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Abstract— An important issue faced by risk analysts is 

how to deal with uncertainties associated with accident 

scenarios. In industry, one often uses single values de-

rived from historical data or literature to estimate events 

probability or their frequency. However, both dynamic 

environments of systems and the need to consider rare 

component failures may make unrealistic this kind of 

data. In this paper, uncertainty encountered in Layers Of 

Protection Analysis (LOPA) is considered in the frame-

work of possibility theory. Data provided by reliability 

databases and/or experts judgments are represented by 

fuzzy quantities (possibilit ies). The fuzzy outcome fre-

quency is calculated by extended multip licat ion using α-

cuts method. The fuzzy outcome is compared to a sce-

nario risk tolerance criteria  and the required reduction is 

obtained by resolving a possibilistic decision-making 

problem under necessity constraint. In order to validate 

the proposed model, a  case study concerning the protec-

tion layers of an operational heater is carried out. 

 

Index Terms— LOPA, Uncertainty, Possibility Theory, 

Risk Reduction 

 

I. Introduction 

The problem of reducing risks generated by process 

industry is a permanent concern of managers and risk 

experts. In petrochemical industries for instance, there is 

a wide range of flammable and toxic materials that have 

the potential to impact the health and safety of workers  

and the public, the assets and the environment. There-

fore, reducing risks to an acceptable or tolerable level 

becomes an obligation imposed by social and economic 

considerations. This aim is usually achieved by using a 

combination of several safeguards including technical 

and organizational barriers [1,2]. Technical safety barri-

ers include Basic Process Control Systems (BPCS),  re-

lief systems, dump systems and Safety Instrumented 

Systems (SIS).  

Layers of Protection Analysis (LOPA), as described 

in the IEC 61511 standard [3], are  a semi-quantitative 

technique for analysing and assessing risk. It  can be 

used at any time in  the life cycle of a p rocess or a facili-

ty, but it  is most frequently used during the design stage 

or when modificat ions to an existing process or its safe-

ty systems should be performed [4]. LOPA is a special 

form of event tree analysis that is optimized  for the pur-

pose of determining the frequency of an unwanted con-

sequence which can be prevented by one or more pro-

tection layers. This frequency is a risk measure for a 

scenario and is compared to a maximum tolerable risk in 

order to decide whether or not further risk mit igation is 

needed, according to the principle of “as low as reason-

ably practicable” (ALARP).  

In many systems like chemical process plants, com-

plexity of technologies and human operator tasks in-

creases uncertainty on their behaviour. The more co m-

plex system the less precise informat ion is availab le, as 

stated by Zadeh in [5]. Although great efforts  based on 

good scientific knowledge and past experiences are de-

ployed to prevent accident risks, there is still lacking 

and uncertain informat ion in many parameters and mod-

els, especially in the field  of rare events like technologi-

cal major accidents and/or when considering dynamic 

environments of systems [6,7]. 

In conventional LOPA, numbers are usually selected 

to conservatively estimate failure probabilit ies  rather 

than to closely represent the actual performance of safe-

ty barriers. So, the outcome frequency is intended to be 

conservative and the risk is overestimated with h igher 

installation and maintenance costs [4,8]. Another alter-

native more reassuring and supported by certain experts 

of system safety, is the use of confidence intervals with 

lower and upper bounds to quantify failure probabilities 

[9-12]. Moreover, several data bases like the one of the 

Center for Chemical Process Safety [13], IEEE standard 

500 [14], and OREDA [15] provide such intervals. Alt-

hough this approach is very well suited for refining 

worst case analysis with the presence of less pessimistic 

lower boundaries, it seems that the probability intervals 

of certain failures are large (e.g. two magnitude orders 

and more) and not useful in many real world situations 

and should be readjusted [16]. Furthermore, as for single 
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probabilit ies, there is a lack of data fo r rare failures. In 

this case, using expert judgements will be well justified 

and even become a data source that could not be by-

passed. 

Possibility theory [17,18] seems to be one of the 

promising frameworks for risk assessment. Fuzzy num-

bers and more generally fuzzy intervals might be robust 

representations of imprecision and uncertainty when 

empirical informat ion is very sparse [9,10,16,19,20]. In 

this case, instead of failure probabilities, one can use 

failure possibilit ies, i.e. failure fuzzy probabilit ies, that 

are subjectively assigned distributions . In this paper, an 

approach of fuzzy LOPA is proposed in order to add 

more power features to the conventional method. Fuzzy 

models allow the analyst to assess the elements of an 

accident scenario and risk reduction measures in a more 

flexib le and less constraining way. To illustrate the pro-

posed approach, it has been applied to an operational 

system, which is a heater in a gas treatment process .  

This paper is organized as follows. Section II ad-

dresses an overview of conventional LOPA. Section III 

focuses on the uncertainty problem in risk assessment. 

In section IV, we describe the proposed fuzzy LOPA 

model. Section V deals with  a realistic case study, and 

section VI contains concluding remarks.  

 

II. Conventional Layers of Protection Analysis 

2.1 General Presentation 

LOPA is a simplified risk assessment method, widely 

used in process industry [4]. Its primary purpose is to 

determine if there are sufficient layers of protection 

against a well-defined accident scenario, i.e . if the risk is 

reduced to a tolerable level. A scenario may require one 

or more protection layers depending on the process 

complexity and potential severity of a consequence. Pro-

tection layers include passive safeguards (containment, 

tank of retention, etc) and/or active safeguards (relief 

valves, SIS, etc.). LOPA is built on informat ion provid-

ed by a qualitative hazard analysis such as process haz-

ard analysis (PHA) and Hazards and Operability study 

(HAZOP).  

LOPA is interested only in independent protection 

layers (IPL). An IPL is a device, system, or action that is 

capable of preventing an accident scenario independent 

of the init iating event or the components of any other 

layers of protection designed for the same scenario. The 

effectiveness of an IPL is quantified in terms of its 

probability of failure on demand (PFD) 

2.2 LOPA Quantification 

LOPA is a semi-quantitative method. It  typically uses 

orders of magnitude of the init iating event frequency 

and the PFD of IPLs to generate a risk frequency esti-

mate of an accident scenario [8,21]. LOPA can be 

viewed as a variat ion of event tree analysis that is lim-

ited and optimized for the purpose of determining the 

frequency of an undesired consequence, which can be 

prevented by one or more protection layers . Whereas an 

event tree deals with all the possible consequences of an 

initiat ing event, LOPA focuses on one scenario at time, 

i.e. a single cause-consequence pair, which represents 

one path in the event tree as shown by the heavy line in 

Fig. 1. Thus, only harmful outcome frequency is usually 

ever calculated.  

 

 

Fig.1: Example of event tree with three layers of protection  

 

The outcome frequency is the initiating event fre-

quency multiplied by the product of the IPL PFDs: 





J

j

ij

I

i

C

i PFD f f
1

     (1) 

where
C

i f is the frequency for consequence C for init i-

ating event i ;
I

i f is the in itiating event frequency for 

initiat ing event i ; 
ijPFD is the probability of failure on 

demand of the jth IPL that protects against consequence 

C for initiat ing event i. Equation (1) is applicable for 

low demand situations, i.e.
I

i f is less than twice the test 

frequency for the first IPL,  and assumes that all IPLs 

are independent. Data used in equation (1) should be 

representative of the industry or facility under study. 
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They should be used only if sufficient historical data are 

available over an adequate period of time [21]. 

2.3 Using LOPA to Make Risk Decision 

LOPA is usually practiced to determine whether or 

not an accident scenario obeys to risk tolerance criteria. 

The following methods of risk judgment are used in 

LOPA: 

1) The predominant one is to compare the calculated 

risk with predefined risk criteria. Quantitative risk 

criteria are preferred by some companies and may 

be required by law [22]. They may find simple and 

more convenient to have a numerical risk criterion 

expressed in terms of maximum tolerab le frequency 

per scenario [4,23]. 

In its publication “Reducing Risks, Protecting Peo-

ple” [24], Health and Safety Executive in UK retained, 

for non-nuclear industrial p lants, the individual risk cr i-

teria of 10
-3

 fatality/year and 10
-4

 fatality/year for maxi-

mum to lerable risks to workers and the public, respec-

tively, and 10
-6

 fatality/year for broadly acceptable (or 

negligible) risk to workers and public. Apportioning 

plant risk criteria to individual scenarios must address a 

reasonable basis for assessing  the contribution  of indi-

vidual scenarios to the risk of the whole facility. By as-

suming that the contributions of all scenarios are addi-

tive [4,23,25], the total ind ividual risk may be defined as 

the sum of risk contributions from many scenarios (e.g. 

fire, explosion, toxic releases...). So, risk criterion for a 

single scenario can be derived as follows: 

s

S
N

TRC
  RC          (2) 

where RCs is the risk criterion for a scenario S;  TRC  is 

the total risk criterion; Ns is the number of scenarios.    

Reducing the actual risk to a tolerable level is ensured 

by a risk reduction factor (RRF) derived from the re-

verse value of the PFD of an IPL. When C

i f exceed  

maximum tolerable risk frequency, noted TR, PFDPL is 

a variable given by: 

TRPFDf PL
C
i        (3) 

and RRFPL can be derived as: 

TR

f
 RRF

C
i

PL         (4)
 

The ratio
TR

f
 

C

i corresponds then to Minimum RRF re-

quired (MRRF) to reach TR. 

2) Expert judgment method is needed when specific 

risk tolerance criteria are not availab le due to the 

novelty of process or its complexity [4]. Referring 

to their own experience, experts compare IPLs and 

other features of the scenarios to industry practice 

or similar processes. 

III. Uncertainty in Process Industry 

Risk assessment is a measuring process  through 

which measurement error and uncertainty arise as a re-

sult of the limitation of the measuring tool, the measur-

ing procedure, and the person performing the measure-

ment. System complexity  does increase behaviour un-

certainty, since both theoretical and empirical models 

fail to take into account some relevant phenomena in-

cluding their regimes, the mechanisms and the values of 

parameters, and may  be based on a wide range of as-

sumptions subject to uncertainty [5-7, 26]. Furthermore, 

operating environment of systems is constantly chang-

ing.  

Historical data on failure frequency of the system and 

its defence are lacking. A typical example is the safety 

instrumented system (SIS) working in low-demand 

mode of operation which is the most common mode in 

processes. Demands to activate a safety instrumented 

function of the SIS are infrequent (less than once per 

year) and SIS components have not been operating long 

enough to provide reliable failu re data. So, the use of 

historical experience is not obvious when dealing with 

rare failure [16,26,27]. 

Some assumptions are employed in setting risk scores 

when statistical data are unreliab le or unavailable. The 

most known is “uncertainty increases risk”. This is a 

conservative approach requiring that risk should be 

overestimated by assuming unfavourable conditions. 

This approach enhances risk assessment cred ibility, es-

pecially for public, but it results in higher exp loitation 

and maintenance costs. 

Another approach, may be the optimal, is to deal care-

fully with the state of “no or bad informat ion” by con-

sidering a range of risk scores. It seems that sufficient 

robustness in the outcome frequency may not be at-

tained by using single values (often means or pessimis-

tic values). For many systems it is often difficult to deal 

with initiat ing event frequency and IPLs PFD as exact 

values due to the uncertainty associated with component 

failure data [10]. Thus, decision making might be based 

on pessimistic and/or optimistic criteria according to the 

overall level of system safety [26]. 

 

IV. Fuzzy LOPA Model 

Fuzzy set theory [28] has emerged as a very  appropri-

ate tool in dealing with uncertainty in reliability and 

safety analysis. Several fuzzy models concerning fau lt 

tree analysis (FTA), event tree analysis (ETA), failure 

mode, effects and criticality analysis (FMECA), risk 

graph method, ... have been developed to deal with the 

behaviour of systems which  are too complex or too ill-

defined to admit of conventional quantitative techniques 

[9-11], [20,29]. Imperfect data are dealt with in a natural 

and flexib le way by using fuzzy ru les -based systems 

and/or fuzzy arithmetic.  
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In this context, Markowski and Mannan [12] have de-

veloped a fuzzy approach of LOPA to assess the risk of 

pipes. The model takes into account the outcome fre-

quency, the consequence severity and the level of risk. 

The frequency is calculated using fuzzy multip licat ion. 

The severity is considered as a variab le by introducing a 

severity reduction index derived from a fuzzy inference 

system. The risk level is determined from a fuzzy risk 

matrix as a fuzzy  in ference system. As an encouraging 

result, risk values are more accurate than those given by 

classical LOPA. 

 

 

Fig. 2: Overall procedure of fuzzy LOPA. 

 

In the present paper, the proposed fuzzy LOPA model 

belongs to what could be called “Fuzzy Quantitative 

Risk Analysis” (FQRA). The overall procedure of fuzzy 

LOPA model is shown in Fig. 2. Comparing to Mar-

kowski and Mannan’s model, there are two main differ-

ences: 1) the risk is expressed as a frequency of an un-

wanted consequence. Thus, risk criteria are based on a 

maximum tolerable risk frequency rather than on risk 

matrix. 2) Risk reduction is dealt with by the model, by 

considering a possibilistic risk reduction approach. The 

main steps of the fuzzy model are discussed below. 

4.1 Fuzzification 

The first step is to fuzzify crisp values and/or inter-

vals provided by literature, databases and/or expert 

judgment using possibility or fuzzy  probability concept 

[17,20]. The possibility is  a fuzzy set defined in  proba-

bility space. In this paper, the possibilit ies of failure are 

fuzzy numbers defined on [0, 1] and with  triangular 

membership functions, as shown in Fig. 3. The modal 

value m where µ(m)=1 corresponds to the value totally 

possible. The triangular representation leads to a reason-

able approximat ion of the membership of the fuzzy out-

come frequency, as discussed in the last step of the 

model.  

A fuzzy number may be decomposed into its -level 

sets, called  -cuts, through the resolution identity [30]. 

Let P
~

and 
P be a fuzzy number and its -cuts, respec-

tively. Then:  


1

0

~ 








 PP       (5) 

with  

   )(]1,0[ ~ ppP
P

     (6) 

4.2 Calculation of fuzzy frequency 

This calculation is based on extension principle [30]. 

In practice, the implementation of calculation procedure 

is not trivial since it corresponds to a non-linear pro-

gramming  problem. It is easy to show that fuzzy  arith-

met ic operations are equivalent to the corresponding 

interval arithmetic operations for each -cut with 01. 

This method provides a discrete but exact solution to the 

extended operations in a very efficient and simple man-

ner [31]. 

 
Fig. 3: Example of fuzzy probability. 

 

The fuzzy outcome frequency is derived from the 

equation (1) by the extended multip lication, denoted by 

, as: 





J

j

ij

I

i

C

i DFPf f 
1

~~~      (7) 

where C

if 
~ is the fuzzy frequency for consequence C for 

initiat ing event i ; I

if 
~

is the fuzzy init iating event fre-

quency for init iating event i; 
ijDFP

~
is the possibility of 

failure on demand of the jth IPL that protects against 

consequence C for initiat ing event i. Using -cut de-

composition: 
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
1

0 1

~ 

 













 





 
J

j

ij

I

i

C

i PFDff     (8) 

where I

if and
ijPFD

stand for -cuts.  

4.3 Comparison with the Maximum Tolerable Risk 

Frequency  

Risk reduction decision is based on comparing calcu-

lated frequency C

i f with maximum tolerable frequency 

TR (Section 2.3). When dealing with single values, this 

comparison is a straightforward question obeying to the 

relation (3). But when comparing fuzzy quantities it is 

sometimes difficult to claim that a fuzzy value is greater 

or smaller than another. The only case where we can say 

that a fuzzy number A
~

is less than or equal to a fuzzy 

number B
~

, BA
~~

 , is in which 
11 ba  and 

22 ba  for 

each -cut, as illustrated in Fig. 4. Numerous research 

works have been devoted to the problem of ranking 

fuzzy quantities. A review of the different methods is 

given in [32-34].  

In the framework of possibility theory [17,18], from a 

possibility distribution, one can define different uncer-

tainty measures to characterize a given event. A poss i-

bility distribution is a mapping  from a universe of d is-

course  uU   to the unit interval [0, 1] and it  represents 

a fuzzy  restriction on the possible values of a variab le X. 

Let F
~

be a fuzzy set of U which is characterized by its 

membership function
F
~ .If F

~
describes the label “high”, 

the proposition “X is high” induces a possibility distri-

bution 
FX ~  with )(uX is the possibility that uX  . 

 

Fig. 4: Comparison of two fuzzy numbers. 

 

Given a fuzzy set A
~

of U and the distribution possibil-

ity 
X which takes values in U, the possibility and ne-

cessity (certainty) measures  of A
~

, denoted by  and , 

respectively, are defined by [18]:  

 )(,)(minsup)
~

( ~~ uuA XA
Uu

F




     (9) 

 )(1,)(maxinf)
~

(1)
~

( ~~~ uuAA XA
Uu

FF
 


 (10) 

where A
~

is the complement of A
~

. )
~

(~ A
F

 evaluates to 

what extent A
~

is compatib le with X which  represents 

the  actual state of knowledge, and )
~

( ~ A
F

  evaluates to 

what extent A
~

is certain ly implied by 
X . The degree 

of necessity of A
~

is the degree of impossibility of A
~

. 

Since there is a ranking relat ion between the outcome 

frequency C

if 
~

and the maximum tolerable risk TR, we 

must consider the problem of comparing  a fuzzy  quanti-

ty and a crisp number using possibility and necessity 

measures. By considering the inequality rp  , where p is 

a possibilistic variable within  a fuzzy  interval Q and r is 

a crisp number, one can define the set of numbers poss i-

bly (resp. necessarily) g reater than or equal to p values. 

They are denoted by ),[ Q and [,] Q , respectively, 

and defined by [34]:  

   rpprr QQQ  )(sup],()(),[    (11) 

   

 rpp

rpprr

Q

QQQ





)(sup1                                          

)(1inf[,()(),]




 (12) 

where
Q and 

Q are possibility and necessity measures 

defined by the possibility d istribution
Q . Considering 

the fuzzy inequality TRf C
i 

~
, these two measures as 

ranking indices can be written as: 

 TRppTRf C

if
C

i  )(sup)
~

(Pos ~   (13) 

 TRppTRf C

if
C

i  )(sup1)
~

(Nes ~   (14) 

and are depicted in Fig. 5.  

 

Fig. 5: Possibility and necessity measures of TRf C
i 

~
. 

4.4 Risk Reduction 

The decision regarding risk fall into one of the fo l-

lowing categories: 1) Continue the safety management 

systems (SMS) that maintain the risk at its current level 

(assumed to be tolerable). 2) Mitigate the risk to make it 

tolerable by  adding further safety barriers . 3) The risk is 

so high that it requires changes in the process design or 

the elimination of procedures and operations. 

Much of the decision making in the real-life applica-

tions takes place in a fuzzy environment [35,36]. This 

refers to a decision process in which the goals and/or the 

constraints are imprecise and/or uncertain. In quantita-

tive risk assessment (QRA), the choice of any risk-based 

decision main ly depends on the results derived from the 

comparison of the calculated risk with the maximum 

tolerable risk. However, risk experts are usually consult-

ed when risk criteria are not available or ill-specified [4]. 
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In our context, fuzziness in risk decision making is re-

lated to the fuzzy outcome frequency which is a crit ical 

parameter in  risk reduction. We must deal with the 

fuzzy inequality TRf C
i 

~
 where C

if 
~

is a fuzzy quantity. 

A problem of the type: “the risk per scenario must be 

substantially less than TR” should be solved. One looks 

for determining satisfactory results instead of an optimal 

solution for this problem.  

Fuzzy mathemat ical programming is developed for 

treating decisions in a fuzzy environment. Fuzzy deci-

sion-making supplies a natural framework to deal with 

vague concepts like bigger, smaller, satisfactory, ade-

quate, etc. Fuzzy decision-making was initially devel-

oped by Bellman and Zadeh [35]. They considered the 

decision-making problem under fuzzy goals and con-

straints which are defined as fuzzy  sets in the space of 

alternatives. From possibility theory, another type of 

fuzzy programming is developed [37]. It treats ambigu-

ous and imprecise coefficients of objective functions 

and constraints. Possibilistic decision-making selects 

from a set of possibility distributions given the available 

information. 

A fuzzy  constraint which is a fuzzy event may be sat-

isfied with certain predefined possibility and/or necessi-

ty degrees [37,38]. In LOPA, these possibility and ne-

cessity constraints may be imposed according to the 

company’s safety policy. The proposed possibilistic risk 

decision-making aims to reduce the fuzzy  outcome fre-

quency under a necessity constraint. This approach may 

refer to the concept of “necessary risk reduction” as de-

fined by the IEC 61511 standard [3]. 

We consider the risk situation in which TRf C
i 

~
. 

The risk function to be minimized may be written as: 

PL
C

ii xf f .
~~*         (15) 

where C
if 

~

 
is a fuzzy   interval denoted  by  the  4-tuple  

(a, b, c, d) and
PL x is the PFD of a p rotection layer, as a 

decision variable. The possibilistic risk decision-making 

problem may write as: 

   

x

TRf

f

 

PL

i

i



















10

~
Nes

~
min

*

*

      (16)
 

where  is a confidence level for the fuzzy constraint, 

whose values belongs to  1,0 . The choice of this inter-

val guarantees a certain frequency reduction, since pos-

sibility constraint 1)
~

(Pos *  TRfi will be whenever 

satisfied. The fuzzy constraint may be solved by a de-

fuzzication based on the interpretation of relation (14). 

From Fig. 6, it is clear that trapezoidal approximation of 
*~

if results in: 

 
 1                        

)(sup1)
~

(Nes *~
*







 TRppTRf
if

i  

with: 

**

*

cd

TRd
 




        (17)

 

The parameters c
*
 and d

*
 are derived from the relat ion 

(15) by considering -cut method for =1 and =0, re-

spectively.  

By taking into account the fuzzy constraint in (16), i.e.  

   1 , we arrived at: 

  cdd

TR
 xPL




1       (18)
 

The RRF may be a practicable decision variable. The 

relation (18) can write also as: 

  
TR

cdd
 yPL




1       (19) 

So, MRRF depends on  value. More this value in-

creases more the investment in risk reduction becomes 

important. The reduced frequency *~
if is calculated from 

equation (15) by using -cut method. 

 

Fig. 6: Reducing frequency under necessity constraint 

 

V. Case Study 

5.1 Description of the Process 

To demonstrate the applicability of the proposed 

fuzzy LOPA approach, our case study has focused on a 

heater of the MPP3-p lant at Hassi R’Mel (South Alge-

ria). The heater is one of the most crit ical systems in the 

gas treatment process and is able to generate cata-

strophic consequences on the persons, assets and envi-

ronment. 

The MPP3-p lant recuperates heavy hydrocarbons 

(condensed and LPG) of crude gases from many o il 

wells to produce  treated gases (gas for sale or reinjec-

tion gas). The process of gas treatment is based on: 1) 

Cooling  gas by thermal  exchange  and  simple  relaxa-

tion  (adiabatic). 2) Addit ional relaxation  through turbo-

expander (isentropic). 3) Final temperature (- 40°C). Fig. 

7 shows a simplified d iagram of the production process 

of light fuel gases (gases for sale).  

 

   

   a*             b*     c*  TR   d* a           b      c           d    p 

1 
 

 

*~
if  

    1  

 C
if 

~
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Fig. 7: Process flow diagram of the heat er H101 

 

This process allows a better recuperation of liquid  

hydrocarbons, starting by pre-separation of crude gas 

coming from wells and its compression on the boosting 

station at a pressure of 117 kg/cm² and a temperature of 

62°C. In h igh pressure separation section, the recovered 

liquid hydrocarbons are separated as a liquefied petrole-

um gas (LPG) and condensed in the deethanisor C102 of 

the fractionation section. After extract ing light constitu-

tions in the deethanizer C101 (composed of 28 valves), 

the accumulating plate separates these two parts. To 

avoid the formation of the hydrates in the upper part of 

the column C101, a glycol solution which is extracted 

from the accumulating plate is injected in the flow pipe. 

The separated liquid hydrocarbons are sent towards the 

highest plate of the lower part of C101. A part  of these 

hydrocarbons is sent by means of pumps 31-P101 A and 

B towards the heater H101 for reheating at 150 °C. The 

flow hydrocarbon is regulated by the motorized regulat-

ing valve FICA 136. The outgoing fluid from of the 

heater at about 180°C is driven towards the column 

C101 in order to extract light fuel gases (gas of sale). 

Our study particularly focuses on the heater H101 

which represents critical equipment in the production of 

the light fuel gases (gas for sale) which are composed of 

methane and ethane. 

5.2 Accident Scenarios and Safeguard Analysis 

Identifying accident scenarios is a preliminary step in 

LOPA. Representative accident scenarios (RAS) are 

selected according to risk criteria established by 

SONATRACH company [39].We are interested with 

scenarios that have the potential to result in release of 

flammable material and production loses. HAZOP study 

was performed to identify this kind of scenarios. Table 1 

shows three potential scenarios with their causes and 

consequences. It should be noticed that initiating and top 

events in the event trees are well defined.  

In order to reduce risks generated by these RAS, sev-

eral IPLs are implemented. Conventional LOPA method 

allows the analysis of the d ifferent IPLs. Fig. 8a, 8b and 

8c show the event trees of these scenarios. 

SONATRACH Company has retained the value of 10
-

5
/year as a maximum tolerable frequency for accident 

scenarios resulting in more than one fatality on site [39]. 

5.3 Failure data 

Except for safety instrumented systems (SISs), uncer-

tainty of failure probabilities is represented by consider-

ing fuzzy numbers as mentioned in section 4.1. Confi-

dence intervals provided by experts or taken from data-

bases and literature [13,15,39,40] are converted to fuzzy 

numbers by calcu lating quadratic mean value of interval 

boundaries. Triangular membership functions are cho-

sen because they allow simple calcu lations of fuzzy fre-

quency outcomes.  

Tables 2a, 2b and 2c show init iating event frequency 

and fuzzy PFDs v ia a parametric representation. The 

parameters a, b and m are the lower bound, upper bound 

and modal value of the fuzzy number, respectively. 

When the failure probability is unique as the case of 

initiat ing event frequency in scenarios 1 and the proba

C101: Column 

31-P101A: Pump 

31-P101B: Pump 

H101: Heater 

FICA 136 V: Motorized regulating valve 
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bility of ignition in scenario 3, it could be considered as 

a fuzzy singleton number with a  b  m.  

The average PFD of a safety function achieved by a 

SIS characterizes its safety integrity level (SIL) and is 

represented by an interval according to the IEC 61511 

standard [3], with the interpretation that completely pos-

sible values are within this interval, i.e. 

 1)(~ p
DFP

 for all p  belonging to this interval. For the 

heater H101, the implemented SISs operate in low de-

mand mode of operation (less than once per year) and 

are designed to achieve SIL2.  

5.4 Results and Discussion 

5.4.1 Comparison of fuzzy frequencies and maximum 

tolerable frequency 

The fuzzy  frequencies of the three scenarios are ca l-

culated using equation (8) and a discretization of the 

membership functions of input data. Only eleven nested 

intervals (i.e. endecadarum system) are considered in the 

calculation [31]. Table 3 gives lower and upper bounds 

associated with each -level. A graphical representation 

of these results is shown in Fig. 9. Compared with  TR, 

the position of fuzzy  frequencies Cf 
1

~ , Cf 
2

~ and Cf 
3

~  differs 

from one scenario to another. For Cf 
1

~

 
(whose the mem-

bership function is trapezo idal), except for the lower 

bound of the support, the other values of this  set are 

greater than TR. This remark is consistent with respect 

to possibility and necessity measures given by table 4, 

i.e. 0)
~

(Nes)
~

(Pos 11  TRfTRf CC
. Hence, 

Cf 
1

~
 is 

an unacceptable frequency.  

 
 
 

Table 1: Representative accident scenarios related to the heater H101 

No
°
 Guide-word Element Deviation Causes  Consequences Safeguards 

1 No/ Less 
condensed 
flow 

No/ Less of 
flow  

Failure of the valve 
FICA-136V (closed) 

No liquid in the heater H-
101, damage of serpentine, 
able to cause fire and process 

shutdown 

- Alarm: FICAL-136 (≤ 

150 t/h) 
- Human Operator 
- SIS (FZAL-137): (≤ 120 

t/h) ESD of the furnace 
31-H-101. 

2 Less Air flow Less of flow 

Operator failure: 
Erroneous manipu-
lation of manual 

valves HXC-
908V/907V  
(Stay closed) 

Incomplete Combustion, very 
high pressure inside the heat-
er H-101, able to cause ex-

plosion and process shut-
down 

- Alarm: PIAH-904  (≥ 10 

MMH2O)  

- Pressure Indicator 

- Human Operator  
- Event explosion. 

3 
No/  
Less 

Fuel gas 
flow 

No/ Less of 
flow 

Failure of  the safety 

valve (TOR) UZ-
125C (opened) 

-No fuel gas in furnace H-
101, lower pressure and tem-
perature of fuel gas outside 
the heater     H-101, product 

off-spec. 
 
-Fuel gas release in atmos-
phere, able to cause fire and 

process shutdown. 
 

- Alarm : PAL-126 (≤ 0,4 
Kg/cm

2
)  

- Human Operator 
- SIS (PZL-127): (≤ 0, 2 
Kg/cm2) ESD of the heat-
er 31-H-101.. 

- Alarm: FRAL-142 (≤ 
1250 Nm

3
/h). 

- Valve:TRCA-109V: 

Regulation and indication 
of the fuel flow according 
to the temperature of con-
densate. 

 

 

 
 

(a) Scenario 1 

 

Initiating event SIS (FZAL137) 

Q ≤ 120 t/h 
Consequence  

Human response to alarm / 

Q ≤150 t/h 

Succes 

Fail  

Damage of serpentine, fire and 
process shutdown  

Failure of the valve  
FICA-136V (closed) 

 

Emergency shutdown and 

product off-spec 

Safe situation  

11

~
DFP  

21

~
1 DFP  

21

~
DFP  

11

~
1 DFP  
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Fig. 8: Event trees of accident scenarios. 

 

 

 
Table 2: Fuzzy probabilities relative to accident scenarios 

(a) Scenario 1 

Fuzzy probability parameters a m b 

Valve failure frequency (per year) 10
-1

 10
-1 

10
-1

 

11

~
DFP (Human response to alarm) 10

-1
 3.1610

-1 1 

21

~
DFP (SIS FZAL137) (SIL2) 10

-3
 - 10

-2
 

(b) Scenario 2 

Fuzzy probability parameters a m b 

Human error frequency   (per year) 10
-2

 3.1610
-2 

10
-1

 

12

~
DFP (Human response to alarm) 10

-1
 3.1610

-1 1 

22

~
DFP (Open vent) 10

-3
 3.1610

-3
 10

-2
 

(c) Scenario 3 

Fuzzy probability parameters a m b 

Frequency of safety valve failure (per year) 10
-3

 3.1610
-3 

10
-2

 

13

~
DFP (Human     response to alarm) 10

-1
 3.1610

-1 
1 

23

~
DFP (SIS FZAL 125) (SIL2) 10

-3
 - 10

-2
 

igP
~

(Ignition) 310
-1

 310
-1

 310
-1

 

 

(b) Scenario 2 

 

12

~
1 DFP  

Open vent 

Q ≤ 120 t/h 
Consequence Initiating event Human response to 

alarm / Q ≤150 t/h 

Succes 
Fail 

Operator failure:  

Erroneous manipulation of      
manual valves HXC-

908V/907V (Stays closed) 
 

Higher pressure inside the 
heater H-101, explosion & 

shutdown of process 
 

Incomplete Combustion and 
product off-spec 

Safe situation 

12

~
DFP  

22

~
1 DFP  

22

~
DFP  

(c) Scenario 3 

 

13

~
1 DFP  

Failure of the safety valve 

(TOR) UZ-125C: 

Intempestive opening  

Emergency shutdown 
 and product off-spec 

Safe situation 

Product off-spec, fuel gas  

release in atmosphere, 

Fire and process 

shutdown Ignition 

Succes 

Fail 

13

~
DFP  

23

~
1 DFP  

23

~
DFP  

igP
~

1  

igP
~

 

SIS (FZAL 125) 
P ≤ 0,2 Kg/cm

2
  

Q   120 t/h 

Human response to alarm 
 P ≤ 0,4 Kg/cm2 &  
Q ≤ 1250 Nm3/ht/h 

Initiating event Consequence 
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Cf 
3

~ of scenarios 3 can be v iewed  as possibly tolerable  by 

referring to the possibility measure which is an optimis-

tic criterion; we have 1)
~

(Pos 3  TRf C . However, 

claiming that Cf 
3

~  is necessarily tolerable is not consistent 

with the value of )
~

(Nes 1 TRf C  which is of 0.38. The 

fuzzy frequency Cf 
2

~ is between the two previous fre-

quencies but it tends much more toward the intolerable 

zone since even the optimistic criterion of comparison is 

not completely verified, namely 53.0)
~

(Pos 2 TRf C . 

 

Fig. 9: Fuzzy frequencies compared with TR 

5.4.2 Reduction of Consequence frequencies under 

necessity constraint 

Referring to the relat ion (19), it  can be seen that we 

need the value of the confidence level  to calculate 

MRRF. 0.5 seems to be a reasonable hypothetic value 

for three reasons: 1) as a value d ifferent to zero  it  per-

fectly guarantees the optimistic criterion based on the 

possibility measure, i.e 1)
~

(Pos * TRfi
. 2) it refers to 

the central point in the  interval [0, 1] which  corre-

sponds  to  50% of  certainty. 3) it allows the  necessity  

constraint as a pessimistic criterion  to be moderate and 

therefore, both technological and financial constraints 

would not be an obstacle in necessary risk reduction. 

MRRFs for the specified scenarios are given by table 

5 and reduced frequencies under necessity constraint are 

shown in Fig. 10a, 10b and 10c. Note that Cf 
1

~ and *

1

~
f are 

trapezoidal, except that they are plotted on logarithmic 

scale. As we can see, the results are in concordance with 

the results of table 4 which are based on the position of 

the estimated fuzzy frequencies against TR. Indeed, 

more the decrease part of the fuzzy frequency moves 

away from TR, more the MRRF value increases. MRRF 

for the scenario 1 is the highest; scenario 2 requires a 

MRRF not far away from the first. Scenario 3 may rep-

resent the best of the three scenarios since it only  re-

quires a low MRRF, namely MRRF2, to meet TR . Ta-

ble 6 shows possibility and necessity measures when 

considering fuzzy frequencies reduced under necessity 

constraint. Compared to the results of table 4, it can be 

seen that all the possibility measures are equal to 1 and 

all the necessity measures have increased considerably 

(0.5 is the min imum value). Th is result might be suita-

ble for necessary risk reduction. 

5.4.3 Consideration of practical aspects 

For fu rther validation of the proposed approach, we 

have attempted to consider some pract ical aspects which 

could improve the safety integrity of protection layers 

and reduce therefore the consequence frequencies. For 

each scenario it was question to min imize either the ini-

tiating event frequency or the PFD of one IPL based on 

judgements of process experts. Table 7 shows the modi-

fications provided by these experts and their effects. 

Both consequence frequencies reduced under necessity 

constraint (may be qualified as theoretical) and those 

issued from practical modifications are represented in 

figures 11a, 11b and 11c. From the results of table 8, we 

can say that for the scenarios 1 and 2, fuzzy frequencies 

related to pract ical considerations are between the esti-

mated (or in itial) fuzzy frequencies and the theoretical 

ones. 

 

 
 

Table: 3 -level intervals of fuzzy frequencies 

 

 -level  Scenario 1 (per year) Scenario 2 (per year) Scenario 3 (per year) 

0 10
-5

 10
-3

 10
-6

 10
-3

 310
-8

 310
-5

 

0,1 1,2210
-5

 9,3210
-4

 1,8010
-6

 8,0910
-4

 4,4410
-8

 2,6010
-5

 

0,2 1,4310
-5

 8,6310
-4

 2,9410
-6

 6,4310
-4

 6,1610
-8

 2,2410
-5

 

0,3 1,6510
-5

 7,9510
-4

 4,4810
-6

 5,0210
-4

 8,1510
-8

 1,9010
-5

 

0,4 1,8610
-5

 7,2610
-4

 6,4910
-6

 3,8310
-4

 1,0410
-7

 1,5810
-5

 

0,5 2,0810
-5

 6,5810
-4

 9,0110
-6

 2,8510
-4

 1,3010
-7

 1,3010
-5

 

0,6 2,3010
-5

 5,9010
-4

 1,2110
-5

 2,0510
-4

 1,5810
-7

 1,0410
-5

 

0,7 2,5110
-5

 5,2110
-4

 1,5910
-5

 1,4210
-4

 1,9010
-7

 8,1510
-6

 

0,8 2,7310
-5

 4,5310
-4

 2,0310
-5

 9,2910
-5

 2,2410
-7

 6,1610
-6

 

0,9 2,9410
-5

 3,8410
-4

 2,5610
-5

 5,6910
-5

 2,6010
-7

 4,4410
-6

 

1 3,1610
-5

 3,1610
-4

 3,1610
-5

 3,1610
-5

 310
-7

 310
-6

 

 

Note that the possibility measure is still equal to 1 for 

all the scenarios. This result is compatible with an opti-

mistic risk reduction. On the other hand, necessity 

measure has considerably decreased, namely 0 and 0.22 

versus 0.5 and 0.71, respectively. Necessary risk reduc-

tion is somewhat carried out for scenario 2 and it could 

cf
1

~

cf
3

~

cf
2

~
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be seen that both modal value and lower bound of the 

support of p
f2

~
are less than TR.  

Table 4: Possibility and necessity measures related to  
initial frequencies 

Scenario )
~

(Pos TRf C
i   )

~
(Nes TRf C

i   

1 0 0 

2 0.53 0 

3 1 0.38 

Table 5: MRRF for =0.5 and TR=10-5/year 

Scenario MRRF 

1 66 

2 51.58 

3 2 

Table 6: Possibility and necessity measures related to  
theoretical reduction 

Scenario )
~

(Pos * TRfi   )
~

(Nes * TRfi   

1 1 0.5 

2 1 0.71 

3 1 0.62 

Table 8: Possibility and necessity measures related to  
practical reduction 

Scenario )
~

(Pos TRf p
i   )

~
(Nes TRf p

i   

1 1 0 

2 1 0.22 

3 1 1 

 
 

(a) Scenario 1 

 

(b) Scenario 2 

 

(c) Scenario 3 

 

Fig. 10: Reduction of consequence frequency under 

necessity constraint  
 

 

 

Table 7: Modifications provided by process experts 

Scenario Suggested Modifications Effects 

1 
For the SIS FZAL137 as an IPL, add another sensor identi-
cal to the first  to modify the architecture of sensor-part 
from 1oo1 to 1oo2 

Increasing the safety integrity of the SIF 

from SIL2 to SIL3 with 
21

~
DFP belonging 

to [10
-4

 10
-3

] 

2 
To focus on the human factor as an initiating event by 
further training 

Increasing human reliability at least of one 

magnitude order, i.e. 
If 2

~ (10
-3

, 3.1610
-3

, 10
-2
) (per year) 

3 
For the SIS FZAL125 as an IPL, add another sensor identi-
cal to the first  to modify the architecture of sensor-part 
from 1oo1 to 1oo2 

Increasing the safety integrity of the SIF 

from SIL2 to SIL3 with 
23

~
DFP belonging 

to [10
-4

 10
-3

] 

 
 

 
 
 
 

 

 
 
 
 

cf1

~

*
1

~
f

cf 2

~

*
2

~
f

cf3

~

*
3

~
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(a) Scenario 1 

 

(b) Scenario 2 

 

(c) Scenario 3 

 

Fig. 11: Reduction of consequence frequency via practical modifica-
tions 

 

However, for scenario 1 it seems clearly that modif i-

cations suggested by experts are not enough and further 

improvements are needed. Further improving the SIL of 

SIF associated with the SIS FZAL137, we recommend 

also the reduction of the init iating event frequency, i.e. 

valve failure    frequency, by adding a redundant valve. 

For scenario 3 (Fig. 11c), p ractical modifications have 

resulted in net reduction, i.e. fuzzy consequence fre-

quency due to practical modifications is less than the 

theoretical one, with a necessity measure equal to 1 

(compared to 0.62 for theoretical fuzzy frequency). 

Therefore, we think that theoretical MRRF is so low 

(equal to 2) that it would be difficu lt to propose an ade-

quate technical improvement. Therefore, compared to 

TR, the in itial fuzzy frequency, Cf 
3

~
, may  be accepted as 

it is without immediate action. 

VI. Conclusion 

In this paper, we have proposed a fuzzy LOPA model 

with four main characteristics: 1) The use of fuzzy  prob-

abilities or fuzzy frequencies  to represent input data. 2) 

The use of fuzzy arithmetic to calculate the fuzzy out-

come frequencies. 3) Comparison of these frequencies 

with maximum tolerable frequency by using poss ibility 

and necessity measures. 4) Application of necessary risk 

reduction via a possibilistic risk decision-making. For 

the latter, we have resolved a risk reduction problem 

under a necessity constraint. 

A case study concerning a heater in a gas treatment 

process has shown the great applicability of the pro-

posed approach and the results are encouraging. Refer-

ring to three accident scenarios with frequencies ranging 

from intolerab le to almost tolerable, we have seen how 

the MRRF varies according to the d ifference between 

fuzzy frequencies and tolerable frequency. Furthermore, 

practical modificat ions as proposed by experts have 

shown the potential of the proposed approach in evaluat-

ing expert judgments. 

In this paper, results can be viewed in some sense as 

partial. We believe that fuzzification stage needs more 

development, especially when dealing with single values 

and/or large intervals. A second problem concerns the 

choice of the confidence level, , in necessary risk re-

duction and its relationship with ALARP principle. The 

question is which  value satisfies ALARP demonstra-

tion? 

Beyond this kind of questions, we believe that fuzzy 

LOPA model might be an  extension of conventional 

LOPA which can be  applied successfully outside the 

probabilistic framework.  
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