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Abstract— In this paper, image segmentation of gray-

level images is performed by mult ilevel thresholding. 

The optimal thresholds for this purpose are found by 

maximizing the between-class variance (the Otsu‘s 

criterion). The optimization (maximizat ion) is 

conducted by a novel nature-inspired search algorithm, 

which is called Galaxy-based Search Algorithm or 

GbSA. The proposed GbSA is a metaheuristic for 

continuous optimizat ion. It resembles the spiral arms of 

some galaxies to search for the optimal thresholds. The 

GbSA also uses a modified Hill Climbing algorithm as 

a local search. The GbSA also utilizes chaos for 

improving its performance, which is implemented by 

the logistic map. Experimental results show that the 

GbSA finds the optimal or very near optimal thresholds 

in all runs of the algorithm. 

 

Index Terms—  Image Segmentation, Thresholding, 

Metaheuristic, Optimization, OTSU, Chaos 

 

I. Introduction 

Image segmentation is one of the main tasks in Image 

Processing and Computer Vision. Image segmentation 

is a process by which the whole image is segmented 

into several regions based on similarit ies and 

differences that exist between the pixels of the input 

image. Each reg ion should contain an object of the 

image at  hand. Therefore, by doing segmentation, the 

image is divided into several subimages such that each 

subimage represents an object of the scene.  

Multilevel thresholding [1, 2] is among the 

techniques that can be used for image segmentation [3]. 

For this purpose, the number of thresholds is given in 

advance. Then, the optimal thresholds are often found 

by maximizing or min imizing a criterion. One of the 

best criteria for thresholding was introduced by Otsu [4] 

in which the image is assumed to be composed of only 

two regions: object and background, and the best 

threshold is the one that maximizes the between-classes 

variance of the two  regions. The Otsu‘s method is also 

extendable to mult ilevel thresholding [5]. However, 

when the number of thresholds increases, exhaustive 

search algorithms fail to find the optimal thresholds in a 

reasonable time. As a result, other search techniques, 

which can deal with huge search spaces, should be 

brought into action.  

Metaheuristics are among the favorable methods to 

deal with optimization problems whose search spaces 

for optimal solutions are ext remely vast. For mult ilevel 

thresholding, metaheurisitcs such as Genetic 

Algorithms [6, 7], Particle Swarm Optimizat ion [8, 9]. 

Ant Colony Optimizat ion [10], and Intelligent Water 

Drops algorithm [11] have been introduced. Moreover, 

recently a comparison between six different 

metaheuristics: Genetic Algorithm, Part icle Swarm 

Optimization, Differential Evolution, Ant Colony, 

Simulated Annealing, and Tabu Search has been 

implemented for multilevel thresholding [12].  

In this paper, a novel metaheuristic called ―Galaxy-

based Search A lgorithm‖ or GbSA is introduced for 

multilevel thresholding. The proposed GbSA may be 

viewed as a variable neighborhood search algorithm or 

as an Iterative local Search algorithm. Part of this 

research has been mentioned in [13] 

Here, for mult ilevel thresholding, the Otsu‘s criterion 

function is maximized by the proposed GbSA to obtain 

optimal thresholds. The GbSA searches the input space 

using a spiral-chaotic movement. In fact, the GbSA 

mimics one arm of a spiral galaxy to search its 

environment. This spiral movement is enhanced by a 

chaotic process to help the search space exploration.  

The GbSA begins its work with some equally-spaced 

thresholds, which form the init ial solution. Then, the 

GbSA moves spirally from the initial solution, which 

resembles the core of a galaxy. The galaxy‘s arm moves 

spirally to search the surrounding of the core until it 

finds a fitter solution. After that, a local search 

algorithm is activated from the newly-found solution to 

obtain the best local solution around. This local search 

algorithm may be chosen to be a hill-climbing search 

[14] algorithm or one of its modified versions. Here, a 

modified version of Hill Climbing is employed, which 

is augmented by chaos. The solution obtained by the 

local search is used as a new core for the GbSA, and the 

whole process is repeated again until a p redetermined 

stopping condition(s) is satisfied. 

The rest of the paper is organized as follows: Next  

section reviews mult ilevel thresholding along with two 

other mult ilevel thresholding methods: iterative 
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selection and Growing Time Adaptive Self-Organizing 

Map (GTASOM). Moreover, the Otsu‘s criterion and 

Edge-border Coincidence measure is rev iewed in the 

section. Section III summarizes variable neighborhood 

and iterative local searches and their similarit ies with 

the proposed GbSA. The proposed GbSA and its 

components are expressed in section IV. Experimental 

results with ten test images form section V. The final 

section, section VI, includes the concluding remarks. 

 

II. Multilevel Thresholding 

Multilevel thresholding uses a number of thresholds 

 LS ..., ,S ,S 21  in the histogram of the image ),( yxf  

to separate the pixels of the objects in  the image. By 

using the obtained thresholds, the original image is 

thresholded and the segmented image  ),( yxfT  is 

created. Specifically: 
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Such that ig  is the gray-level assigned to all pixels 

of the region i , which eventually represents object i . 

As it is seen in (1), the 1L  regions are determined by 

the L  thresholds  LS ..., ,S ,S 21 .  

We may use the maximum range of gray-levels, 255, 

to distribute the gray-levels of regions equally. 

Specifically, 
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.  such that the function  .  

returns the integer value of its argument. In contrast, the 

value of ig  may be chosen to be the mean value of 

gray-levels of the region‘s pixels. In this paper, the 

latter approach is applied to let the segmented images 

be more comparable to the original images. 

It should be noted that numerous bilevel and 

multilevel thresholding has been introduced in the 

literature. A  survey on thresholding methods, especially 

bilevel thresholding can be found in [15].  

 

2.1 The Iterative Selection Method 

The iterat ive selection method has been introduced at 

first for bilevel thresholding [16]. Bilevel threhsolding 

employs a single threshold to segment the original 

image into two regions: Figure and background. If the 

initial guess for thresholding is denoted by 0T , the k th 

estimate of the threshold, kT , is calculated by 
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Where )(ih  represents the number of pixels having 

the gray level i . The above process continues until for 

the last two thresholds: kk TT 1 . However there are 

images for which the aforementioned stopping criterion 

is never satisfied. As a result, a maximum iteration 

should also be imposed on the process such that the 

iterative selection is stopped when the iteration exceeds 

the limit. 

The iterative select ion is extendable to multilevel 

thresholding. Assume that there are L  thresholds, 

which are in itialized first, and then they are iteratively 

estimated by  
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Where kiT , is the k th estimate of threshold i . Like 

the iterative selection with one threshold, the iterative 

selection with L  thresholds stops when kiki TT ,1,  for 

each threshold i . However, as it was mentioned earlier, 

a maximum iterat ion should also be used for images 

which the iterative selection does not converge. 

 

2.2 The GTASOM (Growing Time Adaptive Self-

Organizing Map) 

TASOM (Time adaptive Self-Organizing Map) 

networks are unsupervised neural networks that have 

been used for several applications [17]. One of the 

TASOM‘s versions is the GTASOM (Growing 

TASOM), which was introduced for automat ic 

multilevel thresholding of gray-level images. The 

GTASOM was compared with a few mult ilevel 

thresholding methods in [18] where the superiority of 

The GTASOM was demonstrated. The GTASOM 

automatically finds the number of thresholds (regions) 

and also the peaks of the histogram of the gray-levels. 

The peaks are used to segment the images into several 

regions. The number of reg ions is equal to the number 

of peaks. The gray-level of each pixel in the segmented 

image is the gray-level o f the peak to which the pixel‘s 

region belongs. The detail of the GTASOM can be 

found in [17]. 
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It is noted that the GTASOM does not find the 

threshold values, which are the valleys of the histogram, 

and instead it finds the peaks of the histogram. 

Therefore, to compare the proposed GbSA with the 

GTASOM a suitable measure should be employed, 

which is explained in the following section. 

 

2.3 The Edge-border Coincidence Measure 

Several measures have been introduced for 

evaluating quality of segmented images [19]. 

Unfortunately, most of them are applicable for b ilevel 

thresholding or they need ground-truth informat ion. 

However, the Edge-border Coincidence (EbC) is a 

measure which is applicable to situations where the 

ground-truth images are not available, and it is also 

applicable for mult ilevel thresholding. The EbC 

measures the edge-mismatch between the segmented (or 

thresholded) image and the original image. The more 

edges match the higher the EbC will be. Consider that 

the original image is represented by (.,.)I where ),( yxI  

denotes the gray-level of p ixel ),( yx . In  addition, the 

segmented image is denoted by (.,.)J . Then, an edge 

operator, like the Canny‘s [20], is applied to both the 

original and the segmented images producing the edge 

images (sets) (.,.)EI  and (.,.)EJ , respectively. The 

EbC measure is defined by  

EI

EJEI
EbC


                                                     (4) 

Where the symbol  .  returns the number of elements 

of its argument. Moreover, the symbol   denotes the 

intersection in the set theory. EI  and EJ contain the 

coordinates of only edge pixels of the original and the 

segmented images, respectively. The EbC measure can 

possess a value between zero and one. The higher the 

value of the EbC the better the segmentation quality.  

 

2.4 Otsu’s Criterion  

The Otsu‘s criterion was first proposed for bilevel 

thresholding [4]. But, it  is extendable to mult ilevel 

thresholding [5]. Consider any gray-level image can 

possess pixels with gray-levels from the integer set 

 255,...,2,1,0 . Moreover, suppose the image is to be 

segmented into 1L  classes (regions) 

 LRRR ,...,, 10 using the thresholds  LS ..., ,S ,S 21 . If 

in  denotes the number of pixels in the image having 

gray-level i , then the probabilit ies of gray-levels 

(histogram) of the image is calculated by: 
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The between-class variance 2
B  of the segmented 

image is computed by: 
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The Otsu-based thresholding seeks thresholds that 

maximize the between-class variance 2
B . However, the 

Otsu‘s method using exhaustive search algorithms are 

only practical when the number of thresholds is small. 

As the number of thresholds increases, the computation 

time grows exponentially. A lthough there have been 

attempts to reduce the computation time of the search 

[21], but it  still has exponential complexity. In such 

situations, metaheuristics are brought into action, which 

the proposed GbSA is one of them.  

 

III. Variable Neighborhood and Iterative Local 

Searches 

In a variab le neighborhood search algorithm [22], a  

set of neighborhood structures are defined first. Then, 

the algorithm searches from the nearest neighborhood 

set to the farthest one until it finds a better solution. 

However, the exact structure of the neighborhood sets 

and the sizes of them are not available. Moreover, the 

number o f ne ighborhood sets is another factor unknown 

to the user. Thus, the user needs to define the 

neighborhood sets as well a suitable local search before 

using a variable neighborhood search algorithm. 
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Fig. 1: The pseudo-code of the VNS (Variable Neighborhood Search) 

 

The pseudo-code of a Variable Neighborhood Search 

(VNS) is depicted in Fig. 1. It is seen in the figure that 

the VNS has three main components: shaking, local 

search, and neighborhood change. After the init ial 

solution x  is generated first, the shaking component is 

activated to find a solution y  in the current 

neighborhood. Then, the solution y  is updated by the 

local search component, which produces the solution 

y . In  the neighborhood change component, the 

solution y  replaces the init ial solution x  if it is better 

than x , and then the neighborhood set is reset to the 

smallest one. Otherwise, the next neighborhood is 

activated and the whole three components are activated 

one after the other until the whole set of neighborhood 

is tried and better solution is not found. The whole 

process is repeated until a  stopping condition is satisfied, 

which is checked in the ‗while‘ loop of the pseudo-code. 

It is worth mentioning that the proposed GbSA is also 

comparable to an Iterated Local Search (ILS) [23]. The 

pseudo-code of an ILS is shown in Fig. 2. The ILS also 

has three main components. The component Modify 

plays the role of shaking in the VNS, which searches in 

a neighborhood different from the one used in the local 

search for a better solution. The local search here plays 

the same role of the local search in the VNS. Moreover, 

the acceptance criterion partly resembles the 

neighborhood change of the VNS where it  is decided 

from which solution the next round of the ILS is 

continued.  

 

Fig. 2: The pseudo-code of the ILS (Iterated Local Search) algorithm 

 

It is noted that memet ic algorithms [24], which are 

evolutionary-based algorithms combined with a local 

search, are also fallen into the category of the ILS 

where the Modify  is replaced by an evolutionary-based 

algorithm such as a genetic algorithm [25].  

 

IV. Chaos and the Logistic Map 

Since the proposed GbSA also uses chaos to search 

for the optimal solution, the chaos and how to generate 

a chaotic sequence is reviewed in this section. 

Exponentially sensitive dependence on the initial 

conditions is a defin ing factor for a chaotic process [26]. 

This means that even small errors in a solution may 

grow rapid ly as time passes leading to a total change in 

the final solution from what it would be in the absence 

of the errors. One-dimensional noninvertible maps such 

as the tent map or the logistic map are among the simple 

systems, which are able to generate chaotic motion or 

sequence. The well-known logistic map is defined by 

 nnn xxx  11   ,  ,...2,1,0n                     (10)  

When 4 and    1 ,75.0 ,5.0 ,25.0 ,01,00 x , the 

logistic map almost always exh ibits chaotic behavior. 

The logistic map )1()( xxxM    along with 

))(( xMM  and )))((( xMMM  for  1,0x  are plotted 

in Fig. 3. 

 

Fig. 3: The logistic map )(xM , ))(( xMM , and )))((( xMMM . 

The logistic map is used for chaotic sequence generation 

Procedure Iterated Local Search 

ionitialSolutGenerateInS 0
 

)( 0ShLocalSearcS   

While (termination condition not met) do 

  ) ,( historySModifyS  ; 

  )(ShLocalSearcS  ; 

  ),,(tan historySSnceCriterioAccepS  ; 

Endwhile 

Return S  

Endprocedure  

Procedure Variable Neighborhood Search 

Initialization: Select a set of neighborhood structures 
kN , 

max,...,2,1 kk  , and random distributions for the 

Shaking step that is used in the search. Find an initial solution 

x .  

While (the stopping condition is not met) 

1k ; 

Repeat for  
max  1 ktok   

Shaking: Generate a point y randomly 

from the k-th neighborhood of x  

denoted by )(xNk  

Local search: Apply some local search 

method with y as initial solution to 

obtain a local optimum denoted by y . 

Neighborhood change: if this local 
optimum is better than the incumbent, 

move there ( yx  ), and set 

1k ; 

Endrepeat 
Endwhile 

Return x  

Endprocedure 



 Multilevel Thresholding for Image Segmentation using the Galaxy -based Search Algorithm 23 

Copyright © 2013 MECS                                                           I.J. Intelligent Systems and Applications, 2013, 11, 19-33 

In this paper, 4  and 19.00 x . Moreover, the 

first 2000 iterations of the map  are discarded and the 

rest is used. The reason is to escape the transient motion 

that leads to the chaotic attractor. The chaotic attractor 

for 4  fills the interval  1,0 . The chaotic sequence is 

employed in  both the local search and the spiral-chaotic 

(galactic) movement of the proposed GbSA, which are 

explained in the next section. 

 

V. The Proposed Galaxy-Based Search Algorithm 

(Gbsa) 

In this section, the components of the proposed 

GbSA for multilevel thresholding are exp lained: At first, 

the solution initialization is discussed. After that, the 

local search and the spiral-chaotic movement are 

specified. Finally, the stopping condition of the GbSA 

is stated.  

The pseudo-code of the GbSA is shown in Fig. 4. It is 

seen in the figure that the proposed GbSA is composed 

of two main components: SpiralChaoticMove and 

LocalSearch.  

The SpiralChaoticMove component of the proposed 

GbSA uses spiral-like movement in  each dimension of 

the search space with the help of chaotic sequences and 

constant rotation around the initial solution. Gradually, 

the arm of the galaxy opens and covers the search space 

in order to find a better solution. The spiral-chaotic 

movement is augmented by the LocalSearch component. 

In the following subsections, the detail of each 

component of the GbSA is expressed. 

 

Fig. 4: The pseudo-code of the proposed GbSA 

 

5.1 Solution Initialization 

At the beginning, the initial solution is created by the 

function GenerateInitialSolution of Fig. 4. In the 

proposed GbSA for mult ilevel thresholding, with the 

assumption that the minimum gray-level of the original 

image is gmin  and the maximum gray level of the 

image is gmax , the initial solution  LSSSS ,...,, 21  

is calculated by the following linear formula: 

 max min 2
min 1 ,

1,2,...,

i

g g
S g i

L

i L

  
    

 



 
 (11) 

Where L  is the number of thresholds, and iS denotes 

the value of threshold i . The init ial solution is given to 

the LocalSearch component, which is explained in the 

following. 

 

Fig. 5: The pseudo-code of the local search used in the GbSA 

 

 

Procedure LocalSearch  
// input: 

L is the number of components of candidate solutions. 
S is the current solution with L components such that S i 
denotes the component ith of solution S. 

// output: 

SNext is the output of the local search 
// parameters: 

S is the step size which is set by function ()NextChaos . 

  is a dynamic parameter . 
KMax denotes the maximum iteration that the local search 
has to search around a component to find a better solution. 

Here, 100. 

repeat for L  1toi   

0

1





k


 

while kMaxk   

()NextChaosSSSL ii    

()NextChaosSSSU ii    

If )()( SfSLf   and )()( SfSUf    then  

Goto Endrepeat 
Endif 

If )()( SfSUf    then 

0

()1.0









k

NextChaos

SUSL

SUS

ii

ii


 

Endif 

If )()( SfSLf    then 

0

()1.0









k

NextChaos

SLSU

SLS

ii

ii


 

Endif 

1

()5.0





kk

NextChaos
 

Endwhile 

ii

ii

SSR

SSL




 

Endrepeat 

SSNext   

Endprocedure 

Procedure GbSA 

ionitialSolutGenerateInSG   

)(SGhLocalSearcSG   

While (termination condition is not met) do 

FalseFlag   

),( FlagSGticMoveSpiralChao   

If ( Flag ) then  

)(SGhLocalSearcSG   

Endif 
Endwhile 

Return SG  

Endprocedure  
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5.2 Local Search 

Following the in itializat ion of solutions (thresholds), 

the LocalSearch component of the 

GbSA, )(SGhLocalSearc , is activated with the init ial 

thresholds (solution) held in the variable SG . Here, the 

local search is a modified Hill-Climbing search 

algorithm empowered by chaos whose pseudo-code is 

shown in Fig. 5.  

Specifically, the LocalSearch of Fig. 5 is given a 

solution S  with L  components. Then, it seeks the 

nearest best solution to S  by gradually increasing 

search step sizes with the constant parameter S  

augmented by a chaotic variable. The chaotic variable is 

generated by the function NextChaos , which returns a 

number between zero and one based on the logistic map 

expressed earlier. The value of   is also increased with 

the constant parameter   augmented by the chaotic 

variable NextChaos . The LocalSearch is terminated if 

it finds a locally-optimum solution or it exceeds the 

maximum number of iterat ions denoted by kMax . It is 

noted that a locally-optimum solution is the solution S  

which is better than its two immediate neighbors 

SU and SL as shown in Fig. 5. 

To sum up, LocalSearch searches the space around 

the given solution S with small step sizes. Then, it 

gradually increases the step sizes to faster exp lore the 

search space. At the end, it returns the locally-optimum 

solution found around the given solution S . 

 

5.3 Spiral-chaotic Movement 

The other components of the proposed GbSA are 

called in the ―‖while‖ loop of the pseudo-code in Fig. 6. 

SpiralChaoticMove is the first component in  the loop 

which g lobally searches around the solution SG . It 

stops searching whenever it reaches a solution better 

than SG  or it exceeds the maximum repetition number 

denoted by the user-selected parameter pMaxRe , here 

500. If SpiralChaoticMove finds a better solution, 

Flag is set to true and LocalSearch is called to search 

locally around the newly-updated solution SG . The 

whole process above is repeated until a  stopping 

condition is satisfied.  

As it is seen in the pseudo-code of 

SpiralChaoticMove in Fig. 6, the current best solution, 

denoted by S  is given to SpiralChaoticMove. Then, 

each component iS  of S  is modified by  

cos( )

1,2,...,

i i iSNext S NextChaos r

i L

   


,      (12) 

iSNext  is the ith component of the next  

solution, SNext , which is on the arm of the spiral galaxy  

having core S . As mentioned earlier, NextChaos  

returns a chaotic number between zero  and one, which 

is generated by the logistic map. 

If one of the two solutions SNext  is better than the 

current solution S , then the GbSA exits from the 

component SpiralChaoticMove. Otherwise, the rad ius 

r and the angles of the spiral-like movement 

 L ,...,, 21θ  is updated by r  and 

   ,...,,θ , respectively. Here, 01.0 , 

which is always constant throughout the running of the 

GbSA. In contrast, the value of r  is set at the 

beginning of SpiralChaoticMove by 

NextChaosr  2                                             (13)  

Moreover, the initial values of the angle‘s 

components i  are calculated by  

    21 NextChaosi                                 (14) 

Therefore, each i  is a number chosen chaotically 

from the interval   , . 

 

5.4 Stopping condition 

It is noted that the symbol (.)f  in Figs. 5 and 6 

denotes the objective function. For mult ilevel 

thresholding, the objective function (.)f  is the Otsu‘s 

between-class variance 2
B , which the GbSA intends to 

optimize. The threshold values are the integer parts of 

the solution SG obtained by the GbSA as specified in 

Fig. 4.  

The termination or stopping condition for the GbSA 

is composed of three parts: 

 One part is the maximum iteration number for the 

GbSA, which enforces the termination of the GbSA 

when the iteration count exceeds a prespecified 

maximum iteration, here 1000.  

 The second part for the GbSA termination is 

activated when the two  successive threshold values 

are the same.  

 The third part for termination checks the Otsu‘s 

criterion-change between two successive iterations of 

the GbSA. If this difference is less than a small value, 

here, 0.0001, then a parameter is increased by one. 

The GbSA exits when this parameter exceeds a 

predetermined value, here 50.  

 

It is mentioned that both in the LocalSearch and 

SpiralChaoticMove of the GbSA, the solution is kept 

within  the boundary of the gray-levels of the original 

image. In other words, each component iS  of solution 

S  is held within the interval  gg max,min . 
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Fig. 6: The pseudo-code of the SpiralChaoticMove used in the GbSA 

 

VI. Experimental Results 

Several well-known images are employed here for 

testing the proposed GbSA for multilevel thresholding. 

Ten images are used for the experiments taken from the 

USC-SIPI Image Database [27]: Lena, Peppers, Baboon, 

Fruits, Splash, Boat, Couple, Hunter, House, and 

HouseCar as shown in  Fig. 7. Some of these images are 

originally color images and thus they are converted to 

gray-level images by replacing each color  BGR ,, with 

its intensity, which is obtained by the NTSC 

formula BGR 114.0587.0299.0  . The gray-level 

histograms of the ten images are shown in Fig. 8. It  is 

noted that the experiments are perfo rmed on a notebook 

with a Pentium IV CPU running Microsoft Windows 7 

Operating System. The code of the program is written 

in C# language using the Microsoft Visual Studio 2005. 

For the first set of experiments, the test images are 

thresholded by one, two, three, and four thresholds 

using the proposed GbSA. For comparison, an 

exhaustive search is also employed to find  the optimal 

thresholds. The threshold values for both the GbSA and 

exhaustive search are summarized in Tab le 1. Moreover, 

the values of Otsu‘s  criterion are also reported in Table 

2, which  includes the Otsu‘s values for both the GbSA 

and the exhaustive search. The threshold values in 

Table 1 for case one and two thresholds are the same for 

both the GbSA and exhaustive search. Therefore, the 

GbSA finds the optimal thresholds for all the ten test 

images for one and two thresholds. In the case with 

three thresholds, the thresholds are the same for four 

test images. In addition, for the six other images, the 

thresholds values are very close to the optimal ones 

such that they differ by one to three g ray-levels. The 

Otsu‘s values in Table 2 reflect such closeness in the 

solutions obtained by the GbSA and exhaustive search. 

In fact, the objective values only differ in the decimal 

parts of the numbers.  

    

    

     

Procedure SpiralChaoticMove 
// input: 

 S is the current best solution with L components such 

that Si denotes the ith component of solution S. 
// output: 

SNext is the output, which is found first that is better 
than the given solution S. 

Flag is set to true to indicate that a better solution has 
been found. 

// parameters: 

Each i  is initialized by 

 ()21 NextChaos . 

  is a parameter. Here, 0.01. 

 r  is  0.001. 

r  is set by the value ()NextChaos in each 

procedure call. 

pMax Re  is the maximum iteration that the 

SpiralChaoticMove searches. Here, 500. 

   

While pMaxrep Re  

Repeat for Ltoi   1  

    )cos(() iii rNextChaosSSNext   

Endrepeat 

If ( )()( SfSNextf  ) then 

    trueFlag    

Goto Endprocedure; 
Endif 

Repeat for Ltoi   1  

    )cos(() iii rNextChaosSSNext   

Endrepeat 

If ( )()( SfSNextf  ) then 

    trueFlag    

Goto Endprocedure; 
Endif 

rrr   

Repeat for Ltoi   1  

      ii  

Endrepeat 

Repeat Ltoi   1  

If(  i )  then  

 i  

Endif 

Endrepeat 

1 reprep  

Endwhile 
Endprocedure 
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Fig. 7: The ten test images. From top left to bottom right:  Lena, 
Peppers, Baboon, Fruits, Splash, Boat, Couple, Hunter, House, and 

HouseCar 

The last columns of Tables 1 and 2 report the 

thresholds and objective values for the GbSA and 

exhaustive search with four thresholds. In five of the 

experiments, the GbSA finds the optimal thresholds. 

The objective values also confirm the optimal 

performance of the GbSA. Among the other five 

experiments, two of them have very close threshold 

values, which their object ive values also validate the 

closeness to optimality in the solutions of the GbSA. 

Only in three cases, the GbSA lacks such proximity to 

the optimal solutions, which happen for the test images 

Boat, Couple, and Hunter. It seems that the GbSA has 

been trapped into local optimums for these three images. 

However, the three near-optimal solutions are close to 

the optimal solutions based on the objective values 

reported in Table 2. 

 

 

 

Table 1: Comparison of the thresholds obtained by the proposed GbSA, with the optimal thresholds found by the exhaustive search.  

Image 

GbSA (exhaustive search) thresholds  

Number of  thresholds 

one Two Three  four 

Lena 116 (116) 90, 148 (90, 148) 77,122,166 (77,122,166) 72, 108, 138, 173 (72, 109, 139, 174) 

Peppers 118 (118) 66,133 (66,133) 60,114,162 (60,114,161) 45, 83, 122, 165  (45, 83, 122, 165) 

Baboon 127 (127) 94, 146 (94, 146) 77,114, 153 (80, 119, 156) 68, 101, 131, 162 (68, 101, 131, 162) 

Fruits 137 (137) 116, 185 (116, 185) 95, 148, 193 (94, 148, 193) 77, 124, 161, 198 (80, 127, 164, 200) 

Splash 135 (135) 74, 150 (74, 150) 70, 123, 182 (53, 94, 156) 48, 87, 128, 184 (48, 87, 128, 184) 

Boat 102 (102) 89, 149 (89, 149) 70, 122, 162 (70, 122, 162) 63, 111, 144, 174 (51, 102, 136, 170) 

Couple 109 (109) 94, 146 (94, 146) 83, 125, 165 (83, 125, 165) 59, 98, 131, 168 (51, 85, 119, 153) 

Hunter 83 (83) 56, 122 (56, 122) 38, 89, 138 (37, 88, 138) 33, 77, 116, 153 (17, 68, 102, 136) 

House 145 (145) 95, 154 (95, 154) 79, 109, 156 (80, 110, 156) 64, 89, 114, 157 (64, 90, 115, 157) 

HouseCar 140 (140) 105, 170 (105, 170) 80, 133, 177 (80, 133, 177) 67, 110, 145, 181 (67, 110, 145, 181) 

 

Table 2: Comparison of the objective values (Otsu‘s criterion) obtained by the proposed GbSA, with the optima l values found by the exhaustive 
search 

Image 

GbSA (exhaustive search) O bjective values  

Number of  thresholds 

one two three  four 

Lena 1597.77 (1597.77) 1950.98 (1950.98) 2107.58 (2107.58) 2164.24 (2164.29) 

Peppers 2123.52 (2123.52) 2528.49 (2528.49) 2686.91 (2686.91) 2748.68 (2748.68) 

Baboon 1221.78 (1221.78) 1548.02 (1548.02) 1638.86 (1639.04) 1692.62 (1692.62) 

Fruits 1610.78 (1610.78) 2127.44 (2127.44) 2270.72 (2270.72) 2340.97 (2343.60) 

Splash 1656.34 (1656.34) 2237.85 (2237.85) 2363.70 (2366.73) 2463.72 (2463.72) 

Boat 1619.43 (1619.43) 1855.99 (1855.99) 1983.13 (1983.13) 2037.86 (2097.70) 

Couple 931.31  (931.31) 1238.54 (1238.54) 1360.15 (1360.15) 1427.32 (1484.46) 

Hunter 2514.63 (2514.63) 2929.94 (2929.94) 3101.05 (3101.06) 3166.74 (3214.05) 

House 1656.52 (1656.52) 1972.62 (1972.62) 2020.74 (2020.76) 2048.42 (2048.42) 

HouseCar 1566.24 (1566.24) 2008.17 (2008.17) 2136.99 (2136.99) 2192.44 (2192.44) 
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Fig. 8: Gray-level histograms of the test images 
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Table 3 shows the time comparison between the 

GbSA and the exhaustive search to find  the thresholds 

in terms of seconds. It is seen that that times to 

converge for the GbSA are all below 0.26 seconds 

whereas the exhaustive search‘s time to compute the 

thresholds increase exponentially  as the number of 

thresholds increases. Therefore, to compute thresholds 

using an exhaustive search becomes almost impractical 

for even small number of thresholds, and it is only 

suitable for one and two thresholds. It is mentioned that 

beyond four thresholds, the computation time would be 

in terms of hours. Therefore, for higher number of 

thresholds, the GbSA is compared with other practical 

thresholding methods. 

 

 

Table 3: T ime comparison between the proposed GbSA and exhaustive search for the experiments of Tables 1 and 2. 

Image 

GbSA (exhaustive search) time in seconds  

Number of thresholds 

one two three  four 

Average over the test images 0.06 (0.01) 0.07 (0.33) 0.13 (13.96) 0.1 (877.70) 

 

    

    

    

    

Fig. 9: The segmented (thresholded) Lena images with the proposed 

GbSA by increasing the number of thresholds from one to eight such 
that the top leftmost image is the segmented image with one threshold, 
and the bottom rightmost image is the one segmented with eight 

thresholds 

 

The second set of experiments is conducted for five, 

six, seven and eight thresholds over the ten test images. 

The proposed GbSA is compared  with the iterative 

selection method in this set of experiments. The 

comparison results are expressed in Tables 4 and 5. 

Table 5 reports the threshold values for the two 

aforementioned methods whereas Table 5 contains the 

Otsu‘s objective values of both the GbSA and iterative 

selection. The proposed GbSA performs better than the 

iterative selection in all the 40 experiments of Tables 4 

and 5. Only in a few experiments of the tables, iterative 

selection performs almost as good as the GbSA whereas 

the GbSA generally outperforms the iterative selection 

with wide margins.  

 

   

(a)                                                  (b) 

   

(c)                                                (d) 

Fig. 10: The segmented (thresholded) images with the proposed 
GbSA and the iterative selection method. (a) The segmented image 
with the GbSA using five thresholds. (b) The segmented image with 
the iterative selection using five thresholds. (c) The segmented image 

with the GbSA using eight thresholds. (d) The segmented image with 
the iterative selection using eight thresholds 
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Table 4: Comparison of the thresholds obtained by the proposed GbSA, with the thresholds found by the iterative selection method 

Image 

GbSA (iterative selection) thresholds  

Number of  thresholds 

Five  Six seven Eight 

Lena 
61,87,114,142,175 

(0,54,118,143,183) 

53,72,94,117,144,177 

(0,52,113,126,144,18) 

51,68,88,108,128,149,179 

(0,0,54,118,141,161,189) 

48,60,74,91,110,130,151,180 

(0,31,84,113,126,142,161,189) 

Peppers 
41,75,105,136,170 
(52,78,101,130,171) 

38,68,90,114,143,173 
(25,71,100,128,163,19) 

36,63,83,101,123,148,175 
(24,67,94,115,140,167,191) 

32,54,72,88,104,125,149,175 
(18,54,82,101,122,149,173,193) 

Baboon 
57,83,108,133,163 
(62,88,115,141,168) 

51,74,96,117,139,166 
(59,81,103,126,151,177) 

47,67,85,104,122,143,169 
(27,66,89,112,137,161,181) 

41,53,65,83,103,121,142,167 
(53,68,84,105,126,145,165,185) 

Fruits 
68,107,142,172,203 
(42,85,138,178,207) 

63,94,125,152,178,209 
(33,77,132,169,193,225) 

60,87,111,136,159,183,212 
(31,64,100,139,168,190,221) 

47,68,91,114,140,162,184,213 
(30,59,85,115,150,178,200,226) 

Splash 
35,67,95,130,184 

(25,40,50,63,104) 

33,60,82,102,131,184 

(7,29,49,64,95,129) 

29,52,70,88,104,132,184 

(7,28,46,56,68,96,128) 

28,49,65,81,95,108,134,185 

(0,7,28,46,57,68,88,120) 

Boat 
47,82,117,145,175 
(49,116,138,156,190) 

46,78,109,133,152,178 
(0,50,118,147,165,19) 

38,61,86,112,134,152,178 
(0,34,100,136,149,167,203) 

37,59,84,112,135,154,180,250 
(0,0,0,43,108,134,147,164) 

Couple 
54,88,116,140,175 
(0,0,0,0,123) 

48,77,102,124,145,178 
(0,0,0,0,0,123) 

44,71,94,114,132,152,185 
(0,0,0,0,0,0,123) 

29,55,75,93,111,129,149,182 
(0,0,0,0,0,0,0,123) 

Hunter 
24,57,90,123,158 
(41,84,123,152,182) 

21,48,74,100,128,161 
(38,78,115,142,164,18) 

21,48,74,101,129,161,255 
(31,58,85,107,126,150,181) 

18,41,63,86,109,134,165,255 
(30,56,82,103,122,143,163,18) 

House 
63,87,110,132,166 

(0,0,0,93,188) 

58,75,92,112,132,166 

(0,0,0,0,93,188) 

58,75,92,111,131,164,199 

(0,0,0,0,0,94,189) 

54,67,76,88,105,119,136,169 

(0,0,0,0,0,0,0,94) 

HouseCar 
53,90,123,151,182 
(13,44,107,168, 191) 

51,82,109,134,158,186 
(13,27,42,107,170,19) 

48,74,96,118,140,163,190 
(0,13,42,102,156,179,197) 

47,70,87,103,121,143,165,190 
(13,29,44,96,147,168,188,20) 

 

Table 5: Comparison of the objective values (Otsu‘s criterion) obtained by the proposed GbSA, with the objective values found  by the iterative 

selection method 

Image 

GbSA (iterative selection) O bjective values  

Number of  thresholds 

five  six seven Eight 

Lena 2191.84 (2097.95) 2206.70 (2113.08) 2219.89 (2107.05) 2229.86 (2171.56) 

Peppers 2787.41 (2777.36) 2808.15 (2776.84) 2821.02 (2792.39) 2832.44 (2799.72) 

Baboon 1718.54 (1715.08) 1735.56 (1728.28) 1749.44 (1727.47) 1758.30 (1740.49) 

Fruits 2384.64 (2359.51) 2412.88 (2376.94) 2434.15 (2422.23) 2451.08 (2428.54) 

Splash 2515.62 (1747.71) 2532.42 (2354.70) 2544.53 (2361.14) 2552.89 (2292.83) 

Boat 2073.83 (2028.09) 2091.70 (2014.12) 2106.98 (2020.40) 2106.86 (2023.35) 

Couple 1462.64 (949.70) 1485.14 (949.70) 1498.30 (949.70) 1513.86 (949.70) 

Hunter 3205.82 (3158.09) 3226.10 (3158.75) 3226.04 (3216.12) 3237.98 (3205.68) 

House 2070.93 (1325.06) 2084.60 (1325.06) 2085.16 (1239.27) 2106.56 (1019.00) 

HouseCar 2224.13 (2136.75) 2248.42 (2135.61) 2266.25 (2173.73) 2281.35 (2213.99) 

 

Table 6: T ime comparison between the proposed GbSA and iterative selection method for th e experiments of Tables 4 and 5 

Image  

GbSA (iterative selection) O bjective values  

Time to converge (in se conds) 

Number of thresholds 

five  six seven eight 

Average over the test images 0.09 (0.1) 0.12 (0.09) 0.15 (0.09) 0.17 (0.16) 
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Table 7: Comparison between the segmented images obtained by the proposed GbSA, and the GTASOM based on the Edge -border Coincidence. 

Higher values represent better segmentat ion qualities 

Image 

Number of regions: GbSA  (GTASO M) Edge -border Coincidence  

Value of w  

15 10 5 

Lena 4: 0.4985 (0.4838) 5: 0.5724 (0.5312) 12: 0.7750 (0.7099) 

Peppers 4: 0.4012 (0.3464) 4: 0.4012 (0.3637) 10: 0.6496 (0.5412) 

Baboon 2: 0.4846 (0.4236) 3: 0.6311 (0.4526) 13: 0.8701 (0.7215) 

Fruits 5: 0.4321 (0.3769) 9: 0.6077 (0.4047) 14: 0.6161 (0.5928) 

Splash 4:  0.2876 (0.1897) 5: 0.3424 (0.2468) 12: 0.4797 (0.4001) 

Boat 14: 0.7928 (0.9018) 14: 0.7928 (0.9030) 15: 0.7901 (0.9041) 

Couple 16:  0.8248 (0.9111) 16: 0.8248 (0.9050) 16: 0.8248 (0.9058) 

Hunter 16: 0.7742 (0.8740) 16: 0.7742 (0.8742) 16: 0.7742 (0.8782) 

House 5: 0.5537 (0.5349) 6: 0.6813 (0.6355) 12: 0.7483 (0.6736) 

HouseCar 4: 0.5751 (0.2510) 5: 0.6445 (0.3094) 15: 0.8123 (0.7499) 

 

Table 8: T ime comparison between the proposed GbSA and the GTASOM for the experiments of Table 7.  

Image 

Number of regions: GbSA  (GTASO M) time in seconds  

Value of w  

15 10 5 

Lena 4: 0.11 (3.26) 5: 0.23 (2.59) 12: 0.36 (17.14) 

Peppers 4: 0.10 (4.04) 4: 0.10 (5.59) 10: 0.16 (10.72) 

Baboon 2: 0.07 (8.42) 3: 0.08 (4.25) 13: 0.44 (7.51) 

Fruits 5: 0.12 (2.13) 9: 0.12 (12.87) 14: 0.30 (12.34) 

Splash 4:  0.09 (3.32) 5: 0.18 (6.01) 12: 0.16 (10.83) 

Boat 14: 0.20 (3.32) 14: 0.20 (4.14) 15: 0.54 (13.31) 

Couple 16:  0.62 (4.37) 16: 0.62 (8.36)  16: 0.62 (12.10) 

Hunter 16: 0.28 (25.60) 16: 0.28 (24.47) 16: 0.28 (53.16) 

House 5: 0.10 (0.84) 6: 0.16 (2.95) 12: 0.21 (3.44) 

HouseCar 4: 0.13 (7.40) 5: 0.18 (5.88) 15: 0.61 (16.46) 

 

Table 6 contains the time comparison between the 

GbSA and the iterative selection method for the 

experiments of Tables 4 and 5. The times of the GbSA 

are always below 0.35 seconds. However, the iterative 

selection‘s times are a bit shorter than the GbSA except 

the case for six thresholds. In this case, the iterative 

selection does not converge. Thus, a maximum iteration 

limit stops the algorithm. That is why its time is higher 

than its normal t imes. Overall, the time d ifference 

between the GbSA and the iterative selection is 

negligible. Therefore, by considering performance 

superiority of the GbSA over the iterative selection as 

reported in Tables 4 and 5, the GbSA totally 

outperforms the iterat ive selection. In  summary, the 

GbSA produces high-quality thresholded images in 

short periods of time. 

The third  set of experiments is performed to compare 

the GbSA with the GTASOM. It was mentioned earlier 

that the GTASOM is an automatic mult ilevel 

thresholding algorithm such that it produces the 

segmented (thresholded) image automatically without 

being given the number of regions or the number of 

thresholds. However, there is a parameter called w , 

which controls the accuracy of the GTASOM in the 

segmentation of images. The lower the value of w  , 

the more accurate the segmentation process will be. As 

a result, to be able to compare the GTASOM with the 

proposed GbSA, three different values of w  is selected 

and the GTASOM segments the ten images with them.  

Then, the number of regions for each segmented image 

with the GTASOM is found, and the GbSA thresholds 

each image with the number of regions found by the 
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GTASOM minus one. This way, the segmented images 

are comparable and for comparing them, the Edge-

border Coincidence measure is used. Table 7 

summarizes the experiments with the GbSA and the 

GTASOM for the test images. It is seen that the 

GTASOM performs better than the GbSA only  in 10 

out of the 30 segmentations. In other words, the GbSA 

produces better segmented images in  two-third of the 

experiments of Table 7, confirming the overall 

superiority of the proposed GbSA.  

Table 8 expresses the computation time to converge 

of both the GbSA and the GTASOM for the 

experiments of Table 7. The GbSA always converges to 

its solution in less than 0.76 seconds whereas the 

GTASOM has a wide range of computation time from 

0.84 to 25.60 seconds. For every experiment of Table 7, 

the time of the GbSA is much shorter than the time of 

the GTASOM as seen in Table 8. Therefore, not only 

the GbSA creates high-quality segmented images but 

also it produces them really fast. 

It should be noted that although the proposed GbSA 

is a stochastic search algorithm, it finds the same 

solution in different runs of the algorithm for any given 

image. In contrast, the quantum-behaved particle swarm 

optimization and several other similar methods reported 

in [9] have sometimes considerable differences in 

solutions in each of their runs. However, Hammouche 

et al. [12] reported smaller variances in different runs. It 

should be noted that they have only tested the six 

metaheuristics for up to four thresholds, which cannot 

be convincing that the metaheuristics perform well 

enough for a higher number of thresholds.   

Unfortunately, the threshold values obtained by 

Hammouche et al. [12] and Gao et al. [9] cannot be 

compared with each other and also cannot be compared 

with those obtained by the GbSA. One reason may be 

that the images have undergone some preprocessing 

such that even the Otsu‘s optimal thresholds obtained 

by the exhaustive search are often quite different  from 

each other. That is why the histogram of all the test 

images used here have been included in the paper so 

that other researches can be able to compare their 

results with the GbSA if their h istograms match with 

those reported here. 

To visually  evaluate the performance of the proposed 

GbSA for multilevel thresholding, the segmented 

(thresholded) Lena images from one to eight thresholds 

are shown in Fig. 9. As the number of the thresholds 

increases, the segmented images become more similar 

to the original Lena image. 

Moreover, for the Peppers image, the thresholded 

images obtained by the GbSA and the iterative selection 

method are shown in Fig. 10. Th is figure shows the 

results for thresholding with five and eight thresholds. It 

is visually obvious that the images thresholded by the 

GbSA are better than those obtained by the iterative 

selection. The Otsu‘s values reported in Tables 1 and 2 

also confirm the subjective judgment. 

The segmented Fruits images obtained by the GbSA 

outperform the ones obtained by the GTASOM as 

reported in Table 7. Fig. 11 shows the segmented Fru its 

images obtained by the GbSA and the GTASOM. The 

high performance of the GbSA is clearly obvious in the 

figure. In contrast, Fig. 12 shows two segmented images 

produced by the GTASOM, which have better qualities 

than their counterparts produced by the GbSA. The shirt 

of the person behind the Hunter in Fig. 12(b) shows 

better uniformity than the one in Fig. 12(a). This fact is 

confirmed  by the Edge-border Coincidence measures of 

the two segmented images reported in Table 7. 

Moreover, for the Couple image, the segmented image 

of Fig. 12(d) produced by the GTASOM shows higher 

quality than the one produced by the GbSA shown in 

Fig. 12(c). For example, the gray-levels above the 

door‘s frame and on the wall above the painting reflect 

better performance of the GTASOM in this figure. 

However, as it was mentioned earlier, the GbSA is 

generally more successful than the GTASOM for image 

segmentation.  

 

     

(a)                                                  (b) 

      

(c)                                                    (d) 

     

(e)                                                   (f) 

Fig. 11: The segmented (thresholded) Fruits images with the proposed 
GbSA and the GTASOM. (a)-(c) From left to right: Segmented 

images with the GbSA having four, eight, and 13 regions, respectively. 
(d)-(f) From left to right: Segmented images with the GTASOM 

having four, eight, and 13 regions, respectively 
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(a)                                       (b) 

    

(c)                                     (d) 

Fig. 12: The segmented (thresholded) images with the proposed 
GbSA and the GTASOM. (a) Segmented image with the GbSA 

having 16 regions. (b) Segmented image with the GTASOM having 
16 regions. (c) Segmented image with the GbSA having 16 regions. (d) 

Segmented image with the GTASOM having 16 regions.  

 

VII. Conclusions 

In this paper, a new metaheuristic for continuous 

optimization called ―Galaxy -based Search Algorithm‖ 

or GbSA is introduced. The proposed GbSA mimics the 

arms of spiral galaxies to search for the optimal 

solutions. It also uses a local search algorithm for fine 

tuning the solutions. Moreover, chaos plays an 

important role throughout the process of the GbSA. The 

GbSA is employed for optimizing the Otsu‘s criterion 

for multilevel thresholding of gray-level images. The 

performance of the GbSA for multilevel thresholding is 

compared with an exhaustive search and two other 

multilevel thresholding methods. The experiments 

reveal the superiority and fastness of the proposed 

GbSA.  

Due to the high performance of the GbSA for 

continuous optimization for mult ilevel thresholding, it 

is reasonable to employ the GbSA for other problems of 

Computer Vision and Image Processing in which 

objective functions are defined for optimization. It is 

noted that the GbSA has also been used for principal 

components analysis [28]. 
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