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Abstract—In speech synthesis accurate modeling of 

prosody is important for producing high quality 

synthetic speech. One of the main aspects of prosody is 

phone duration. Robust phone duration modeling is a 

prerequisite for synthesizing emotional speech with 

natural sounding. In this work ten phone duration 

models are evaluated. These models belong to well 

known and widely used categories of algorithms, such 

as the decision trees, linear regression, lazy-learning 

algorithms and meta-learning algorithms. Furthermore, 

we investigate the effectiveness of Support Vector 

Regression (SVR) in phone duration modeling in the 

context of emotional speech. The evaluation of the 

eleven models is performed on a Modern Greek 

emotional speech database which consists of four 

categories of emotional speech (anger, fear, joy, sadness) 

plus neutral speech. The experimental results 

demonstrated that the SVR-based modeling outperforms 

the other ten models across all the four emotion 

categories. Specifically, the SVR model achieved an 

average relative reduction of 8% in terms of root mean 

square error (RMSE) throughout all emot ional 

categories.  
 

Index Terms— Phone Duration Modeling, Statistical 

Modeling, Support Vector Regression, Emot ional 

Speech, Text-to-speech Synthesis  
 

 

I. Introduction 

Over the past decades, a great variety of techniques 

for speech synthesis have been developed. Despite the 

differences in these techniques, they all share one 

common aim, the improvement of the quality of the 

synthetic speech. There are two  main criteria for 

measuring the quality of synthetic speech, namely the 

intellig ibility and  the naturalness of speech. The 

intellig ibility of the synthetic speech measures the level 

of difficu lty of the listener to understand the semantic 

contents of the speech [1]. The naturalness of the 

synthetic speech measures the resemblance between the 

synthetic speech and the human speech [1]. One of the 

main aspects for improving the naturalness and 

intellig ibility of synthetic speech is the robust modeling 

of the prosody. Prosody is shaped by the relative level 

of the fundamental frequency, the intensity and the 

duration of the pronounced phones and refers to the 

introduction of functions and aspects of speech such as 

emphasis, intent, attitude or emot ional state that cannot 

be encoded by grammar [1,2]. Therefore the accurate 

modeling of these aspects is mandatory for improving 

the prosody and consequently the quality of the 

produced synthetic speech.  

In particular, the accurate modeling of phone 

duration is essential in speech synthesis , as it affects the 

structure of the utterance and contributes for improving 

the quality of synthetic speech. The accurate modeling 

of phone duration can be achieved through the proper 

modeling of the variables and factors which affect it. In 

the literature a great variety of factors affecting the 

duration of phones have been studied and various 

methods of phone duration modeling have been 

presented [3-8]. These factors and consequently the 

variables which are used in phone duration modeling to 

represent them, mainly belong to categories of speech 

representation such as the phonetic, the phonological 

and the morphosyntactic one.  

To this end, two categories of methods for phone 

duration modeling have been developed: (i) the rule-

based [9] and (ii) the data-driven methods [2, 8, 10-12]. 

In the first category (rule-based) the models are based 

on the use of manually produced rules. In order to 

produce these rules, experimental studies on large 

databases of utterances are mandatory. Consequently, 

the experience and knowledge of expert linguists is 

binding. The most well known method of ru le-based 

models is the one introduced by Klatt in [9]. Based on 

this method, other similar models were developed in 

other language apart from English, such as in Swedish 

by Carlson and Granstrom [13], in French by Bartkova 

and Sorin [14] and in  Greek by Epitropakis et al. in [15]. 

The main drawback in these methods is that the large 

number of the factors, which affect and determine the 

duration of phones, makes ext remely d ifficult  for 

someone to achieve the proper combination and manual 

tuning of them build ing robust phone duration models 
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[16]. Consequently, long-term devotion to this task 

becomes obligatory, and sometimes not even adequate, 

in order to co llect  all the appropriate rules  [17]. These 

aspects of rule-based modeling restricted their 

application to controlled and constrained experiments 

involving a limited number of contextual factors.  

On the other hand, data-driven methods, which were 

developed after the emergence of large databases [18], 

are based on statistical methods and Artificial Neural 

Network (ANN) techniques. These approaches explo it 

large databases in order to automatically ext ract the 

phonetic rules and consequently produce phone 

duration models. In this way, the problem of manual 

rules extraction mentioned earlier, is overcome, leading 

to a more efficient use of the expert linguists’ efforts 

and experience. Some of the most widely used 

statistical approaches, which have been introduced in 

data-driven phone duration modeling over the last 

decades, are the Linear Regression (LR)-based 

technique [19], sums-of-products (SOP) [8] and 

decisions tree-based models [2]. Moreover, Artificial 

Neural Networks (ANN) techniques  [10], Bayesian 

models [11] and instance-based algorithms [12] have 

also been introduced on this task.  

Over the last years, the interest in emot ional/affect ive 

speech synthesis is increasing continuously. Emot ional 

speech synthesis mainly has been following the 

developments in the field of speech synthesis of neutral 

speech. Murray and Arnott in [20] and Burkhardt and 

Sendlmeier in  [21] developed emotional speech 

synthesizers based on formant synthesis techniques, 

diphone concatenation approach was used in [22,23], 

while unit selection corpus based methods were 

implemented in [24,25]. In  all these attempts prosody 

models are implemented in TTS systems in order to 

synthesize certain categories of emot ional speech or 

produce more expressive speech [26-28]. Despite the 

progress in the recent years , we deem that further 

research investigation on the aspects related to phone 

duration modeling, and particu larly in the context of 

emotional speech, has the potential to improve the 

quality of synthetic emotional speech. 

In the present work, we offer a comparat ive 

evaluation of ten phone duration modeling techniques in 

the context of emotional speech. These algorithms have 

been used successfully on the task of phone and syllable 

duration modeling and belong to four categories of 

algorithms, (i) decision trees (DT) [29-31], (ii) lazy-

learning algorithms [32,33], (iii) meta-learning 

algorithms [34,35] and (iv) linear regression (LR) [36]. 

Furthermore, we introduce, the support vector 

regression (SVR)–based phone duration modeling, in 

the context of emot ional speech, and compare with the 

abovementioned traditional methods.  

The remain ing of this article is organized as follows. 

In Section 2, we present the support vector regression 

algorithm. In Section 3, we outline the emot ional 

speech database and the feature set used in the present 

study. Moreover, we overview ten tradit ional phone 

duration modeling techniques, which are evaluated in 

this work, and briefly  describe the performance 

evaluation metrics used in the evaluation of the phone 

duration models. The experimental results concerning 

the phone duration models are d iscussed in Section 4. In 

Section 5, we conclude this paper with a brief summary 

of the work. 

 

II. Support Vector Regression (SVR)  

The wide-spread use of SVR in s tatistical learn ing 

methods is mainly due to its good generalization 

performance, the absence of local min ima and the 

sparse representation of solution [37,38]. In contrast to 

other traditional methods, which implement the 

Empirical Risk Min imization (ERM) princip le, the 

SVMs implement the Structural Risk Min imization 

(SRM) principle  [37,38]. The SRM principle seeks to 

minimize an upper bound of the generalizat ion error 

rather than min imize the training error, which results in 

better generalization performance in SVMs. Training an 

SVM, is equivalent to solving a linearly constrained 

Quadratic Programming (QP) problem resulting in a 

unique and global optimum. In addition, SVMs are 

characterized by the sparse representation of the 

solution requiring less storage space and time for actual 

prediction since only the support vectors, which are a 

subset of the training data, are memorized after the 

training procedure. 

The basic principle of SVM is the mapping of the 

training data from the input space onto a higher 

dimensional feature space using a function Φ, 

constructing subsequently a separating hyperplane with 

maximum marg in in the feature space. Consider a 

training set of data, 1 1 1 1( , ), ( , ),..., ( , ),...,i ix y x y x y  

( , )N Nx y , where each 
n

ix X  , denotes the 

input space of the sample and has a corresponding 

target value iy Y  , for i = 1, …, N , and N is the 

total number of the training samples. The regression 

problem is based on the determination of a linear 

regression function f(x) that can approximate future 

values accurately, defined as: 

   T

if x w x b                                                 (1) 

where ,nw b   and Φ maps the training data to 

a higher dimensional space. This leads to the following 

optimization problem: 
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where 0   is the maximum deviat ion allowed during 

training and 0C  is the penalty parameter fo r 

exceeding allowed deviation. The, *,i i   are the slack 

variables for exceeding the target value more or less 

than ε, respectively. The first term of Eq. (2) controls 

the function capacity and the second term is the 

empirical error.  

Utilizing the method of Lagrange multip liers, *,i i  , 

a different strategy for finding the maximum or 

minimum of the function subject to constraints is used, 

the dual optimization problem is now defined as: 

  

   
*

* *

,

, , * *

1

2
arg min

i i

i i j j i j

i j

a a

i i i i i

i i

a a a a x x

a a y a a




 
   

 
 
   
  



 

            (4) 

subject to: 

 

   

*

*

0

, 0,

i i

i

i i

a a

a a C

 
  

 
 
 


.                                  (5) 

The main advantage of the dual optimization problem 

is the easy expandability to a non-linear mapping 

function. In this case the input data are mapped to a 

higher dimensionality space by a non-linear function Φ. 

Consequently the term 
i j

x x  of Eq. 4 is rep laced by 

the kernel function  ,
i j

k x x . Various kernel functions 

have been used successfully in non-linear SVR, such as 

the polynomial, radial basis function (RBF) or Gaussian 

functions. Unfortunately, the size of a SVR model 

depends on the number of the training samples. Thus , 

for large data sets, algorithm with low memory 

consumption is desired. The most widely used 

algorithm in  this category is the Sequential Minimal 

Optimization (SMO) algorithm [29] applied in 

regression problems in  [39]. A characteristic of the 

SMO algorithm is its ability to break the QP problems 

into a sequence of s maller possible QP problems, 

reducing the amount of memory required.  

 

III. Experimental Setup 

A Modern Greek database of emotional speech was 

used for the creation and the evaluation of the eleven 

phone duration models considered here. This database 

was purposely designed in support of research on speech 

synthesis. The database is linguistically  and prosodically 

rich, containing speech of the four archetypal emotional 

categories [40]: anger, fear, joy and sadness, as well as 

neutral speech. In the following subsections the database 

along with the feature set used for building the phone 

duration models are introduced. Furthermore, the 

algorithms used for building the phone duration models 

and the performance metrics , which  were used in order 

to evaluate and compare the models , are described.  

A．The Modern Greek emotional speech database  

The Modern Greek emotional speech database 

contains data for four archetypal emotion categories : 

anger, fear, joy and sadness along with the neutral 

category. The database was designed in such a way so as 

for each phone to have multiple instances in different 

positions (initial, medial, final) in various words in the 

database. This is a very important aspect of the database 

since the positional and contextual factors of a phone 

(place in syllable, word etc) play a very important role in 

the assessment of its duration [2,8,41,42]. The sentences 

and phrases in the database were extracted from 

passages, newspapers or designed by a linguist. The 

database consists of 62 utterances, which are 

pronounced several times with different emotional 

charge. The length of the utterances ranges from a single 

word, a phrase, short and long sentence or even a 

sequence of sentences of fluent speech, summing up to a 

total of 4150 words in 310 utterances throughout all the 

emotion categories. A phone inventory of 34 phones was 

used, with a total of 22045 instances consisting of 15667 

voiced and 6378 unvoiced phone occurrences. Moreover, 

each vowel class included both stressed and unstressed 

cases of the corresponding vowel. In this point it should 

be pointed out that the context of all sentences is 

emotionally neutral, meaning that it did not convey any 

emotional charge through lexical, syntactic or semantic 

means.  

A professional female actress , speaking Modern 

Greek, was employed for uttering all the sentences of the 

database. All the recordings of each specific emotional 

category were recorded in series, before proceeding with 

the other emotional categories.  All recording sessions 

were held  in  the anechoic chamber of a professional 

studio so as to ensure the quality of the audio and noise-

free conditions of the recordings. Speech was sampled at 

44.1 kHz, and a resolution of 16 bit per speech sample. 

For the needs of our experiments we down-sampled all 

the recordings to sampling rate of 16 kHz. 

B．Feature set 

A number of features which have been reported 

successful on the task of phone duration modeling were 

used in our experiments [2,4-8,12,17,19,41,43-50].  

Since the input to a speech synthesis system is only 

text, the linguistic features composing the feature set 

were ext racted only from text. In more specific, for each 

utterance 33 features were extracted per phone instance. 

In addition, the syntagmatic neighbors of some of these 

features, defined on the level of the respective feature, 

i.e. phone-level, syllable-level, word-level, were 

extracted from the utterances. The features composing 

the feature set are presented in Table 1. After including 

the aforementioned features along with their syntagmatic 

neighbors information as reported above (one or two 

previous and next instances on the level of the respective 
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feature, phone-level, syllable-level, word-level), the 

overall size of the feature set sums up to 93.  

 

T ABLE I. FEATURE SET USED FOR BUILDING THE PHONE DURATION MODELS 

Feature set 
eight phonetic features: 

 
the phone class (consonants/non-consonants), along with the information of the neighboring (two previous, two next) 

instances.  

 
the phone types (short vowels, long vowels, diphthongs, schwa, consonants), along with the information o f the 

neighboring (two previous, two next) instances. 

 the vowel height (high, middle, low), along with the information of the neighboring (two previous, two next) instances.  

 
the vowel frontness (front, central, back), along with the information of the neighboring (two previous, two next) 
instances. 

 the lip rounding (rounded/unrounded), along with the information of the neighboring (two previous, two next) instances.  

 
the manner of production (plosive, fricative, affricate, liquids, nasal), along with the information of the neighboring (two 
previous, two next) instances. 

 
the place of articulation (labial, labio-dental, dental, alveolar, palatal, velar, glottal), along with the information of the 
neighboring (two previous, two next) instances. 

 the consonant voicing, along with the information of the neighboring (two previous, two next) instances.  

three segment-level features: 

 the phone name with the information of the neighboring instances (previous, next),  

 the position of the phone in the syllable,  

 
the onset-rhyme type (onset: if the specific phone is before the vowel in the syllable, rhyme: if the specific phone is the 
vowel or it  is after the vowel in the syllable), 

thirteen syllable-level features: 

 
the position type of the syllable (single, initial, middle or final) in the word along with the information of the neighboring 

instances (previous, next),  

 the number of all the syllables in the utterance,  

 
the number of accented syllables and the number of stressed syllables since the last and to the next phrase break (i.e. the 

break index tier of ToBI (Silverman et al., 1992) with values: 0, 1, 2, 3, 4),  

 
syllable’s onset-coda size (the number of phones before and after the vowel of the syllable) along with the information of 
the previous and next instances,  

 
the onset-coda type (if the consonant before and after the vowel in the syllable is voiced or unvoiced) along with the 

information of the previous and next instances,  

 the position of the syllable in the word,  

 the onset-coda consonant type (the manner of production of the consonant before and after the vowel in the syllable),  

two word-level features: 

 the part-of-speech (noun, verb, adjective, etc),  

 the number of syllables in the word,  

one phrase-level feature: 

 
the syllable break (the phrase break after the syllable) along with the information of the neighboring (two previous, two 

next) instances. The syllable break feature is based on the break index tier (0, 1, 2, 3, 4) of ToBI (Silverman et al., 1992), 

six accentual features: 

 the ToBI accents and boundary tones along with the information of the neighboring (previous, next) instances,  

 the last-next accent (the number of the syllables since the last and to the next accented syllable),  

 the stressed-unstressed syllable (if the syllable is stressed or not),  

 
the accented-unaccented syllable (if the syllable is accented or not) with the information of the neighboring (two 
previous, two next) instances. 

 

 

C．Phone Duration Models 

Along with the SVR which were introduced and 

described in the previous section, ten different phone 

duration models belonging to four categories of 

machine learning algorithms (decision trees, linear 

regression, lazy-learn ing and meta-learning algorithms) 

are built and evaluated in this work. In the following, 

we briefly outline these algorithms: 

i. Three decision trees were used. Two of them, 

namely the M5p model t ree [31] and the M5pR 

regression tree [30], are based on the M5’ algorith m 

[31]. The third algorithm is a regression tree -- the 

Reduced Error Pruning trees (REPTrees) [29]. 

ii. In the lazy-learning category, two different 

algorithms were implemented: the Instance based 

learning IBK [32] and the Locally Weighted 

Learn ing (LW L) algorithm [33]. The IBK uses the 

k-nearest neighbors algorithm (k-NN). The IBK 

algorithm, in order to locate the instance that is 

closer to the training instance, searches among the k 

nearest neighbors of the instance. Evaluating this 

method with different number of neighbors resulted 

in the adaptation of 12 neighbors (k = 12), since it 
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gave the best results. The LW L assigns weights 

using an instance-based method. In th is case, the 

kernel function which is used to calculate weights 

for the data points was the tricube kernel function, 

while REPTrees were used as classifiers. 

iii. Furthermore, two meta-learning algorithms were 

used, namely the Additive Regression (AR) [35] and 

the Bagging algorithm (BG) [34]. Both of these 

algorithms were implementing using two different 

regression trees (M5pR and REPTrees) as base 

classifiers. In the two cases of additive regression 

meta-learn ing algorithm the shrinkage parameter, ν , 

indicating the learning rate, was set equal to 0.5 and 

the number of the regression trees, rt-num, was set 

equal to 10 after grid search experiments (ν = {0.1, 

0.3, 0.5, 0.7, 0.9}, rt -num = {5, 10, 15, 20}) on a 

randomly selected subset of the training set, 

representing the 40% of the size of the fu ll training 

set. In the two cases of the bagging algorithm, the 

number of the regression trees, rt-num, was set equal 

to 10 after some grid search experiments (rt-num={5, 

10, 15, 20}) on the randomly selected subset of the 

training set, mentioned earlier. 

iv. Moreover, in  our experiments, the linear regression 

(LR) [36] algorithm was used. This algorithm is a 

classification and pred iction algorithm that 

expresses the class variable as a linear combination 

of the features. The error estimation in LR algorithm 

is given by the Akaike Information Criterion (AIC) 

[51]. 

v. Finally, for the SVR model, the radial basis function 

(RBF) was chosen as kernel function and ε and C 

parameters, where 0   and 0C  , were set equal 

to 10
-2

 and 1.0 respectively, after a grid search 

(ε={10
-1

, 10
-2

, …, 10
-5

}, C={0.05, 0.1, 0.3, 0.5, 0.7, 

1.0, 10, 100}) on the randomly selected subset of the 

training dataset mentioned above. 

 

D．Performance metrics 

Two of the most commonly used figures of merit were 

used in order to evaluate the phone duration modes: (i) 

the mean absolute error (MAE) and (ii) the root mean 

squared error (RMSE) between the predicted and the 

actual duration of each phone [8,10,45,46]. The RMSE 

is considered to be a metric more sensitive to outliers 

(large errors), weighing the heavily, due to the squaring 

of values [36]. This sensitivity of the RMSE makes it a 

more illustrative measurement concerning the outliers, 

e.g. the gross errors, in comparison to the MAE. 

Furthermore, the Correlation Coefficient (CC) was 

calculated. The CC measures the statistical correlation 

between the actual and the predicted values of the phone 

duration.  

Finally, an  experimental protocol based on 10-fo ld 

cross-validation was applied in all the experiments in 

order to exploit in the best way the available data. 

 

IV. Experimental Results 

In Tables II, III and IV the performance evaluation 

results of the eleven phone duration models are 

presented. All values of the RMSE and MAE are in 

milliseconds. As can be seen throughout all the emotion 

categories, the phone duration models implemented 

with the support vector regression algorithm, SVR, 

outperformed all the other models. The second-best 

accuracy was observed for the M5p trees and the meta-

learning Additive Regression and Bagging algorithms 

using M5pR regression trees as base classifiers 

(AR.M5pR and BG.M5pR). In details, in terms of 

RMSE, the SVR outperformed the respective second-

best model, presenting a relative reduction of 9.2% 

compared to the M5p model for category Anger, 9% 

compared to AR.M5pR model in category Fear and 8% 

compared to M5p model in category Neutral. A smaller 

reduction was achieved in the other two emotion 

categories, presenting a relative reduction of 6.8% and 

7.3% compared to the second-best model AR.M5pR in 

categories Joy and Sadness, respectively. 

 

Table II. RMSE values in milliseconds of the eleven PDMs for the different  categories of emotional speech  

 Anger Fear Joy Neutral  Sadness 

SVR 19.7 18.3 17.7 24.1 19.1 

AR.M5pR 22.1 20.1 19.0 26.3 20.6 

AR.R.Tr. 23.8 21.3 20.8 26.7 22.1 

BG.M5pR 23.3 20.9 20.4 26.7 21.4 

BG.R.Tr. 28.2 22.5 22.8 27.6 24.3 

IB12 24.7 21.8 22.2 27.5 20.6 

LWL 28.6 24.4 23.4 28.9 25.7 

LR 22.8 22.0 19.8 26.4 20.8 

M5p 21.7 20.2 19.5 26.2 20.9 

M5pR 24.1 21.6 21.6 27.2 22.1 

R.Tr. 30.3 24.3 24.5 29.4 26.6 
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Table III. MAE values in milliseconds of the eleven PDMs for the different categories o f emotional speech 

 Anger Fear Joy Neutral  Sadness  

SVR 14.4 13.6 13.2 15.4 14.6 

AR.M5pR 16.3 14.9 14.0 17.5 15.6 

AR.R.Tr. 17.5 15.7 15.3 17.8 16.8 

BG.M5pR 17.1 15.4 15.1 17.7 16.2 

BG.R.Tr. 20.5 16.5 16.7 18.6 18.1 

IB12 18.0 15.8 16.4 18.4 15.6 

LWL 20.5 18.0 17.0 19.3 19.0 

LR 17.1 16.0 14.9 17.7 16.1 

M5p 16.1 15.0 14.8 17.1 16.0 

M5pR 17.6 16.0 15.9 18.2 16.8 

R.Tr. 22.2 18.2 17.9 20.1 20.0 

 

Table IV. CC values of the eleven PDMs for the different categories of emotion al speech 

 Anger Fear Joy Neutral  Sadness  

SVR 0.86 0.77 0.81 0.73 0.79 

AR.M5pR 0.83 0.72 0.78 0.66 0.75 

AR.R.Tr. 0.79 0.67 0.73 0.65 0.70 

BG.M5pR 0.81 0.70 0.75 0.66 0.73 

BG.R.Tr. 0.70 0.62 0.66 0.62 0.63 

IB12 0.78 0.66 0.69 0.63 0.75 

LWL 0.70 0.55 0.65 0.59 0.59 

LR 0.81 0.66 0.76 0.66 0.74 

M5p 0.83 0.72 0.77 0.67 0.74 

M5pR 0.79 0.66 0.70 0.63 0.70 

R.Tr. 0.65 0.55 0.60 0.57 0.54 

 
 

Regarding the MAE and CC, reduction was achieved 

in all emotion categories. In terms of MAE, the SVR 

outperformed the respective second-best model, 

presenting a relative reduction of 10.6% , when 

compared to the M5p model in category Anger, 8.2% 

compared to  the AR.M5pR model in  category Fear, and 

9.9% compared to the M5p model in  category Neutral. 

A slightly smaller reduction was achieved in the other 

two emotion categories, presenting a relat ive reduction 

of 5.7% and 6.4% compared to the second-best model 

AR.M5pR in categories Joy and Sadness, respectively. 

Finally concerning CC, the SVR model outperformed 

the respective second-best model, presenting a relative 

increase of 6.9% compared to the AR.M5pR model in 

category Fear and 9% compared to the M5p model in 

category Neutral. A s maller increase was observed in 

the other three emotion categories, presenting a relative 

increase of 3.6% compared  to the M5p model in 

category Anger, 3.5% and 5.3% compared to the 

second-best model, AR.M5pR, in categories Joy and 

Sadness, respectively. 

The overall second-best accuracy of phone duration 

modeling was observed for the M5p trees and the meta-

learning, Additive Regression and Bagging, algorithms 

using M5pR regression trees as base classifiers 

(AR.M5pR and BG.M5pR). Furthermore, even though 

the simple LR model showed higher error rates in 

respect to the above-mentioned models, it still 

performed close to the M5pR regression trees. 

Concerning the two local learning algorithms, it should 

be pointed out that the models implemented with IB12 

rather than the LWL managed to achieve a higher 

performance in all emotion categories. Finally, 

REPTrees (R.Tr.) demonstrated the lowest accuracy 

among all evaluated methods, both as a single model, 

and as a base classifier for the cases of AR and BG 

algorithms (AR.R.Tr., BG.R.Tr.). 

As reported earlier, the SVR model outperformed all 

the other models throughout all the categories of 

emotional speech. This advantage of SVR over all the 

other algorithms evaluated in this work can be 

explained by the ability of SVMs to cope better with 

high-dimensional feature space [37,38]. Due to the 

curse of dimensionality, the other machine learning 

techniques are unable to build robust models from the 

available training data.  
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V. Conclusions 

In this work, we investigated of the applicability of 

ten phone duration modeling algorithms (among which 

are model and regression trees, linear regression, lazy 

learning and meta-learning based methods) in the 

context of emotional speech. In addition, the support 

vector regression algorithm, which  to the extent of our 

knowledge has not been used so far for phone duration 

modeling in the context of emotional speech was 

introduced and evaluated. All experiments were 

performed on a Greek database of emot ional speech, 

which consists of five archetypal emotion categories: 

anger, fear, joy, neutral and sadness. The results showed 

that all the machine learning algorithms managed to 

build robust phone duration models ; however, the 

support vector regression model presented by far the 

best accuracy. It achieved a relative reduction ranging 

from 6.8% to 9.2%, in terms of RMSE, over all the 

emotion categories compared to the second-best model. 
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