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Abstract— This article presents a new method, which 

reduces costs and processing time fo r spatial object 

motion detection by focusing on the bare-hand motion 

that mimics computer mouse functions to allow the 

user to move the mouse pointer in real-t ime by the 

motion of h is/her hand without any gloves worn, any 

object carried, or any key h it. In this article, the study 

of this topic is from the viewpoint of computer vision 

and image processing. The principals of the difference 

of the absolute differences (DAD) are investigated. A 

new method based on the DAD principles, which is 

conceptually different from all the existing approaches 

to spatial object motion detection, is developed and 

applied successfully to the bare -hand motion. The real-

time implementation of the bare-hand motion  detection 

demonstrates the accuracy and efficiency of the DAD 

method. 

 

Index Terms—  Bare-Hand Motion, Computer Vis ion, 

Difference of the Absolute Differences Method, 

Human-Machine Interaction, Image Processing, Spatial 

Object Motion Detection 

 

I. Introduction 

Motion detection and further tracking of general 

spatial articulated objects including the human body 

and limbs is a research area that has been attracting 

more and more attention. Recent literature reveals a lot 

of studies in this area including the proposed wearable 

target method [1]-[2], the sensor method [3], the 

electrostatic field method [4], the multip le-camera 

method [5]-[7] and so on.  

Hand motion detection has become a key topic in the 

research area of spatial object motion due to its 

potential in human-machine interaction. In  this study, a 

hand gesture is defined as a dynamic movement 

referring to a sequence of hand postures over a short 

time span. A hand posture refers to a static hand pose 

without any involvement of movements. The hand 

gesture recognition process is realized by “building up 

out of a group of hand postures in various ways of 

composition” [8]. According to this defin ition, hand 

motion detection can be considered as a hand gesture 

recognition process. 

Hardenberg and Bedard [9] have traced the research 

on vision-based hand gesture recognition and tracking 

back to 1991. They claim that up to 2001, the time of 

their publication, there has not been any dominating 

hand motion detection and tracking method. 

Furthermore, it is claimed  that most of the proposed 

systems have problems in case of lighting condition 

and background clutter changes. Also, none of the 

presented work provides a robust motion detection and 

tracking  method for a rapid  hand motion. Triesch and 

Malsburg [10] use wavelets. Though robust results in 

classifying hand postures against complex backgrounds 

are claimed, the calculations proposed in their 

approach cannot be performed in real-t ime. Ware and 

Balakrishnan [11] use color segmentation. However, 

the user has to wear special colored gloves. Sato et al. 

[12] use infrared segmentation with expensive 

hardware equipments. Segen [13] uses contours. 

Restrictive background conditions are required fo r their 

approach. Laptev and Lindeberg [14] use Blob-models. 

This approach requires an exp licit setup stage before 

starting the tracking. Crowley et al. [15], and O'Hagan 

and Zelinsky [16] use correlation, but a maximum 

speed of the hand motions is set. 

Recently, Garg et al. [8] provide a rev iew on the 

state-of-the-art hand motion detection and tracking 

studies. None of the existing approaches is believed to 

solve the problems raised in [9]. Stenger et al. [17] 

propose an approach formulated with in a Bayesian 

framework, which is ext remely computationally 

expensive. Bretzner et al. [18], Sanchez-Nietsen et al. 

[19], and Stenger [20] propose the discernment of the 

skin color o f the user. The drawback of this approach is 

the mistaken discernment of the skin due to  other skin-

color-like objects as well as lighting condition changes. 

Lienhart and Maydt [21], Barczak and Dadgostar [22], 

Chen et al. [23], and Wang and Wang [24] work on 

local invariant features. Though methods based on this 

seem promising, they are computationally costly which 

leads to expensive equipments.  

A bare-hand human-machine interaction that is 

essentially composed of the bare-hand motion 

detection and tracking is important in many areas. The 

key advantages of bare-hand interaction in the areas 

such as virtual environment, smart surveillance and 

medical systems are, just to mention a few, the 

elimination of physical contact, the reduction of space 

occupation, the increase in device durability, the 

reduction of equipment cost, the expansion of user 

applications and so on. Several recent publications on 
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bare-hand interaction are focusing on its use in video 

games [7], [25]-[29]. Video game giants such as 

Nintendo, Sony’s Playstation, and Microsoft’s Xbox 

are using this technology as the basis of the new trend 

in video games. 

With the development of the computer technology 

and applications, the current facilities for human-

computer interaction such as the keyboard, mouse, and 

pen do not meet the increasing demands [8]. Ev idently, 

the human hands used directly as an input device 

without any gloves worn, any object carried, or any 

key hit, in  particular, p rovide natural human-computer 

interaction, and in many cases are much more p ractical 

than the conventional input devices. The bare-hand 

interaction here is essentially composed of the bare-

hand motion detection as well as the virtual clicks that 

are the results of hand gestures. In the bare-hand 

motion the user moves the mouse pointer, and in the 

virtual clicks the user performs the similar functions as 

those performed by the right and/or left clicks of a 

conventional computer mouse, both in real-time by 

his/her different hand gestures.  

As well-known, an appealing bare-hand motion 

detection method must satisfy two main requirements, 

i.e., the ability to run in real-time and the affordability 

in the sense of less expensive equipments. If these 

requirements were not satisfied, the method would not 

be practical o r accessible to the average users. There 

have been some methods proposed that satisfy either 

one of the two requirements. However, the challenge is 

to satisfy both of them. All the existing bare-hand 

motion detection methods are systematically based on 

the same approach that is to track the hand motion by 

using consecutive hand postures. Each method tries to 

achieve hand posture recognition in a different way.  

A new approach to spatial object motion  detection is 

proposed in this article, and a new method based on 

this approach is developed. Instead of achieving object 

posture recognition, the proposed approach is to detect 

the mot ions of the object by determining  the motion 

direction direct ly without relying on the positions. The 

developed method encompasses an innovative 

technique that permits vast enhancements in the 

processing speed, detection accuracy, and performance 

robustness by transforming 2D image processing to 1D 

signal processing. Also, it is extremely cost effective, 

since it can operate with only one commercial video 

camera without any additional sensor or other 

equipment. To  overcome the deficiencies in the 

existing approaches to the bare-hand motion detection, 

the developed method is applied to a system design 

with satisfactory results.  

The organizat ion of the rest of the article is as 

follows. The new concepts and theory of the developed 

method is given in Section II. The graphic tool that 

works for the new concepts is presented in Section III. 

In Section IV, the system design of a bare-hand motion 

detection application based on the developed method is 

described. Experimental results are presented in 

Section V, fo llowed by conclusions and observations in 

Section VI. 

 

II. The Method of the Difference of the Absolute 

Differences 

A. The difference of the absolute differences v.s. the 

sum of the absolute differences 

The prevailing way of thinking in object motion 

detection is to determine the positions of an object at 

different time instances. The position of the object at a 

certain time instant can be determined from one frame 

alone, though, at most of the time, two or more 

consecutive frames are also used. Once the positions of 

the object are determined at two time instances, the 

motion d irection between the two t ime instances can be 

obtained. However, in a lot of practical object  motion 

detection applications, the exact position of the object 

is not a matter o f concern. For example, the actual 

physical position of a regular computer mouse on the 

table is irrelevant to the operation of the computer. It  is 

the change of the mouse positions that directs the 

pointer on the computer screen. Thus, the key idea in 

the developed method is to obtain the motion direction 

directly without determining the positions of the object. 

The information loss of the exact ob ject position in this 

method is worthily compensated for by the 

enhancements in the processing speed, detection 

accuracy, and performance robustness. The developed 

method is named the Difference of the Absolute 

Differences (DAD), which requires three consecutive 

frames to determine the mot ion direction of an object 

in a certain direct ion. In fact, this is similar to working 

with the second-order derivative of a function. 

In image processing, the method of the Sum of the 

Absolute Differences (SAD) is widely used for motion 

detection and video compression [30]-[32]. The SAD 

method basically  performs a pixel-by-pixel comparison 

between two frames by the calculation of the absolute 

difference between pixels. This process is repeated for 

multip le consecutive frames, after which the absolute 

differences are summed up to create the final SAD 2D 

matrix. In a typical motion detection application, a 

number o f consecutive frames are compared to a 

background frame with each frame d ivided into a 

number of s maller blocks, and the exceeding of a set 

threshold in a certain location of the SAD matrix 

indicates some motion in the corresponding block in 

the background frame. Though the SAD method is 

effective for motion detection, it performs poorly  when 

used in a real-t ime application such as the hand motion 

detection to determine the position of the hand because 

of many factors, namely, the dynamic background, 

high noise, and other moving objects. Some important 

informat ion such as the motion d irection is lost in the 

process of creating the SAD matrix, regard less of the 

number of the frames used. Furthermore, for robust 

position detection, a very high frame rate is needed 
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when using the SAD method, which requires expensive 

cameras and leads to exhaustive computation, which, 

in turn, prevents the application from running in real-

time on personal computers. The SAD and DAD 

images of a hand are shown in Fig. 1.  

 

Fig.1 (a) Ordinary image   (b) SAD image   (c) DAD image 

 
B  The concept of the difference of the absolute 

differences 

Consider a gray-scaled digital image, where each 

pixel in the image varies between 0 (white) and 255 

(black). l (t) is the luminance function of a pixel with 

respect to time. Assuming the time difference between 

two consecutive frames is a unity, the luminance 

difference is then effectively the first-order derivative 

of l(t) between the two frames. Fig. 2 shows the 

luminance function l(t) of a certain p ixel over an 

interval of 200 frames as well as l’(t), g(t) and f(t), 

which are defined by (1)-(3), respectively. 

 

Fig.2  Luminance function l(t) of a pixel and l’(t) =dl/dt, g(t)=|dl/dt|, and f(t)=dg/dt 
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The function l(t) indicates the luminance in the pixel, 

where a steady value corresponds to an absence of 

motion, and an abruptly changing value corresponds to 

a motion activity. Taking the first-order derivative of 

l(t) locates its peaks and valleys (local maximums and 

minimums), which correspond to the abrupt changes in 

luminance, i.e ., the mot ion activities. The first-order 

derivative, however, cannot determine the motion 

direction, since it is unable to differentiate two possible 

scenarios that might cause abrupt changes in the 

luminance in a pixel, i.e., an  object moving toward and 

covering the pixel so that the pixel value now 

corresponds to the object luminosity, and an object 

moving away and not covering the pixel anymore so 

that the pixel value now corresponds to the background 

luminosity. It can be determined from l’(t) that at the 

location where a motion activ ity takes place, there is 

either an abrupt change from a high luminosity to a low 

luminosity, or vice versa. Since the relation between 

the object luminosity and the background luminosity is 

not constrained, i.e., the background can have either a 

higher or a lower luminosity compared to the object, 

l’(t) cannot determine whether the motion activity 

corresponds to the first or the second scenario.  

To overcome this difficulty, f(t ) is used. Since l’(t) 

determines the locations of the moving object, taking 

the derivative of l’(t), which is the second-order 

derivative of l(t), g ives the change in the locations of 

the moving object. Furthermore, since the locations of 

the moving object are not related to the sign of  l’(t), 

the derivative of the absolute values of l’(t) are then 

used instead, which is preferred  for practical reasons 
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such as keeping the values of l’(t) in the original range 

of 0 to 255. 

The luminance functions of 120 p ixels in a full row 

over an interval of 200 frames are shown in Fig. 3. The 

functions f(t) of the same pixels over the same interval 

are shown in Fig. 4. In  Fig. 3 and Fig. 4, the 2D graphs 

on the right are the top view of the 3D graphs. A plot 

of the values of function  f(t) of all pixels in one frame 

(i.e ., at a specific time or when t is a constant) is shown 

in Fig. 5, which shows the relation between motion 

activities in ad jacent pixels in one frame. Th is enables 

the determination of the mot ion direction at that instant 

of time. 
 

 
Fig. 3  Luminance functions l(t) of pixels in a full row 

 

 
Fig. 4  Function  f(t) of pixels in a full row 

 

 
Fig. 5  Values of function f(t) of all pixels in one frame 
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C. The generalization of the concept of the 

difference of the absolute differences 

The concepts above can be generalized to regions 

composed of more than one row. For example, to 

approximate the mot ion of a whole frame in the 

horizontal direct ion, the f(t) of each pixel is first 

calculated, and then summations along the columns in 

the vertical direction are performed. This is clarified 

further in Fig. 6, where frame d is obtained by 

calculating the absolute difference l’(t ) between frame 

b and frame a, while frame e the absolute difference 

between frame c and frame b. Finally, frame f is 

obtained by calculating the difference between frame e 

and frame d. The pixel values in  the frames are 

displayed in tables under them. Note that in the 

absolute difference frames d and e, there are two types 

of pixels. The pixels with a zero value indicate that 

there has been no change in the corresponding pixels 

between the two frames, while the pixels with a 

positive value indicate a change. On the other hand, 

there are three types of pixels in the DAD frame f, 

namely, zero, positive and negative. A negative pixel 

in a DAD frame indicates that the object occupying 

that position in the prev ious frame is not occupying it 

anymore, i.e., moving away from that position. The 

opposite is true for a positive pixel. Thus, it is 

concluded that the motion direction is from negative 

pixels to positive pixels in a DAD frame. By adding all 

the rows in the DAD frame, i.e., performing 

summations along the columns in the vert ical direct ion, 

into one vector as shown in Fig. 7, the sequence “–, +, 

–, +” indicates that the object moves from left to right 

in the horizontal direction. 

 

Fig. 6  Method of the Difference of Absolute Differences (DAD) 
 

 

Fig. 7  DAD superposition 
 
 

D. Mathematical approximation for computation 

efficiency  

In order to increase the computation efficiency, 

some mathemat ical approximat ion can be taken to 

simplify the calculation of the difference of the 

absolute differences for the consecutive frames as 

described in Fig. 6 and Fig. 7. As is to be shown, when 

some reasonable conditions are applied, the rows in the 

original frames a, b and c can be summed into vectors 

first, respectively, and then the absolute differences 

and therefore the difference are calcu lated in one 

dimension rather than performing calculations in two 

dimensions first and then the summation. This 

shuffling of steps enhances the total processing speed. 

Two assumptions are made. First, the color of the 

moving object  is assumed to be almost uniform, i.e., 

pixels representing the object have about same values. 

Second, since the size of the object is small relative to 

that of the different regions of the background, the 

color of each region of the background is also assumed 

to be almost uniform. In bare -hand motion detection, 

the first assumption is evidently always true, while the 

second is true for most cases. 

The entries of the image matrices obtained from 

consecutive frames are mainly  composed of two parts 

that represent the background and the moving object, 

respectively. For the frame rates that are high enough, 

the background is almost unchanged between two 

consecutive frames, and thus the pixels and therefore 

the matrix entries representing the background are 

almost identical. Similarly, the pixels and therefore the 

matrix entries representing the moving object  are also 

almost unchanged, though undergo a position shift. 

The above results presents the fact that the entries of 

two consecutive matrices are identical everywhere 

except at the location of the moving ob ject. 

Mathematically, for the matrix entries of the two 

consecutive images, we must have either bij=aij or 

bij=ai+y,j+x, where aij and bij are the entries of the image 

matrices A and B, respectively.  

With the conditions above, the approximation of the 

difference of the absolute differences for the 

consecutive frames can be achieved. Without loss of 

generality, th is is illustrated mathemat ically by  using 

3 3 image matrices, where entries h are the pixels of 

the moving object, and entries d the pixels of the 

background. While the object is moving from the left 

to the right in the horizontal direction, the three 

consecutive image matrices are, respectively  
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where the second steps in the equations are based on 

the two aforementioned assumptions. The DAD 

operation done in Fig. 6 and the summat ion done in Fig. 

7 finally give gij, which are the vector entries in Fig. 7 

by using (7). 
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 dhhd  202
                                      (7) 

On the other hand, let us calculate a function 
*

ijg  as 

shown in (8). 
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As seen, 
*
ijg = ijg  when the two reasonable 

assumptions are imposed. This indicates that (8), in 

which the absolute differences and therefore the 

difference are calculated in one dimension so that the 

total processing speed is enhanced, can be used to 

replace (7) to obtain the same results as shown in Fig. 7.  

In practice, even if the second assumption is not 

completely true, it does not have a noticeable effect on 

the performance of the system. Noise elimination and 

thresholding techniques further reduce the adverse 

effect. For some rarely happening severe occasions, 

e.g., the object is in a transition between two regions 

with h igh brightness difference, the approximation 

undergoes an elimination effect, and the corresponding 

motion step is ignored without having a noticeable 

effect on the overall detecting performance. On the 

other hand, depending on the nature of the application, 

there is always the option of not using the 

approximation at  the cost of a slower processing speed. 

It is worth mentioning that even with the speed 

reduction due to no use of the approximate calcu lation 

(8), the DAD method is still much faster than the other 

existing methods. 

 

III. The Dad Diagram And the Dad Plot 

A. Introduction of the DAD diagram and the DAD 

plot 

 

Fig. 8 DAD diagram and DAD plot  

 

The DAD diagram used to study the behavior of a 

moving object  is developed as a graphic tool. It is a 

graphical illustration that corresponds to (8). The 

detailed illustration of the basic DAD diagram is 

shown in Fig. 8. As seen, the DAD diagram is 

essentially generated from three consecutive frames. In 

the DAD diagram, the next  frame is superimposed on 

the previous one and lines are extended from the 

boundaries of the object to obtain plots 1, 2 and 3. The 

values in plots 1, 2 and 3 are obtained by adding all the 

rows of frames 1, 2 and 3, respectively. In this basic 

DAD d iagram, a threshold of value one is applied to 
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plots 1, 2 and 3, where the pixel values of the 

background and the moving object are assumed to be 

zero  and one, respectively. The DAD p lot is the 

difference between plots 5 and 4, which, in turn, are 

the absolute difference between plots 2 and 1, and that 

between plots 3 and 2, respectively. The obtained DAD 

plot helps a 1D study of the motion of an object on a 

certain axis of the direction.  

Fig. 9 gives some examples of the DAD diagrams. 

As seen, different number of overlaps in the three 

consecutive frames represents different patterns of the 

object mot ion, which present different number o f peaks 

in their DAD plots.  

 

Fig. 9 Examples of the DAD diagram 

 

The values of the variables defined in a DAD p lot 

characterize the different motion patterns of the object 

in concern and become the key  to an accurate motion 

detection. These variables are defined in Fig. 10, where 

there is the maximum number of peaks due to two 

overlaps of the three consecutive frames. Any other 

motion patterns that have only one or no overlaps give 

less than four peaks. If a DAD p lot has more than four 

peaks, it indicates there is more than one object moving 

on the axis of the direction that corresponds to the 

DAD p lot. For a four-peak DAD p lot with a threshold 

applied there are ten main variables of interest. The 

variables p1, p2, p3 and p4 give the polarit ies of their 

corresponding peaks. The polarity is positive if the 

peak is above zero, while the polarity is negative if the 

peak is below zero. The variables w1, w2, w3 and w4 

are the measures of the width of the corresponding 

peaks. The variable d1 measures the length between 

the beginning of the signal and the beginning of the 

first peak. The variable d2 measures the length 

between the first shift fro m nonzero  to zero that 

follows the first change in  polarity and the second shift 

from zero to nonzero that precedes the second change 

in polarity. The variables Wa, Wb and D are three 

composite variables that can be obtained from a 

combination of two or more main variables.  

 

B. The use of the DAD plot variables 

The variables obtained from the DAD plots are used 

to find the unique motion patterns of the object in 

concern, e.g., 1) Wa and Wb should have similar or 

close values. 2) d2 should be less than Wa or Wb. 3) 

Wa and Wb should be in a certain range corresponding 

to the size range of the object in concern. Any signal 

that does not have such features is usually just noise. 

 

 

Fig. 10 Variables defined in a DAD plot  

 

A complete p resentation of all the poss ible motion 

patterns, not including those special cases of complete 

overlapping between frames, is given in Fig. 11, where 

column one and column six g ive valid mot ion patterns 

that are motions with no direction change. As seen, for 

a left-to-right motion there are four possible peak 

polarity sequences, namely, “ -, +”, “-, -, +”, “-, +, +” 

and “-, +, -, +”, while for a right-to-left motion there 

are another four, namely, “+, -”, “+, -, -”, “+, +, -” and 

“+, -, +, -”. Ev idently, the right-to-left mot ion patterns 

give a reversed order o f the peak polarities as those for 

the left-to-right motion patterns. On the other hand, 

columns 2, 3, 4 and 5 in Fig. 11 present all the possible 

motion patterns with d irection changes, which are 

regarded as invalid. Furthermore , in the case of two-

peak DAD p lots, some of the invalid mot ion patterns 

have the same polarity sequence as that of a valid 

motion  pattern. This strongly suggests that in this case, 

the polarity sequence alone cannot differentiate 

between the valid  and invalid  motion patterns. Thus, 

the width of the peaks as well as the length between the 

two peaks is used in the determination of the valid ity of 

those motion patterns that are described by two-peak 

DAD plots. It is seen from the figure that those valid 

motion patterns that are described by two-peak DAD 

plots have the features 1) w1= w2   w 2) d2 ≥ w. The 

special cases with complete overlapping between 

frames have unique polarity sequences that separate 

them from valid mot ion patterns. They are very 

unlikely to occur in practice though. 



8 Difference of the Absolute Differences – A New Method for Motion Detection  

Copyright © 2012 MECS                                                               I.J. Intelligent Systems and Applications, 2012, 9, 1-14 

 

Fig. 11 Motion patterns and their DAD plots, not including special cases with complete overlapping between frames 

 

C. The variations of the DAD diagram 

There are variations for the DAD d iagram. For 

example, removing the aforementioned threshold 

would preserve more information, and using a multi-

segment DAD diagram would expose more details in 

each mot ion direct ion. Two variations for the DAD 

diagram that can be used for object motion detection 

are shown in Fig. 12, where the left figure shows a 

variation in which no threshold is applied and the 

detecting is performed in  four axes of the directions (0°, 

90°, 45°, -45°), and the right figure shows another 

variation in which a frame is divided into sectors and 

the object motion in each sector is plotted separately 

for two  axes of the direct ions (0°, 90°). Note that in the 

case of the basic DAD plots shown in Fig. 11, motion 

patterns can be determined manually. However, for the 

complex DAD diagram variat ions, human inspection 

and determination of mot ion patterns becomes 

impossible. Pattern recognition methods are used in 

practice. One option is to train artificial neural 

networks to learn all the various motion patterns 

characterized by the DAD plots. The details of the 

above procedure are out of the scope of this article. 

 

Fig. 12 Variations of the DAD diagram  

An important aspect of the DAD method is that it  

can be viewed as an approach that allows for a trade-

off between the processing speed and the accuracy of 

the object position estimation, whereas the 

conventional motion detection and tracking methods 

based on finding the exact position of an object at 

every frame are regarded as special cases of the DAD 

method such that its accuracy of the object position 

estimation attains the maximum in a sense.  

In a single-segment DAD diagram, all pixels in one 

direction are summed to facilitate describing the 

general motion in the perpendicular direction. The 

object position is estimated as the region enclosed by 

the lines perpendicular to the coordinates that locate 

the beginning and the end of motion activit ies in two 

directions. This is demonstrated by an example shown 

in Fig. 13-a, where the shaded region gives the 

estimated object position.  

 

Fig. 13 Object position estimation in a DAD plot  

 

In a multi-segment DAD d iagram, the image is 

divided into several sectors and the motion in each 

sector is estimated. Th is gives a better accuracy of the 

object position estimation as shown in Fig. 13-b. In an 

NN frame, if N  sectors in each direct ion are used, the 

accuracy of the object position estimat ion is then the 
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maximum since each sector is now narrowed  down to 

one pixel. However, other complications are to be 

faced in this situation and it is unnecessary to have 

such a level of accuracy for most of the cases. 

Performing an approximat ion by using a limited 

number of sectors greatly simplifies the situation and 

increases the processing speed. Thus, the DAD 

diagram provides an approach to trading-off the system 

complexity and the accuracy of the object position 

estimation. 

 

IV. Application 

A. Single-segment DAD diagram v.s. multi-segment 

DAD diagram 

The developed DAD method is successfully applied 

to a bare-hand mouse application. The basic DAD 

diagrams as well as their complex variations that 

demonstrate an advanced level of the DAD method are 

used individually in this practical applicat ion. The 

single-segment DAD d iagrams perform poorly in the 

bare-hand motion detection, and require a pretreatment 

of noise reduction and filtering in 2D image processing 

for an acceptable performance. Though this limits the 

speed efficiency, the processing speed of the system 

based on the single-segment DAD d iagrams is still 

faster than those of the existing hand motion detection 

and tracking methods. On the other hand, if enough 

segments are used, no 2D image processing is required 

and all the processing in the system is performed in one 

dimension. Having multiple segments in  each direction 

greatly increases robustness against noise, which 

spares complicated noise reduction and filtering 

techniques. Hence, much h igher processing speed is 

achieved. Also, more information about what is 

happening in the separate parts of the image becomes 

available. Since it is unnecessary to maintain the shape 

informat ion in individual segments, thresholding is 

applied. The shape information can be induced from 

the motion activity between the segments. This is 

illustrated graphically by the example in Fig. 14.  

Two example objects are given in Fig. 14, where a 

circle is in Fig. 14-a1 and a triangle is in Fig. 14-a2. 

Fig. 14-b1 and Fig. 14-b2 show the plots resulted from 

adding all the rows in Fig. 14-a1 and Fig. 14-a2 

without any threshold applied to the sums, respectively. 

As seen, shape information of the objects is preserved 

in these plots. One can  easily  tell which plot  is 

generated from the circle or the triangle. Fig. 14-c1 and 

Fig. 14-c2 show the plots resulted from the same 

operation as before, but with a threshold applied to the 

sums. In this case, the two plots look identical. One 

cannot tell which plot is generated from the circle or 

the triangle. Fig. 14-d1 and Fig. 14-d2 are obtained by 

dividing the images in Fig. 14-a1 and Fig. 14-a2 into 

four equal sectors, respectively. Suppose, without loss 

of generality, that both Fig. 14-a1 and Fig. 14-a2 have 

120 rows. Let row 1- row 30 be sector 1, row 31- row 

60 sector 2, row 61- row 90 sector 3, and row 91- row 

120 sector 4. The rows in the sectors are then added to 

obtain four separate segments, and a threshold is 

applied to the sum. As seen now, even though 

thresholding is applied, shape information is preserved 

in these plots. One can  easily  tell which plot  is 

generated from the circle or the triangle. This makes it 

possible to use segments with d iscrete values as shown 

in Fig. 12-b, rather than continuous values as shown in 

Fig. 12-a.  

It should be noted that each of the two example 

objects given in Fig. 14 is from one frame, while the 

image shown in Fig. 12-b is the DAD p lots obtained 

from three consecutive frames. In other words, Fig. 14 

serves only to explain the concept of “preservation of 

shape information” in multi-segment DAD plots.  

 

Fig. 14 Preservation of shape information in multiple segments 
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The relation between the multi-segment DAD p lots 

and the motion direction cannot be easily observed, 

since the relation between the variables in the DAD 

plots and the motion direction becomes rather 

statistical. Th is makes the problem a perfect candidate 

for intelligent pattern recognition algorithms. History 

informat ion can also be used. In object motion 

detection in real time, variab les from the p revious 

DAD p lots can be used in addition to the variables 

from the most recent DAD p lot so as to increase the 

robustness and accuracy of the object motion detection. 

 
B. The DAD method applied to the bare-hand 

motion detection  

In the system designed, the bare-hand mouse moves 

i the horizontal and vertical directions (0°, 90°), where 

four segments are designed for each direction, similar 

to the case shown in Fig. 12-b. Experimental results 

indicate that four is the minimum segment number that 

allows the removal of 2D processing while keeping a 

good system performance. The frame rate reached for 

this four-segment system exceeds by far 30 

frames/second, the standard rate of the commercial 

web-cameras. Higher accuracy can be achieved by 

using more than four segments for each direction while 

still keeping a real-t ime processing speed on average 

personal computers. However, with designs of more 

segments, more variables are introduced and therefore 

designs with more than ten segments for each direction 

are not recommended, since this greatly complicates 

the pattern recognition in the sense of making the 

processing speed unpractical. 

The designed system receives three consecutive 

120  160 frames as its input and produces two 4 120 

matrices as its output. Matrices 

1

160,120M
,

2

160,120M
, 

and 

3

160,120M
 give the three input frames at t-2, t-1, 

and t, respectively, where 120 and 160 are the numbers 

of rows and columns. Matrices  120,4OH
 and 4,120OV

 

give the outputs. The overall input/output relation is 

described by equations (9)-(21), where the matrices 

and their corresponding matrix entries are denoted by 

upper-case and their corresponding lower-case letters, 

respectively. Four row summated vectors 

sk

H
,

160,1

~

 for 

horizontal motion detection and four column summated 

vectors 

sk

V
,

1,120

~

 for vert ical motion detection are 

calculated first, respectively, fo r the four separate equal 

segments indexed by s (s=1, 2, 3, 4) in the two 

directions of the three incoming frames indexed by k 

(k=1, 2, 3). The entries of 

sk

H
,

160,1

~

 and 

sk

V
,

1,120

~

 are given 

by (9) and (10), respectively. The four vectors 

sk

H
,

160,1

~

 

for each frame are stacked together to become a matrix 

kH 160,4  whose entries 

k

jsh , are shown in (11). So do the 

four vectors 

sk

V
,

1,120

~

 whose entries 

k

siv , are shown in 

(12). (13) and (14) calculate 

kAH 160,4  and 

kAV 4,120 , 

the absolute differences of the row and column sums, 

respectively, for the two  consecutive frames. (15) and 

(17) calculate 160,4DH
 and 4,120DV

, the differences 

between the absolute differences in the two direct ions, 

respectively. (16) performs a resize operation on the 

matrix obtained in  (15) so that the resulted 120,4RH
 

has the same size as that of 4,120DV
 obtained in (17).  

(18) and (19) perform a moving window average low 

pass filter operation on 120,4RH
 and 4,120DV

,  

respectively. Finally, (20) and (21) calculate the 

outputs 120,4OH
 and 4,120OV

 by performing a 

threshold operation. The whole procedure above is 

illustrated in the flow diagram of the system shown in 

Fig. 15. The features extracted from 120,4OH
 and 

4,120OV
 are then forwarded as inputs to an artificial 

neural network (ANN). Since the objective of this 

article is to present the developed DAD method for 

object motion detection, the component units in Fig.15 

are not elaborated here.  

3,2,1;4,3,2,30
1)1(30 ,

,

,1

~

   ksmh s
si

k
ji

sk

j 1
 (9) 

3,2,1;4,3,2,140
1)1(30 .

,

1,

~

   ksmv s
sj

k
ji

sk

i
(10) 

3,2,1;4,3,2,1

,

,1

~

,  kshh

sk

j
k

js       (11) 

3,2,1;4,3,2,1

,

1,

~

,  ksvv

sk

i
k
si

      (12) 

2,1160,4
1

160,4160,4   kHHAH kkk

     (13) 

2,14,120
1
4,1204,120   kVVAV kkk

      (14) 

1
160,4

2
160,4160,4 AHAHDH 

       (15) 

]4),3),([ 160,4120,4 DHeinterpolatdecimateRH 

(16) 

1
4,120

2
4,1204,120 AVAVDV 

       (17) 
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0

1

1

,

,

,

     (21) 

 
Fig. 15 System flow diagram 

 

C. Some observations 

In a multi-segment DAD diagram, the DAD p lots 

obtained by the superposition of a number of single 

vectors are a measure of dimension reduction that 

greatly reduces the size of the source data while 

maintaining a unique representation for different 

motion patterns to a certain extent. As seen in the 

developed system, since four segments are used for 

each direction, simpler indiv idual segments are 

obtained. The values of the variables extracted from 

the DAD p lots are the features that allow the ANN to 

determine different motion patterns. While the working 

frame rate falls in the average rate range of the 

commercial webcams (15 frames/second –> 30 

frames/second), the segments with  more than two 

peaks indicate an overlapping of the moving hand in 

the two consecutive frames so that this extremely slow 

motion  can be safely  ignored. One segment from a 

typical four-segment DAD plot is shown in Fig. 16 as 

an example. In the case of a mult i-segment DAD p lot, 

d1 gives information about the location of the motion 

activity on one segment relative to other segments. The 

values of the six variables are ext racted from each 

segment for each new frame obtained from the webcam. 

The variables from two previous DAD plots are also 

used in addit ion to the variables from the most recent 

DAD plot to enhance the performance of the ANN. As 

mentioned already, the values of these variables are 

used as the inputs of the ANN. This gives a total of 144 

features (6 variables   8 segments   3 frames) to be 

sent to the ANN. Since this art icle focuses on the 

development of the DAD method for object  motion 

detection, specifically in bare-hand motion detection, 

the details of the function of the ANN are not discussed 

here.  

 

Fig. 16 One segment from a typical four-segment DAD plot   
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V. Experiment Results 

The developed object motion detection method 

applied to the bare-hand mouse is tested on different 

platforms, and its processing speed is measured. The 

results are listed in Table 1. The processor speed of 

each platform is shown as a metric of reference with an 

understanding that other platform specifications may 

influence the processing speed too. As seen, the variety 

of the platforms  presented in Table 1 g ives a good idea 

about the range of the processing speed to be expected 

in using the developed method. A number of typical 

processing speeds of the existing similar systems are 

listed in Table 2 for comparisons [2][9][33]. 

The developed object motion detection method is 

also tested in different human-computer interaction 

systems based on hand motion detection and tracking, 

including bare-hand mouse, navigation, and game 

control. The testing is executed in a variety of 

environments with different backgrounds and lighting 

conditions. All the tests indicate that the developed 

object motion detection method fulfills its task 

requirements in real-t ime, and features its robustness 

against noise, immunity to background changes as well 

as its motion detection accuracy. A video 

demonstration is available at the web page 

accompanying this work [34]. 

 
Table 1   Experimental results of the processing speed of the 

developed system on different platforms 
 

Platform 
Average 
desktop 

Average 
laptop 

Fast desktop 

Processor 
speed 

2.67GHz 1.6 GHz 3.2GHz 

Multi-
segment 
system 

speed 

130 
frames/second 

57 
frames/second 

195 
frames/second 

 
 
Table 2   Typical processing speeds of the existing similar systems 

during years 1994 – 2009 

 

Reference  Year 
Processor 

speed 
Reported speed 

Wang & 
Popovic 

2009 2.4GHz 
10 

frames/second 

Hardenberg 

& Bedard 
2001 

Not 

specified 

20 - 25 

frames/second 

Rehg & 
Knade 

1994 
Dedicated 
Hardware 

10 - 15 
frames/second 

 
 

VI. Conclusions And Future Work 

A new approach to object motion detection, which is 

based on the DAD method, is proposed in this art icle. 

The experimental results give up to 195 frames/second 

for a bare-hand mouse system based on mult i-segment 

DAD diagrams that can track a moving hand in 

horizontal and vertical d irections. This frame rate is 

much higher than the standard frame rates of the 

commercial webcams, which do not exceed 30 

frames/second. Although the system built  for 

demonstration is completely  implemented in software, 

hardware implementation, whose processing speed is 

limited only by the frame rate of the camera in use, is 

perfectly realistic. It  is worth emphasizing that the 

approach presented in this article is feasible to all kinds 

of object mot ion detection. With extremely high-speed 

specialized cameras used, processing speeds in the 

order of hundreds of thousands of frames/second can 

be reached. Some example applicat ions at a high frame 

rate are bullet tracking, racing car tracking, missile 

tracking and so on. 

Future works include 3D object motion detection 

and tracking. One option is to  use two cameras that are 

positioned in a way that one of them detects the 

moving object in the y-z plane, while the other detects 

it in the x-z plane. The other option is to use one 

camera only with the introduction of some basic 

variations in the DAD diagram. As noticed, the DAD 

diagrams used in this article serve for the object motion 

detection in a plane parallel to the camera. 3D motion 

detection implies that the information of the depth of 

the object motion is needed. Different patterns obtained 

from the resulted DAD plots identify the motion in the 

depth direction. One example case is shown in Fig. 17, 

where the resulted DAD plot presents a pattern that 

features uniquely a motion in the depth direction. 

 

Fig. 17  An example DAD diagram obtained from an object motion 
detection in the depth direction 
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