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Abstract—This paper proposes a heuristic method for the 
sensor selection problem that uses a state vector fusion 
approach as a data fusion method. We explain the heuristic 
to estimate a stationary target position. Given a first sensor 
with specified accuracy and by using genetic algorithm, the 
heuristic selects second sensor such that the fusion of two 
sensor measurements would yield an optimal estimation in a 
target localization scenario. Optimality in our method 
means that a trade-off between estimation error and cost of 
sensory system should be created. The heuristic also 
investigates the importance of proportion between the range 
and bearing measurement accuracy of selected sensor. 
Monte Carlo Simulation results for a target position 
estimation scenario showed that the error in heuristic is less 
than the estimate error where sensors are used alone for 
estimation, while considering the trade-off between cost and 
accuracy. 
 
Index Terms — data fusion, sensor selection, multi-objective 
optimization, genetic algorithm. 
 

I. INTRODUCTION 

Today target localization by using sensor fusion 
systems is one of the main issues of tracking scenarios. 
Estimation accuracy, sensor characteristics and cost of 
sensory system are three important criteria help for 
optimal sensor selection in a sensor data fusion problem. 
Sensor selection system designers are weighting these 
three criteria and some other factors in every situation. 

In a target tracking application, observations about 
angular direction, range, and range rate are used for 
estimating a target’s position, velocities, and 
accelerations in one or more axes. The Collected 
observations from various similar or dissimilar sensors 
can be used in a sensor data fusion system to make a 
better decision. Many applications and different methods 
of sensor data fusion are presented in [1-5]. 

In all of sensor fusion methods, sensors equipped in 
the mobile robot or a manufacturing system are used in 
sensor fusion. However, there are some considerations by 
using any type of sensors for sensor fusion. For instance, 

it is desirable to minimize the cost of the sensory system.  
Therefore, a sensor selection technique before fusing 
sensor measurements is very useful in order to approve 
such considerations. Various strategies and approaches 
have been proposed for the sensor selection problem in 
[6-9]. A sensor selection algorithm based on the Modified 
Riccati Equation (MRE) is used to allocate two sensors 
equipped on a moving platform to track targets in [6]. 
Another sensor selection technique incorporated with 
sensor fusion is introduced by Takamasa Koshizen in [7]. 
The Author has extended The Gaussian Mixture of Bayes 
with Regularized Expectation Maximization (GMB-REM) 
as a robot localization system in terms of the external 
sensor selection task to reach a minimum error in the 
position of the robot.  

This paper is organized as follows. In the next section, 
we briefly describe the state vector fusion method based 
on the Extended Kalman Filter that was utilized in our 
work. We show how two sensor measurements can be 
fuse to have an accurate state estimation. Section III 
describes the sensor selection concept. In section IV, we 
precisely formulate our proposed method for the sensor 
selection problem. We consider a target localization 
scenario and describe the sensor selection problem as a 
multi-objective optimization problem. Section V presents 
the simulation results from the application of the 
proposed method to the case of two sensors, and then we 
provide our conclusions and the efficiency of the 
proposed method in section VI. 

 

II. SENSOR DATA FUSION 

The problem of target tracking using measurements 
from sensors is of considerable interest in many military 
such as tracking aircrafts, missiles and unmanned aerial 
vehicles. It is also useful in civil applications such as 
robotics, air traffic control, air surveillance, and ground 
vehicle tracking. A total idea of two sensor data fusion is 
depicted for target tracking in Fig. (1). 
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Figure 1．Concept of two sensor data fusion for target tracking [5] 

 
There are generally two broad approaches for the 

fusion of data: measurement fusion and state-vector 
fusion. With the former approach, the measurements are 
basically combined without much processing, and the 
optimal state vector of target position is obtained. State-
vector fusion is preferable in practical situations that the 
volume of data to be transmitted to the fusion center 
would be very large. In such a system, each sensor uses 
an estimator that obtains an estimate of the state vector 
and its associated covariance matrices (of the tracked 
target) from the data of that associated sensor. Then these 
state vectors are transmitted over a data link to the fusion 
center [5]. 

Suppose that for a given target tracking scenario, we 
have an autonomous robot that two sensors such as sonar 
with different accuracy are installed on it. Using each of 
these sensors, we would have two estimations from the 
target states with known and different accuracy. The state 
vector fusion problem in this scenario will be a weighted 
sum of the two independent state estimates. Fused state 
and covariance matrix are computed using the following 
expressions: 

     ˆˆˆˆˆˆˆ 1212111 XXPPPXX f 


                       (1) 

   ˆˆˆˆˆˆ 112111 PPPPPP f 
                                      (2) 

Where, 1X̂  and 2X̂  are the estimated state vectors of 
estimator 1 and sensor 2 with measurements from sensor 

1 and sensor 2, respectively, and 1P̂  and 2P̂  are the 
corresponding estimated state error covariance. 
 

III. SENSOR SELECTION 

In sensor management and sensor data fusion concepts, 
sensor selection is usually based on the accuracy and 
performance of each sensor. Although this accuracy is 
based on certain environmental and sensor related 
parameters, it does not necessarily mean that the sensor 
with the highest accuracy also yields the best 
performance in a sensor data fusion system. With an 
incorrect sensor selection scheme, it is probable that the 
fused estimate error be more than the achieved estimation 
error by each of the sensors. 

Another issue here is a cost-benefit tradeoff. In 
practical situations, usually designers try to obtain the 
best performance against minimum cost of a sensory 
system. Also in tracking scenarios, the sensor selection 
process would be performed based on sensory 
characteristics. For example, for a given target tracking 
scenario, one is able to identify the best sensor with a 
high accuracy in range measuring, in the meantime the 

other sensor might be used for exact bearing 
measurements. 

 

IV. PROBLEM STATEMENT 

The proposed algorithm for sensor selection is based 
on state vector fusion. For a given stationary target, an 
optimal state estimation is achievable if we minimize the 

fused covariance fP̂ . It is obvious from the (2) that the 

fused state estimate fX̂ is directly relative to the fused 
covariance. Therefore, minimum fused covariance yields 
an accurate state estimation. 

We state the following assumptions: 
1) We have a robot equipped with a sensor that has 

a known performance, named sensor 1. 
2) A stationary target is placed in an unknown 

location that is able to be found with sensor 1. 
3) The initial position of the robot is available. 

A. Target Position Initialization 

Position estimate of the target and its covariance must 
be properly accomplished for sensor selection. The full 
set of two dimensional kinematic model of a robot is 
given by: 

zzb w                                                                (3) 

     sincos yybxxbxi wfwfv                      (4)  

     cossin yybxxbyi wfwfv                      (5) 

xii vx                                                                         (6) 

yii vy                                                                        (7) 

zb is the measured angular rate and xbf and ybf are 

the measured specific force in body axes of the robot. xw , 

yw and zw are dynamic noise of internal sensor 

measurements. xiv and yiv are the robot velocity and 

ix and iy are the position of the robot in a space-fixed 

reference frame [10]. 
The robot is equipped with a range/bearing sensor. 

Laser range finders and sonar sensors are two examples 
of range/bearing sensors that might use on the robot. 
Given the robot position ),(X RRR yx  and its 

orientation , the observation of range, rz  and bearing, 

z  can be modeled as: 
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where rw and w  are uncertainty in sensor measurements. 

According to (3)-(7) and (8), the state vector of our 
system is      v  v  X

RR xxRRR yx  and observation 

vector is  zzr   Z  . 

Given the (8), a target estimation model tg , maps the 

robot position and relative observation to target position 
estimate. Therefore, the estimate of the target position is: 
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)z,X(gX Rtt                                                          (9) 

and its covariance is :   
TT

t BBAA .R..P.P 0                                          (10) 

Where 0P is initial covariance of robot states, A and 

B are Jacobian of tg evaluated around state vector and 

observations respectively. 

B. Nonlinear Equation System Derivation 

Covariance of observation noise or dynamic noise of 
measurement for sensor 1 and sensor 2 is defined by R1 
and R2, respectively : 
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(11) 

where ),(  r  are standard deviation of range and 

bearing measurements respectively. According to (8) and 
(11), we will have two different observation models for 
sensor 1 and sensor 2 : 
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Therefore, covariance estimates for target position by 
sensor 1 and sensor 2, 1Pt  and 2Pt , will not have the 

same values. As we said before, sensor 1 has a known 
accuracy and is available, hence R1, 1Pt  and S1Z  are 

non-parametric and take true values. But R2, 2Pt  and 

S2Z  are parametric values. Further details in the 

calculation of 2Pt  are given in Appendix. Also according 

to (2), fP̂  will be a 2×2 parametric matrix based on 
( 2r , 2 ). 

),(P̂ 22  r
f f

 
                                                   

(13) 

The main diagonal of fP̂  is consist of two nonlinear 
functions. After some simplifications and for a given 

value of random function, fP̂ takes on the different forms. 
Now, we try to minimize the fused covariance defined 

by (13) to have an optimal estimation of target position. 
Therefore, we can consider the sensor selection problem 
as a nonlinear multi-objective optimization problem. In 
other words, ( 2r , 2 ) must be specified in a manner 

that the partial derivation of (13) goes to zero: 
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For the above equation set, because of high 
nonlinearity, it is difficult to calculate 2r  and 2  

analytically and the response of equation set is highly 
correlated to initial values. Fig. (2) and Fig. (3) show the 
values of specified Eq1 and Eq2 for a given and limit 
band of ( 2r , 2 ). 

 
 

Figure 2．Surface plot of Eq1 

 

 
 

Figure 3．Surface plot of Eq2 

 
Indeed, Fig (2) and Fig. (3) shows variations of 

original diagonal elements of the fused covariance matrix 
into ( 2r , 2 ). If we plot these two surfaces in a 

common frame, some crossing points will appear. It 
proves that the equation set (16) has more than two 
answers. Fig. (4) shows these cross points. 
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Figure 4．Cross points of surface Eq1 and surface Eq2 in a common 
frame 
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According to the above proofs, we propose multi-
objective optimization approaches for solving nonlinear 
equation sets (14). 

B. Transformation into a Multi-Objective Optimization 
Problem 

The purpose of multi-objective optimization problem 
is to seek design vector  T

nXXX   ,,, 21 X  

according to k object functions if  that must be 

minimized within a given set of m equality and p 
inequality constraints that restrict the problem. A 
mathematical formulation of the multi-objective 
optimization is : 
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where nX   is a design variable vector, 

        Tk XfXfXfF ,,, 21 X  is object function 

vector and  Xgi  and  Xh j  are equality and inequality 

constraint, respectively. With no loss of generality, we 
can assume that all of the object functions should be 
minimized. Such multi-objective minimization problems 
are classified as Pareto solution problems and for 
achieving the optimal solution, some definitions such as 
Pareto front, Pareto set, Pareto optimality and Pareto 
dominance are used. 

In multi-objective problems, heuristic optimization 
methods, particularly genetic algorithms (GAs) be used 
extensively during the last decades to search for optimum 
solutions [11] – [15]. 

Genetic algorithms which imitate the process of natural 
evolution have shown successful results in many 
optimization problems which are difficult to solve by the 
conventional methods of the mathematical programming. 
In this work we used Non-dominated Sorting Genetic 
Algorithm (NSGA-II) for solving systems of nonlinear 
equations (14) as a multi-objective optimization problem. 

The complete NSGA-II procedure is given below: 
 

BEGIN 
While generation count is not reached 

Begin Loop 
 Create the offspring population Qt (of size N) using 

the parent population Pt (of size N), 
 Combine parent Pt and offspring population Qt to 

obtain population Rt of size 2N. 
 Perform Non-dominated Sorting on Rt and assign 

ranks to each Pareto front with fitness Fi. 
 Starting from the Pareto front with fitness F1, add 

each Pareto-front Fi to the new parent population 
Pt+1 until a complete front Fi cannot be included. 

 From the current Pareto-front Fi, add individual 
members to new parent population Pt+1 until it 
reaches the size N. 

 Apply selection, crossover and mutation to new 
parent population Pt+1 and obtain the new offspring 
population Qt+1. 

 Increment generation count. 
End Loop 
END. 
 

V. SIMULATION AND RESULTS 

In this section we define the sensor selection problem 
as a multi-objective optimization problem and we present 
simulation results to validate the theory developed in the 
previous sections. 

We formulate the multi-objective optimization 
problem as follows : 
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)(1 xf  and )(2 xf  in this formulation take the values 

Eq1 and Eq2 in (14) respectively. 
The upper and lower bounds are considered as follows : 

Lower Band :  11    r                                         (17)             

Upper Band :  11     mn r                               (18)  

where n and m are positive real values. 
Again, consider presenting equations in Appendix that 

are utilized for relative range and bearing  
( 22 , tr zz ) calculation between robot and target using 

sensor 2. As we can see, a random function with zero 
mean and specified variance  11,  r  has been used in 

these equations. Therefore the performance of proposed 
method must be evaluated by Monte Carlo simulation. 
For different random function values, several object 
functions will be derived and multi-objective 
optimization algorithm will be served to solve the derived 
nonlinear equation set. 

For simulation, consider the scenario presented in 
Fig. (5). In this scenario, a target is placed in position 
(100,200) and we want to estimate the location of the 
target by a robot that is placed in position (0,0). 
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Figure 5．Multi-sensor target localization scenario 
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Monte Carlo simulation iterated 100 times. The 
simulation parameters and characteristics of first sensor 
are shown in table I. The values of the parameters used in 
the simulation by genetic algorithm are given in table II. 

TABLE I.  SIMULATION PARAMETERS AND CHARACTERISTICS OF 
SENSOR 1 

0.01 Sec )(kt  Sampling Period 

2 cm   1r  Noise STD dev in the range 
measurement of sensor1 

0.02 rad   1  Noise STD dev in bearing 
measurement of sensor1 

1 cm, 1cm yx  ,  Initial position STD dev of Robot 

1e-3 m/s , 1e-3 m/sVyVx  ,  
Initial velocity STD dev of Robot 

1e-4 rad , 1e-4 rad
 

Initial heading STD dev of Robot 

5 cm , 0.1 rad Ub , Lb 
Upper and Lower bounds in 

optimization algorithm 
 

TABLE II.  VALUES OF THE PARAMETERS USED IN THE 
SIMULATION BY GENETIC ALGORITHM 

Value Parameter 
30 Population Size 

300 Number of Generations 
2 Number of Variables 

1e-4 Function Tolerance 

Some of the solutions obtained by a single run and for 
a given object function as well as the function values 
(which represent the values of the system’s equations 
obtained by replacing the parameter values) are presented 
in Table III. The algorithm provides optimal Pareto curve 
as shown in Fig. (6). 

 

TABLE III.  EXAMPLES OF THE SOLUTIONS OBTAINED BY 
A SINGLE RUN FOR A GIVEN OBJECT FUNCTION 

Target Position
Estimation 

Covariance By 
Sensor 2  

Fusion 
Covariance  

Function 
Values  

Variables 
Values  

S
ol

ut
io

n
    22ˆ11ˆ 22 ,P ,P   2,2ˆ 1,1ˆ ff PPEq2      Eq12r    2  

 

5.4541
5.7221
5.4173
5.4514
5.6494
5.4541
5.5172
5.616 

5.1988
5.5303
5.2274
5.2571
5.4561
5.1988
5.3133
5.4245  

2.5393
2.5168
2.5387
2.5363
2.5219
2.5393
2.532 
2.5242  

2.6359 
2.612 
2.6349 
2.6325 
2.6174 
2.6359 
2.628 
2.6198  

0.0098 
1e-06 
0.007 
0.0063 
0.0015 
0.0098 
0.0050 
0.0022   

3e-06 
0.007 
3e-04 
0.001 
0.005 
3e-06 
0.002 
0.005   

0.028
0.020
0.021
0.021
0.020
0.028
0.022
0.020  

2.930 
3.021 
2.934 
2.943 
3.000 
2.930 
2.960 
2.991   

Sol
1 

7.484
4.610
4.610
5.429
5.251
6.103
6.430
5.083

8.626
6.584
6.584
6.246
6.187
7.027
7.437
6.220

 

2.470
2.599
2.599
2.587
2.594
2.542
2.522
2.598

 

2.345
2.458
2.458
2.454
2.460
2.412
2.393
2.462

 

0.028 
3e-07
5e-10
0.003 
0.001 
0.015 
0.020 
3e-07

 

4e-07
0.068 
0.068 
0.025 
0.031 
0.013 
0.009 
0.040 

 

0.021
0.055
0.055
0.021
0.025
0.021
0.022
0.031

 

3.691
3.090
3.090
3.122
3.094
3.319
3.416
3.082

 

Sol
2 

5.657
5.869
5.378
5.743
5.800
5.869
5.444
5.525

5.000
5.447
5.088
5.484
5.474
5.447
5.144
5.256

 

2.606
2.577
2.607
2.578
2.577
2.577
2.603
2.595

 

2.578
2.548
2.578
2.549
2.548
2.548
2.573
2.565

 

0.025 
1e-09
0.011 
1e-04
2e-05
1e-09
0.009 
0.005 

 

34-10
0.015 
4e-08 
0.009 
0.012 
0.015 
0.001 
0.004 

 

0.057
0.034
0.025
0.021
0.026
0.034
0.026
0.022

 

2.903
3.017
2.902
3.014
3.017
3.017
2.919
2.950

 

Sol
3 

 

All solutions in a Pareto set are equally optimal. It is 
up to the designer to select a solution in the Pareto set 
depending on the application. In this work we choose the 
mean of solutions as a final answer and select the second 
sensor based on this answer. 
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Figure 6．Optimal Pareto solutions for the multi-objective 
optimization problem 

 
For more analysis, average Pareto distance and spread 

of generated individuals in genetic algorithm are shown 
in Fig. (7). 
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Figure 7. Average Pareto distance and spread of generated 
individuals 

 
Table IV shows the characteristics of selected sensor. 

The results are obtained after 100 Monte Carlo simulation 
runs. 

TABLE IV.  VALUES OF THE PARAMETERS USED IN THE 
SIMULATION BY GENETIC ALGORITHM 

3.3939 cm    2r  
Noise STD dev in the range 

measurement of sensor 2 

0.0396 rad    2  
Noise STD dev in bearing 
measurement of sensor 2 

 
Fig. (8) depicts the time histories of target position 

estimation errors with 3 bounds for state vector fusion 
algorithm scheme when we fuse the obtained 
measurements by sensor 1 and sensor 2. Sensor 2 is 
selected by the proposed sensor selection algorithm. 
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Figure 8．Target position estimation error – sensor 1 and our 
approach 

 
From the results presented in Fig. (8), one can see that 

satisfactory accuracy of position estimation has been 
obtained using the proposed sensor selection algorithm.  
Fig. (9) presents estimation errors with 3 bounds when 
we only use sensor 2 for target position estimation. 
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Figure 9．Target position estimation error – sensor 2 

 
Using 100 Monte Carlo simulations, Estimation 

accuracy was measured by the total RMSE in the position 
estimates of the target. Results are presented in table V. 

TABLE V.  VALIDATION RMSE VALUES FOR TARGET 
POSITION ESTIMATION 

Estimation with 
fused measurements

Estimation 
with Sensor 2 
measurements

Estimation 
with Sensor 1 
measurements

  

1.1037  2.2224  1.4050  X Position  RMSE 

1.0930  2.1333  1.4114  Y Position  RMSE 

VI. DISCUSSIONS AND CONCLUSION 

A new heuristic algorithm for sensor selection problem 
has been proposed in this paper and its success 
investigated by some simulations. Given a specified 
sensor, we selected another one to pair with it. 
Considering a design area for sensor selection, we 

defined a multi-objective optimization problem and 
selected a perfect pair of sensors for optimal state 
estimation. Using the state vector fusion method, accurate 
target position estimation performed by the selected 
sensors such that a trade-off between cost of the sensory 
system and estimation error is created. 

Proposed method gives us more solutions for the 
sensor selection problem that all of them are optimal, but 
in this work we choose the mean of solutions to make a 
sensory system. 

It is worth to mention the necessity of using our 
approach for selection of a perfect pair of sensors in 
position estimation problems. In section V, we considered 
a design area for sensor selection. In this section, we 
ignore our sensor selection algorithm and put the 
( 2r , 2 ) equal to upper bound values of design area. 

Estimation error results with 3  bounds and total RMSE 
for this condition are presented in Fig. (10) and table VI 
respectively. 
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Figure 10．Target position estimation error :  
( cmr  21   , rad 02.01  ) and ( cmr  52  , rad 1.02  ) 

TABLE VI.  RMSE VALUES FOR TARGET POSITION 
ESTIMATION :  ( cmr  21   , rad 02.01  ) AND 

( cmr  52  , rad 1.02  ) 

Estimation with 
fused measurements

Estimation 
with Sensor 2 
measurements

Estimation 
with Sensor 1 
measurements

  

1.9143  7.2762  1.5801  X Position RMSE

1.9626  5.8132  1.5948  Y Position  RMSE

 
It is obvious from Fig. (10) and table VI that the state 

vector fusion algorithm has not successful results for any 
arbitrary pairs of sensors. While our proposed algorithm 
always select a perfect pair of sensors such that gives 
optimal fusion results. 

Propriety between the range and bearing measurement 
accuracy of selected sensor is another important ability of 
our proposed algorithm. In the state vector fusion 
algorithm, incorrect selection of sensor 2 may cause to 
undesired estimation results, while the cost of sensory 
system is reduced. 

For example, consider the presented characteristics of 
sensor 1 in table I. Here we use a low cost sensor 2 
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described by 102 r  and 001.02   in which the 

propriety between range and bearing measurements is not 
regarded. In this case, Fig. (11) shows attained estimation 
accuracy by state vector fusion algorithm. 
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Figure 9．Target position estimation error :  
( cmr  21   , rad 02.01  ) and ( cmr  102  , rad 001.02  ) 

 

As we can see from this figure, fused estimation error 
is higher, as compare with the case that sensor 1 is used 
for position estimation, where errors exceed the 3  
confidence bounds. 

Our approach is applicable for any type of sensors and 
selection has done based on the accuracy of sensors in 
range and bearing measurements. As we know, increasing 
in measurement accuracy of sensors makes them 
expensive. Our approach is very valuable for a decision 
maker to select proper sensor suites according to 
requirements. Therefore, by utilizing the proposed 
algorithm, we can select a pair of sensors with minimum 
cost to have an optimal estimation in target tracking 
problems. 
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where Rand(n) is a function that produces a gaussian 
white noise sequences. For a given value of this function, 
main diagonal of t2P takes on the following form : 
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