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Abstract—This paper presents a self-tuning method of 

fuzzy logic controllers. The consequence part of the 

fuzzy log ic controller is self-tuned through the Q-

learning algorithm of reinforcement  learning. The off 

policy temporal d ifference algorithm is used for tuning 

which directly approximate the action value function 

which g ives the maximum reward. In this way, the Q-

learning algorithm is used for the continuous time 

environment. The approach considered is having the 

advantage of fuzzy logic controller in a way that it is 

robust under the environmental uncertainties and no 

expert knowledge is required to design the rule base of 

the fuzzy logic controller.  

 

Index Terms— Reinforcement Learn ing, Q-learn ing, 

Inverted Pendulum, Fuzzy logic control, Temporal 

Difference 

 

I. Introduction 

The cart-pole also known as inverted pendulum 

system, as depicted in Fig.1, is often used as an 

example of inherently unstable, non-linear, dynamic 

and mult ivariab le system to demonstrate both classic 

and modern  control techniques, and also the learning 

control techniques of neural networks using supervised 

learning methods or unsupervised methods . In this 

problem, a pole is attached to a cart that moves along 

one dimension. The task is to balance the pole in the 

vertical direction by applying forces to the cart's base. 

The control performance of inverted pendulum can be 

measured directly by the angle of pendulum from the 

vertical, the displacement of cart and the transition time  

of the system. We can use inverted pendulum to test, 

verify and compare the effect iveness of controller or 

control theory when an innovative theory or method of 

control comes out [1], [2]. Therefore, the research for 

control techniques for inverted pendulum has important 

theoretic and practical meaning and it is widely 

concerned by scholars of control and the robotics 

branch. 

In this paper, first the mathematical model of the 

linear inverted pendulum based on the detailed 

mechanical analysis of the system [3] is discussed, so 

as to have a brief idea of the dynamics of the inverted 

pendulum. Then, the Reinforcement learning algorithm 

is discussed followed by the MDP and then Q-learning 

algorithm is discussed. Then the tuning of consequence 

part of fuzzy log ic controller is achieved based on 

temporal d ifference off policy control of Q-learning  is 

developed. In this way the Q-learning can also work in 

the continuous time environment with the help of fuzzy 

logic controller. The control task is to determine the 

sequence of forces and magnitudes to apply to the cart 

in order to keep the pole vertically balanced. Hence 

results obtained are shown and are analyzed, which 

gives a satisfactory performance under the 
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environmental uncertainty and the approach considered 

is robust under probabilistic uncertainty while also 

having good overall performance. 

 

II. Modeling of Inverted Pendulum 

A. Inverted Pendulum Structure 

The structure of the inverted pendulum is as shown 

in the Fig. 1. After ignoring the air resistance and other 

frictions, 1-stage linear IP can be simplified as a system 

of cart and rod, as shown in Fig. 2.  

 
Let’s define [3] 

M: Cart Mass = 1.096 Kg  

m: Rod Mass = 0.1096 Kg 

b: Friction Coefficient of the Cart = 0.1 N/m/sec 

I: Rod Inertia = 0.0034 Kg*m*m 

l: Distance from the rod axis rotation center to the 

rod  mass center=0.25m 

F: Force acting on the cart 

x: Cart position 

ф: Angle between the rod and the vertical direction  

ϴ: Angle between the rod and the vertically  

downward direction  

 

The equilibrium state is taken as; 

          ̇            ̇                   

 

 
Fig. 1 Inverted Pendulum System Model 

 

B. Mathematical Model of Inverted Pendulum  

Fig. 2 is the force analysis of cart and rod system. N 

and P denote the interactive force of cart and rod in the 

horizontal and vertical direction respectively.  

 

                              
Fig. 2 Cart and Rod Force Analysis 

 
From the forces in the horizontal d irect ion, we obtain: 

  ̈      ̇                                         

      ̈    ̇     ̈        ̇             

 

Analyze the force in the vertical direction, and then 

we have 

      
  

   
                                         

         ̈        ̇                      

Combin ing two, we get the second dynamic equation: 

        ̈               ̈                        

The two dynamic equations are: 
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The output angle is φ, solving the first equation: 
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III. Reinforcement Learning 

The reinforcement learning does not specify as to 

how to solve a particular problem [4], instead the final 

goal is defined in  terms of the terminal states and based 

on that the state-action value function  is  to be 

approximated  based  on  rewards  or  punishments 

(negative  rewards)  given  by  the  environment  on  the 

goodness of  the  selected  act ion  in   the next observed 

state.  So it focuses on what should be done and not that 

how it should be done. 

In rein forcement learn ing, there is no external 

supervisor to crit ically judge the control action chosen 

at each time step rather the learning system is told 

indirectly by the agent about the effect of its chosen 

control action in a way that it describes the quality of 

the action chosen. The study of reinforcement learning 

relates to credit assignment, where, g iven the 

performance (results) of a process, one has to distribute 

reward  or b lame to the indiv idual elements contributing 

to that performance [5].  This idea may further become 

complicated if there is  a large number of actions, which 

are collectively awarded a delayed reinforcement. The 

nonlinear behavior of many practical systems and the 

unavailability of quantitative data regarding the input-

output relations make the analytical modeling of these 

systems very difficult [6]. Fig. 3 shows the agent-

environment interaction block diagram 

 
Fig. 3 The Reinforcement learning framework 

Most of RL algorithms are based on approximat ing 

value functions of state-action pairs that estimate how 

good or how bad it is for the agent to perform a chosen 

action in a given state. One of the very well-known 

methods of RL is Q-learning [6], which tries to estimate 

the floating point solution of the Be llman's equation 

given as in (13). But it is difficult  to deal with 

continuous states environment and actions , using 

ordinary Q-learning because it can only deal with 

discrete states and actions. So to avoid these problems, 

we need to combine this Q-learning method with other 

generalization methods which can work in the 

continuous time environment. Some other authors too 

have extended the Q-learning method to handle the 

continuous time situation with continuous state spaces 

by using function approximation [8]. In these works, 

neural networks are used to approximate the value 

function pertaining to specific situations [9]. But these 

works still works on discrete actions and cannot handle 

continuous-valued actions. 

 

A. Markovian Decision Problems  

Markov decision processes (MDPs) have been 

widely used to model controlled dynamical systems in 

control theory. Let S = {1 . . . n} denote the discrete set 

of states of the system, and let A = {a1 , . . . . , am) be 

the discrete set of actions available to the system. The 

probability of making a transition from state x to state x' 

on action u is denoted by Pxx'(u) and the reward 

obtained from th is transition is denoted by r(x,u). A 

policy maps each state to a probability distribution over 

actions. For any policy π, we define a value function: 

          {∑       
 
   |    }                  

which is the expected value of the infinite-horizon sum 

of the discounted rewards when the system s tarts in 

state x and the policy  π is fo llowed forever. Note that rt 

and xt, are the reward and state respectively at time-step 

t, and  (rt , xt) is  a   stochastic  process,  where  (rt+1,xt+1) 

depends  only  on (xt , ut). The discount factor, 0 ≤ γ ≤ 1, 

makes future rewards less valuable than more 

immediate rewards.  

The  solution  of  an  MDP  is  an optimal  policy  π* 

that simultaneously maximizes the  value  of every state  

x ∈  S. The value function associated with π* is 

denoted by V*. It is often convenient to associate values 

not with states but with state-action pairs whenever 

there is no explicit model of the system. These values 

called  Q-values in  Q-learning [10] are defined as 

follows 

        ∑        (              ) 

  

           

        ∑        (              ) 

  

       

where x'  is the random next  state on executing action u 

in state x. 

The Bellman's equation is given by: 

  
              ∑    

   {          

 

   

               

        
      }                             

Many optimizing algorithms as well as reinforcement 

learning algorithms try  to find the solution of this 

Bellman's equation.  

 

Agent 

Environment 

Action  Reward States 
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B. Q-Learning 

To compute the policy which maps the states to 

actions, the Q-learning algorithm is been employed. Q-

learning algorithm gives the fixed point solution of the 

Bellmen's optimality equation through iterations. One 

of the most important breakthroughs in reinforcement 

learning was the development of an off-policy TD 

control algorithm known as Q-learning [4]. Its simplest 

form, 1-step Q-learning is defined by. 

        
          

                  

                 
         

           

where, α is the step size parameter, also known as the 

learning rate, γ is the discount factor, st is the previous 

state, st+1 is the new observed state and the at+1 is the 

action taken in that state, rt+1,is the reward in this state. 

Q(s,a) hence gives a value which tells gives the 

desirability of choosing that action a when in the state s. 

The Q-learn ing algorithm is implemented as follows [4]: 

Initialize Q(s,a) arbitrarily 

Repeat (for each episode): 

 Initialize s 

 Repeat (for each step of episode): 

             Choose a from s using policy derived from Q 

             (e.g. ϵ-greedy[4]) 

 Take action a, observe r, s' 

                                             

  s ← s' 

until s is terminal. 

S is the set of discrete states and A is the set of 

discrete actions. After each iteration, the action is 

chosen either greedily or randomly and is applied to the 

system and the next state is observed, then the reward is 

calculated and based on that, the Q-value is updated. 

The agent environment interaction is as shown in the 

fig. 3. After number o f trials the actions which give 

satisfactory performance can  be identified and the 

policy which gives maximum award can be identified 

by moving along the action with max Q-value in the Q-

table. In  this way the system is formed  and results are 

obtained and are shown in the result section. 

 

IV. Fuzzy Control  

Fuzzy logic systems are expressed in linguistic terms 

to make its rule very close to our natural language. So 

fuzzy logic controller is a type of expert system which 

is based on if–then type of rules, in which premises and 

conclusions are represented with the help of linguistic 

terms or linguistic variab le. Same nature of these rules 

as our natural language makes these fuzzy systems very 

easily readable and allows us a very  easy introduction 

of a priori knowledge in the ru le base of the system. 

While classical control methods need analytical 

modeling of tasks, these fuzzy logic controllers are 

usually designed by incorporating the knowledge of the 

experts in the rule base. But, this incorporation of 

experts’ a priori knowledge is not always easy or 

possible to realize, especially for the conclusions of the 

rules in the conclusion parts. In fact, problems can arise 

due to disagreements between experts, from decision 

rules that are difficult to structure or incorporate, or due 

to a large number o f variables  that are necessary to 

solve the control problem at hand. 

 

V. Tuning of Fuzzy Controller Using Temporal  

Difference Based Q-Learning  

The proposed tuning method of the fuzzy  logic 

controller is a modified version of the actor-critic  

architecture as shown in the fig. 4.  

 
Fig. 4 Actor-Critic Architecture 

The aim of this paper is to introduce a tuning method 

for Takagi-Sugeno type of fuzzy logic controller. In 

this paper the consequence part of the fuzzy  logic 

controller is tuned through temporal difference based 

Q-learning. The rule base is a linguistic description of 

the controller, which y ields a consequence in terms of 

S(t
) 

Inverted 
Pendulum 

System 
Actor 

 

Fuzzification 
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   r                         
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what should be the action after each rule. Then the 

weighted sum of all the action produced by all the rules 

is computed. The task is to find the suitable action for 

every rule. 

Unlike the ordinary fuzzy logic controller, here we 

considered many possible consequences or discrete 

actions A= {a1 , . . . . , an)  attached to single rule and 

hence all the rules have many actions to chose from. 

Each ru le contains a Q-value associated with it. The 

rules are written as follows: 

 
    Ri : If x is Xi then u1 is a1 with Q(Xi , a1) 

or a2 with Q(Xi , a2) 

                                     . . . . . . 

                                     or an with Q(Xi , an) 

 

The continuous action performed  by the agent for a 

particular state is calculated by the weighted sum of the 

actions concluded in the fired ru les that describe this 

state and are determined by the Q-values of the actions 

which in turn is to be calculated so that yields a 

maximum d iscounted future rewards. The weights are 

the normalized firing strengths vector of the rules. The 

TD method is used to update the Q-values of the 

elected actions according to their contributions and the 

reinforcement  signal obtained from the environment. 

The reward is calculated using the reward function, 

which y ields a numerical value after each global act ion, 

is performed  on the environment. When we observe the 

next state, if the discount factor is γ, then the 

discounted future reward may be calculated as given in 

(15). 

Rd=                  
         

                    

If the reward is rt+1 in the next  observed state and the 

learning rate is α then the total change in the Q-value 

can be calculated as given in (16). 

Rl=                                              

Hence, the Q-value can be updated for the each rule 

as given in (17). 

        
          

                             

                 
         

                 

 Equation (15) represents the learning component 

from the future rewards. Th is component is used to 

extract a better policy from the rewards instead of 

following the best rewards. Because at the time of 

learning the state which leads to the terminal state or in 

some more favorable state may have less rewards then 

other states in that situation. So the future states that we 

might come across must have a component in the 

present state-action value calculation. The discounted 

reward is calculated using temporal difference. Initially 

all the Q-values are initialized to zero. 

During in itial runs the performance of the system is 

poor, because of the exploring actions of the RL, 

because it has to exp lore all the act ions for the future. 

But as the number of runs increases, the exp loring is 

reduced and the exploit ing of explored actions 

increases. Hence the performance of the system 

improves gradually as the number of act ion explored, 

increases. In the result section, a failed trajectory is 

shown during the initial run at the t ime of exp loring, 

then the stable trajectory are also shown in Fig. 6. 

Initially the probability of random action s election is 

kept high to exp lore most of the actions of the system 

and then it gradually lowered to improve the 

performance of the system and explo iting those actions 

which gives highest rewards. 

This tuning algorithm is checked on 25 rules 

corresponding to two input variable having five 

membership functions each. Each ru le has ten discrete 

actions from which it has to select one action which 

gives maximum reinforcement (positive reinforcement) 

and in turn maximizes the total reward received in the 

long run. The learn ing task is to select local action such 

that when global action computed using the weighted 

sum of the firing  strength of the rules g ives the 

maximum reward in the long run and hence able to 

keep the pole in the upright position. 

 

VI. Result 

To stabilize the pendulum the fuzzy rules are written 

for control of angle and the change in angle having five 

triangular membership function each, hence making a 

total of 25 rules. Considering only  angle does not mean 

we are not considering the position of the cart. The 

position of the cart is controlled in a way that the agent 

is punished whenever the cart touches either side of the 

track. The reward function has to be designed such that 

it gives maximum reward when the pole is near to its 

equilibrium point and punishes when goes far from 

equilibrium point. We assumed that the system is stable 

as long as its angle remains in the limit  of -12 degree to 

+12 degree and the cart's position does not go beyond 

the -2.4 m to +2.4 m. So a failure occurs when |θ| > 12º 

or |x| > 2.4 m. The success is when the pole stays 

within both these ranges for at least 5000 time steps.  

The parameters taken for the system for the learn ing 

algorithm are given in table I. 

Table 1 Parametres used for RL algorithm 
 

Symbol Name Value  
Α Learning rate 0.3 

Γ Discount factor 1.0 

Τ  T ime constant  0.005 

 
The simulated system runs in the episodes. A single 

episode means a single cart-pole run till the failure or 

till 5000 t ime steps. Time steps indicate the total time 

while the pole remains in the vertical upright position 

without a failure. Fig. 5 represents a failed trajectory in 

the starting of the cart-pole simulation run. That means 

in the starting episode when the system has not learned 

sufficiently. The trajectory shows a diversion of the 
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pole angle from the equilibrium point as the time 

increases due to the random actions selection.  

Fig. 5 shows the trajectory of the pendulum when the 

learning is in starting phase. It is clear from the graph 

that the pole is going to be unstable and the trajectory is 

diverting away from the equilibrium point because in 

starting the exploring of the action must be done in 

order to know the quality of different actions. So 

initially the probability of random action selection over 

the greedy action selection is high, hence results in an 

exploring mechanism which later is reduced as the 

exploring increases. One must better take care of 

exploration  Vs explo itation trade-off. As exploring 

leads to system failure because of taking random 

actions and explo iting prevents us to know actions 

which are not yet been explored, hence might prevent 

from taking some best actions . 

Fig. 6 shows the trajectory after sufficient number of 

episode executed and the system has explored sufficient 

so that it is able remain  in  the limit of |θ| > 12º and a 

trajectory converging to the equilibrium point is shown. 

Fig. 7 and fig. 8 shows the graph of the number of 

steps taken in the particu lar episode. It is clear from the 

graph that initially, the system fails many times because 

it does not know what good actions are. But then after 

exploration, it is finally ab le to stand in the vertical 

upright position. The learning time to control the 

pendulum in the upright position may  vary for d ifferent 

time of running due its random action selection nature. 

The two cases are shown in the fig. 7 and fig. 8. One is 

learned in  the 45
th

 episode while in another case it has 

to wait until the 271
st

 episode. 

 

Fig. 5 Unstable Trajectory of angle Vs steps 

 

Fig. 6 Stable trajectory of angle Vs steps 

 
Fig. 7 Number of steps Vs Episode 

 

 

Fig. 8 Number of steps Vs Episode 
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