshuki et al. [24],evaluate  multiagent tool kits, such 

as: Java Agent development framework (JADE),  Zeus 

Agent building toolkit and JACK Intelligent  Systems. 

They consider Java support, and performance evaluation. 

The number of agents they consider is of the order of 32. 

For the implementation of the paradigm described here, 

further developments are needed in Agent technology, 

since we need a very large number of agents to simulate 

many real-life scientific applications.  

  Gorton et  al [10] have evaluated agent architectures: 

Adaptive Agent architecture (AAA), Aglets developed by 

IBM, and the Java based architecture Cougaar. The 

paradigm described here is well-suited for implementing 

in Cougaar, a  Java based agent architecture, since 

Cougaar is based on human reasoning. A Cougaar agent 

consists of a blackboard that facilitates communicat ion 

and operational modules called plug-in that communicate 

with one another through the blackboard and contain the 

logic for the agent’s operations. The use of blackboard 

and direct communication are useful for simulat ing the 

problems in Synthetic biology. 

  Many other recent developments include Repast, North 

et al [20], Einstein, Ilachinski, in   [1], and other agent 

based software tools, Adamsky and Komosinski [1], 

Odell[21] .Repast is object oriented and has a discrete 

event scheduler, 2D visualizat ion, and can model Monte 

carlo, Genetic algorithms, neural nets. It can be used with 

a variety of languages: java, C#, managed C++, Pro log 

etc and is available for several Platforms. Swarm 

Software is a mixture of Object oriented C and Java and 

can be very useful for swarming and related simulations. 

Yet another tool is Star Logo, in  [1]. 



64 Agent-based Models in Synthetic Bio logy: Tools for Simulation and Prospects  

Copyright © 2012 MECS                                                             I.J. Intelligent Systems and Applications, 2012, 2, 58-65 

VI. CONCLUSION 

 

We described a mult iset of agent based on transactional 

approach for modeling and simulat ion in synthetic 

biology. The use of specialized agent based graph motifs 

will be useful for realizing specific genetic regulatory 

networks with fixed  goals and modularly  varying goals 

using genetic programming. Currently available software 

tools are briefly described. In order to simulate and study 

genetic regulation models further it is necessary to 

enhance the currently available agent-based software 

tools with bioinformatics tools. However, much work 

needs to be done to refine these models to realize 

biological evolution of even simple mutation problems, 

e.g., transferring DNA from one organism and express it 

in a d ifferent organism to introduce specific new 

features,[7,28],e.g., those involving skin color changes in 

animals. Th is will require the bioinformatics machinery  

to be integrated along with agent based paradigm to 

explore the system biology in great details, [12,13,27] . 

The present best technology available is a blend of object 

oriented and agent-based programming approaches that 

aid simulation and animation. However, there are several 

difficulties here: 

1.The computational power of the gene control system 

can be shown to be not less than the computational power 

of a Turing machine that takes advice. This is clearly 

seen from the manner in which activators function. They 

can arbitrarily recruit coactivators. A coactivator may 

work by linking the activator or by promoting the 

conversion of a close chromatin structure to a more open 

structure. 

2. Activators can have a multitude of targets. This makes 

it difficult even for in vitro experiments. So in silico 

models are less likely to provide useful information. 

3. Repressors also can recruit co repressors and they act 

again in unpredictable ways. 

4. Many genes interact with different proteins (too 

numerous) to regulate transcription. Such a binding can 

take place thro cooperativity or allostery (shape 

matching). It is difficult to classify which type of binding 

is used in different contexts and the outcome. 

5.There are major obstacles in understanding protein 

networks and their functions. First of all the definit ion of 

functions in biology is entirely  different from computable 

or mathematical functions.  

Three kinds of interrelated functions occur in biology:  

(i) The b iochemical function referring to the chemical 

activity, binding and catalytic property and 

conformational changes.  

(ii) The cellular function that is context dependent with 

respect to a tissue or an organ.  

(iii) The phenotypic function that determines the 

behavioral and physiological propert ies of an organis m in  

its environment.  

 

In language theory, the above three functional aspects are 

analogous to the syntax that deals with the structure and 

grammar of a sentence (the chemical structure, bonds and 

reaction), the semantics that assigns a meaning to a 

sentence (its role in cellular act ion), and thirdly the 

pragmatics of a language which deals with the usability 

of the language in successfully meeting its goals (survival 

of an organism). A ll these functions are nonunique and 

context dependent. That is, similar functions can result in 

different outcomes and different functions can result in  

similar outcomes due to their many- to one, and one- to 

many mapping properties. Th is is called mult iple 

realizability and leads to the failure of reductionism. 

  In mathematical logic these functions correspond to 

higher-order logical functions that deal with the non-

denumerable properties of functions of another function 

of yet another function, and hence turn out to be non-

computable. In addit ion, proteins are multi domain  

structures, undergoing extensive conformational changes 

and rapidly evolve their folds through order-disorder 

transitions making the complexity of fold ing problems in  

proteins computationally very complex. 

  We may now ask: What is the most suitable 

computational model and associated programming 

language to understand biological systems? 

The biological systems are so complex to understand 

through formal means. The reason being they are more 

powerful systems than the Turing machine and associated 

computational schemes. In part icular we can show that 

the biological systems are at least as powerful as a Turing 

machine taking advice as observed from several real life 

examples. Their power also arises due to interaction with 

the environment and autonomous entities, because they 

can watch out for their own set of internal responsibilit ies. 

Furthermore, they are interactive entities that are capable 

of using rich fo rms of messages both through chemical 

and electrical signals and through object interactions 

(shape matching and cooperation, repression, inhibition 

and competition). These messages can support method 

invocation—as well as informing the components 

involved in part icular events, to respond or react or create 

a new entity. The computer science until recently was 

concerned with Turing like machines and programming 

was based entirely on algorithmic structure, e.g., for and 

while loops, if, assign, repeat command, In recent years 

however, there are several new developments that permit  

interactive programming based on object oriented 

technology (Java programming language )  and agent 

based technology that can interact with the environment 

(internet). However, there are a number of d ifficu lties in  

directly  using these models as the basis and associated 

programming paradigms since the biological systems are 

both event, action and content based and they behave in 

deterministic, nondeterministic and stochastic manner 

with analog, dig ital signals and chemical reactions 

through shape matching and  cooperative behavior. 

Hence it  is only possible to model a very limited range of 

the biological systems. Even in v itro simulations have 

failed to y ield  sufficient information about biological 

systems. Accordingly, we cannot yet claim that we are 

really in a suitable level of understanding how to model 

biological systems.  However, the object technology 

seems to reflect some of the biological system concepts 

so that we can model the bio logical system as a mixture 



 Agent-based Models in Synthetic Bio logy: Tools for Simulation and Prospects 65 

Copyright © 2012 MECS                                                             I.J. Intelligent Systems and Applications, 2012, 2, 58-65 

of object-oriented and agent based environment. These 

technologies are yet to mature to design suitable 

programming languages and model the biological system.  

 

REFERENCES 

 

[1]Adamsky,A and Komosinski,M. (2006), Artificial life 

Models in Software, Springer, New York. 

[2]Alberts,B  et al. (2002),The Molecular Bio logy of the 

Cell, Garland Science, New York. 

[3]Alon, U. (2000), An Introduction to Systems Bio logy, 

Chapman and Hall, London. 

[4]Aviv,R and Shapiro,E.(2002) Cellular Abstractors: 

Cellular computation, Nature, Vol 419, 343. 

[5]Boloni,L et al (2004) Software Engineering 

Challenges for mutable-agent systems,  Lecture Notes in 

Computer Science, Vol.2940,pp.149-166, Springer 

Verlag, New York. 

[6] Cardelli,L. (2005) Abstract Machines in Systems 

Biology, Springer Transactions on Biological Systems, 

Springer Verlag, New York. 

[7]Clark, D.P., and Russell,L.D., Molecu lar Bio logy, 

Cache River Press, Vienna, Ill.,1997 

[8]Effroni,S et al. (2005) Reactive animation: Realistic 

Modeling of Complex Dynamic Systems, IEEE 

Computer, January, 33-46. 

[9]Goldberg,D.E..(1989) Genetic algorithms in  search, 

optimisation and machine  learning, Addison Wesley, 

Reading, Mass. 

[10] Gorton,I. (2004) Evaluating agent Architectures : 

Cougaar, Aglets and AAA,  Lecture Notes in Computer 

Science,Vol.2940, Springer Verlag, New York,264-274. 

[11]Harel,D.(2003) A  grand challenge for computing: 

towards  full reactive modeling of a  mult icellular an imal, 

EATCS Bulletin, http:// www. wisdom.weizmann.ac.il/  

~dharel / papers/grandchallenge.doc. 

[12]Jacob,C. and Burleigh,I., Biomolecular swarms -an  

agent based model of the lactose operon, Natural 

computing, Vol. 3,pp.361-376, 2004. 

[13].Jacob,C, Barbasiewicz,A,and.Tsui,G, Swarms and 

Genes : Exploring Lambda switch gene regulation  thro 

Swarm intelligence, Proc. IEEE congress on Evolutionary 

Computation, 2006, Vancouver. 

[14]Keele,J.W and Wray, J.E. (2005). Software Agents in 

molecular computational Bio logy, Briefings in 

Bioinformatics, Vol.6, No.5,December, 370-379. 

[15] Koza,J.R (1999) Genetic p rogramming III, Morgan 

Kaufmann, San Francisco. 

[16]Krishnamurthy, E.V. and Murthy, V.K(1991) 

Transaction Processing, Prentice Hall, N.J 

[17] Lauffenburger,D.A.and Linderman,J.L. (1993) 

Receptors, Oxford University Press, Oxford. 

[18]Lucena, C et al.(2004) Software Engineering for 

Multi-agent Systems, Lecture Notes in  Computer 

Science, Vol.2940, Springer Verlag, New York. 

[19]Murthy, V.K and Krishnamurthy, E.V (2009)," 

Multiset of Agents in a Network for Simu lation of 

Complex Systems", in  Recent advances in Nonlinear 

Dynamics and synchronization     (NDS-1)  -Theory and 

applications, Springer Verlag, New York, 2009. Eds. 

K.Kyamakya et al.  

[20]North, M.J and Burton, E.J.,(2006),  Escaping the 

accidents of History: An overview of  Artificial life 

modelling with Repast, in [1], 115-142. 

[21]Odell,J.J,Objects and agents compared, J. Object  

technology,(2002) Vol.1,  41-53,May-June. 

[22]Pinney,J.W et al. (2003) Petri net representations in 

systems biology, Biochemical Society 

Transactions,Vol.31, Pt 6.  

[23]Sekan ina,L. (2005),Evolvable components,Springer, 

New York.  

[24]Shakshuki,E and Jun,Y(2004) Mult i-agent 

development toolkits: An Evaluation,  Lecture Notes in 

Artificial intelligence, 3029, Springer Verlag, New York,  

209-218. 

[25] St ith, B.J. (2004) Use of animat ion in  teaching cell 

biology, Cell. Biology  Education, Vol.3(3),Fall,181-188. 

[26] Thomas ,R and, D’Ari,R, Biological feedback, CRC 

Press, Boca Raton, Florida, 1990. 

[27] Vallurpalli,V and Purdy,C Agent based modeling 

and simulation of biomolecular reactions, Univ. of 

Cincinnati, 2006. 

[28]Watson,J.D et al, Molecular biology of the Gene, 

Benjamin Cummings, San Francisco ,  2008. 

[29] Wooley,J.C and.Lin,H.C. (Eds.) (2005) Catalyzing  

inquiry at the interface of  computing  and bio logy, 

National Academies Press, Washington, DC. 

[30 ] Woolridge,M(2002) Introduction to Multi-Agent 

systems, John Wiley, New  York. 

 

     Professor E.V. Krishnamurthy is with the Computer 

Sciences Laboratory, Australian Nat ional University. He is  

the author of several books and papers in Computer 

Science and Information technology.  

Address: 

Computer Sciences Laboratory, Research school of 

Information Sciences and Engineering,Bldg.115 Australian  

National University, Canberra, ACT 0200, Australia. 

Email:  Evk.Krishnamurthy@anu.edu.au 

 

 
 

 

 
How to cite this paper: E.V.Krishnamurthy,"Agent-based 

Models in Synthetic Biology: Tools for Simulation and 

Prospects", International Journal of Intelligent Systems and 

Applications(IJISA), vol.4, no.2, pp.58-65, 2012. DOI: 

10.5815/ijisa.2012.02.07 


