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Abstract— This paper presents a new approach to 

overcome one of the most known disadvantages of the 

well-known Kmeans clustering algorithm. The 

problems of classical Kmeans are such as the problem 

of random init ialization of prototypes and the 

requirement of predefined number of clusters in the 

dataset. Randomly in itialized prototypes can often yield 

results to converge to local rather than global optimum. 

A better result of Kmeans may  be obtained by running 

it many times to get satisfactory results. The proposed 

algorithms are based on a new novel definition of 

densities of data points which is based on the k-nearest 

neighbor method. By this definit ion we detect noise and 

outliers which affect Kmeans strongly, and obtained 

good initial prototypes from one run with automatic 

determination of K nu mber of clusters. This algorithm 

is referred  to as Efficient In itializat ion of Kmeans (EI-

Kmeans). Still Kmeans algorithm used to cluster data 

with convex shapes, similar sizes, and densities. Thus 

we develop a new clustering algorithm called Efficient 

Data Clustering Algorithm (EDCA) that uses our new 

definit ion of densities of data points. The results show 

that the proposed algorithms improve the data clustering 

by Kmeans. EDCA is able to detect clusters with 

different non-convex shapes, different sizes and 

densities. 

 

Index Terms— Data Clustering, Random In itializat ion, 

Kmeans, K-Nearest Neighbor, Density, Noise, Outlier, 

Data Point 

 

I. Introduction 

Data clustering techniques are an important aspect 

used in many fields such as data min ing [1], pattern 

recognition and pattern classification [2], data 

compression [3], machine learn ing [4], image analysis 

[5], and bioinformatics [6].  

The purpose of clustering is to group data points into 

clusters in which the similar data points are grouped in 

the same cluster while d issimilar data points are in 

different clusters. The high quality of clustering is to 

obtain high intra-cluster similarity and low inter-cluster 

similarity. 

The clustering problems can be categorized into two 

main types: fuzzy clustering and hard clustering. In 

fuzzy clustering, data points can belong to more than 

one cluster with probabilities [7] which indicate the 

strength of relationships between the data points and a 

particular cluster.  

One of the most widely used fuzzy clustering 

algorithms is fuzzy  c-mean  algorithm [8]. In  hard 

clustering, data points are divided into distinct clusters, 

where each  data point can belong to one and only one 

cluster. The hard clustering is subdivided into 

hierarchical and part itional algorithms. Hierarchical 

algorithms create nested relationships of clusters which 

can be represented as a tree structure called dendrogram 

[9]. These algorithms can be div ided into agglomerative 

and divisive hierarchical algorithms. The agglomerative 

hierarchical clustering starts with each data point in a 

single cluster. Then it repeats merging the similar pairs 

of clusters until all of the data points are in one cluster, 

such as complete linkage clustering [10] and single 

linkage clustering [11]. The divisive hierarchical 

algorithm reverses the operations of agglomerative 

clustering, it starts with all data points in one cluster and 

repeats splitting large clusters into smaller ones until 

each data point belong to a single cluster such as 

DIANA clustering algorithm [12]. 

Partit ional clustering algorithm d ivides the data set 

into a set of disjoint clusters such as Kmeans [13], PAM 

[12] and CLARA [12]. 

One of the most well-known unsupervised learning 

algorithms for clustering datasets is Kmeans algorithm 

[12]. The Kmeans clustering is the most widely used 

[14] due to its simplicity and efficiency in various fields. 

It is also considered as the top ten algorithms in data 

mining [15]. The Kmeans algorithm works as follows: 

1. Select a set of initial k  prototypes or means 

throughout a data set, where k  is a user-defined 

parameter represents the number of clusters in the 

data set. 

2. Assign each data point in a data set to its nearest 

prototypes m.  

3. Update each prototype according to the average of 

data points assigned to it. 

4. Repeat step 2 and 3 until convergence.  
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The Kmeans updates their prototypes iteratively to 

minimize the following criterion function: 

Where data set D contains n data points or objects 

nxx ,...,1
such as each data point is  d dimensional vector 

in R
d
, and mi is the prototype of cluster Ci, and k  is the 

given number of clusters. 

The main  advantages of Kmeans algorithm are its 

simplicity to be implemented and its efficiency. 

However, it has several drawbacks: 

 The number of clusters in a g iven data set should 

be known in advance. 

 The result strongly depends on the initial 

prototypes. 

 It is applicable when the mean of data is defined. 

 Sensitivity to noise and outliers. 

 Dead prototypes or Empty clusters. 

 Converge to local optima. 

 It is defined for globular shaped, similar size and 

density clusters. 

A number of kernel methods have been proposed in 

recent years [16-19] to increase the separable of clusters. 

In the kernel Kmeans algorithm all data points are 

mapped, before clustering, to a higher d imensional 

feature space by using a kernel function. Then the 

Kmeans algorithm is applied in the new feature space to 

identify clusters. Recently, [20,21] p roposed a novel of 

new clustering algorithms that converge to a better 

solution (less prone to finding a local minimum because 

of poor initialization) than both standard Kmeans and a 

mixture of experts trained using the EM algorithm. 

In this paper, we modify the non-parametric density 

estimation based on kn-nearest neighbors algorithm [22]. 

So, our proposed algorithm is robust to noise and 

outliers, automatically detects the number of clusters in 

the data set, and selects the most representative dense 

prototypes to be initial prototypes even if the clusters 

are in different shapes with different densities. 

To compute the kn-nearest neighbors algorithm of a 

data point Dxi  , we center a ball cell about xi and let it  

grows until it captures the predefined number kn of data 

points. Let ))(( ixNR represents the radius of the ball 

which is the distance from xi 
to its farthest neighbor in 

its )( ixN , where )( ixN represents a set of data points in 

the kn neighborhood of xi. Then the density of xi 
is 

defined as [22,23]: 

)))(((.
)(

i

n
i xNRVn

k
xden                              (2) 

Where V(r) represents the volume of ball of rad ius  r 

in R
d
, and )2/(/2)( 2/ ddrrV dd   . 

The clustering algorithms that are based on 

estimating the densities of data points are known as 

density-based. One of the basic density based clustering 

algorithm is DBSCAN [24]. It defines the density by 

counting the number of data points in a region specified 

by a predefined rad ius known as Eps around the data 

point. If a  data point has a number greater  than or equal 

to predefined min imum points, then this point is treated 

as a core point. Non-core data points that do not have a 

core data point within the predefined radius are treated 

as noise. Then the clusters are formed  around the core 

data points and are defined as a set of density-connected 

data points that is maximal with respect to density 

reachability. DBSCAN may behave poorly due it is 

weak definition o f data points’ densities and it  is 

globally predefined parameters.  

 

II. Related Works 

There are several p rototypes initializat ion methods 

have been introduced for the classical Kmeans 

algorithms. In [25] the prototypes are chosen randomly 

from the data set which considers the simplest and most 

common init ialization method. The Minmax [26] selects 

the first prototype randomly m1 then the i
th

 prototype mi 

is selected to be the data points with largest minimum 

distance to the previously selected prototypes. One of 

the drawbacks of this method is that it is sensitive to 

outliers thus it selects the outliers in the data set. 

Kmeans++ [27] in which the first prototype mi is 

selected randomly m1 then the i
th

 prototype is selected to 

be Dx '  with probability of  Dx xdxd 22 )()'(  , 

where d(x) denotes the shortest distance from data point  
x  to the closet prototype already chosen. Al-Daoud in 

[28] p roposed an algorithm to initialize the prototypes 

of Kmeans which finds a set of medians extracted from 

the dimension with maximum variance to be the init ial 

prototypes. The use of median in this method makes the 

algorithm sensitive to outliers. Gan, Ma, and Wu in [9] 

introduced a valid ity measure to determine the number 

of clusters in Kmeans algorithm. This method depends 

on calculating the intra-cluster distances Mintra which is 

defined as in (1) and the inter-cluster distances Minter 
which is the minimum distance between pair of 

prototypes among all prototypes. Then the validity  

measure is defined as: erra MMV intint . Obviously a 

good result shall have a small intra-cluster distances and 

a large inter-cluster distances, thus V is min imized. To 

determine V we shall apply Kmeans algorithm from k=2 

up to Kmax and for each we calculate the validity 

measure and choose the k  that corresponds to the 

minimum value of V. 

 

III. Motivations 

The Kmeans algorithm considered as one of the top 

ten algorithms in data mining [15]. A lot of researches 

and studies have been proposed due to its simplicity and 

efficiency. These efforts have focused on finding 



 Efficient Data Clustering Algorithms: Improvements over Kmeans 39 

Copyright © 2013 MECS                                                           I.J. Intelligent Systems and Applications, 2013, 03, 37-49 

possible solutions to one or more of the limitations that 

have been identified previously. One of the solutions to 

the initial p rototypes sensitivity can be found in [29] 

where they defined new criterion functions for Kmeans 

and they proposed three new algorithms: weighted 

Kmeans, inverse weighted Kmeans [30] and inverse 

exponential Kmeans [31]. Other improvements of 

Kmeans focus on its efficiency where the complexity of 

Kmeans involves the data set size, number of 

dimensions, number of clusters and the number of 

iteration to be converged. There are many works to 

reduce the computational load and make it more fast 

such as in [32-34]. Asgharbeygi and Maleki in [23] 

proposed a new distance metric which is the geodesic 

distance to ensure resistance to outliers. Several works 

have been introduced to extend the use of means for 

numerical variables, thus Kmeans can deal with 

categorical variables such as  in [35,36]. 

Our proposed EI-Kmeans algorithm focuses on 

classical Kmeans itself. We want to in itialize prototypes 

from the first run on compete positions throughout the 

data set that yields good results. EI-Kmeans also solves 

one of the most difficult problems in the data clustering 

which is the determination of the number of clusters in 

the data set in advance. The determination of number of 

clusters depends on our new defined density of data 

points that can eliminate noise and outliers from the 

data set. The proposed EDCA tries to  benefit from the 

proposed EI-Kmeans to develop a new clustering 

algorithm that is able to detect clusters with different 

non-convex shapes, different sizes and densities in 

which Kmeans cannot give good results in these types 

of data sets. 

 

IV. Proposed Algorithms 

The proposed algorithms define a new definition for 

the density of data points throughout the data set. This 

new defin ition mentions the drawback of (2) which is 

based on kn-nearest neighbors density estimation 

[22,23]. EI-Kmeans calculates the density of each data 

point in the given data set, and then it sorts the data 

points in descending order according to their densities. 

The first densest point is selected as the first prototype. 

Then the list of sorted data points is investigated to get 

the next candidate prototypes. However, we shall take 

care that the selected prototype does not have a direct 

connectivity with the previously selected prototypes. 

We define two versions of EI-Kmeans algorithm. The 

first version takes kn the number of nearest neighbors, 

and the number of clusters k  in the data set as input 

parameters. Then the sorted list of data points is 

investigated until the number of obtained prototypes 

reached the specified k  then the algorithm is aborted. 

The second version takes kn the number of nearest 

neighbors as the only input parameter and obtains both 

the number of clusters and the prototypes in parallel. 

We also propose another version which is an 

improvement of our second version. However, this third 

version considers as a new clustering algorithm. This 

new algorithm is referred to as Efficient Data Clustering 

Algorithm (EDCA). 

The following subsections describe the proposed 

algorithms in details: 

 

4.1 New definition of density 

We derived our new formula of density based on the 

drawbacks of (2).  

To illustrate this drawback, let us consider the simple 

data set example in which it contains 33 data points 

distributed as shown in Figure 1. Assume grid is a unit 

distance.  

 

 

Fig. 1: Illustration example 

 

We want to examine the density of the numbered data 

points from 1 to 5 with respect to kn=6 including the 

examined data point. By applying (2), the density of 

data points 1, 2, and 3 is the same and equals to 0.007. 

And the density of data points 4 and 5 equals to 0.029. 

It is obvious that each numbered data point has a 

different density with data point number 5 is the densest 

one and data point number 1 has a least density. It is 

true that (2) does not take into account the actual 

number of data points within ball cell about examined 

data points with respect to kn. If we try to engage the 

sum of Euclidean distances from the examined data 

point to all of its neighbors defined by kn. Then we have 

the formula for density of data points: 

  )( ),()( xNyt yxdNxden   where Nt represents the 

actual number of data points in the neighborhood of 

data point x with respect to kn, N(x) is a set of data 

points in the neighborhood of data point x with respect 

to kn, and d(x,y) is the Euclidean distance from data 

point x to data point y . Then the density of point 

numbered 1 is 0.55, density of data point numbered 2 is 



40 Efficient Data Clustering Algorithms: Improvements over Kmeans  

Copyright © 2013 MECS                                                           I.J. Intelligent Systems and Applications, 2013, 03, 37-49 

0.88, density of data point numbered 3 is 0.72, density 

of data point numbered 4 is 1.11, and density of data 

point numbered 5 is 0.93. Again  this formula fails to 

specify the density of data points accurately. Then we 

put our new formula of density based on the density 

estimation of (2). The density of data point x is defined 

as: 

 


)(

),(.
)(

xNy

t

n
yxdVn

N
xdensity               (3) 

Where Nt  represents the actual number of data points 

in the neighborhood of data point x  with  respect to kn, n 

is the total number of data points in the data set, V is the 

volume defined as in (2), and Nn(x) is a set of closest kn 

neighbors to point x. 

According to (3), the density of point 1 is 0.66, the 

density of data point 2 is 1.06, the density of data point 

3 is 0.87, the density of data point 4 is 5.34, and the 

density of data point 5 is 8.02. 

 

4.2 EI-Kmeans algorithm 

Let D be a data set of n d-dimensional data 

points nxx ,...,1 . Then we want to find the best candidate 

data points to be the initialized prototypes. Thus we can 

perform the Kmeans clustering algorithm on the given 

data set for obtaining a good result of clustering data 

points. The proposed algorithm solves the problem of 

considering the number of clusters of the data set in 

advance. And it solves the problem of bad init ialized 

prototypes that may y ield  the algorithm to  converge to 

local optima or to get empty clusters  [29]. EI-Kmeans 

algorithm uses our new formula of density defined in 

(3). EI-Kmeans searches the data set for the densest 

points which are strong candidate prototypes. We take 

care that the given data set may contain different 

clusters that have different densities, thus a number of 

densest points can present in the same cluster. 

Let the set P consists of initial prototypes of data set 

and it is in itialized to be empty. We compute the density 

for each data point in the data set. Then we sort the data 

point according to their densities in descending order. 

The first data point in this sorted list is the densest data 

point in the entire data set. We choose this point to be 

the first in itialized prototypes. Then the set P consists of 

this prototype. Now we want to examine the next 

densest data point in the sorted list in order. To avoid 

selecting prototypes that resides in the same cluster. We 

test the connectivity between the examined data point 

and each prototype in the set P. Thus, if there is no path 

between examined data point and each prototype in the 

set P, this examined data point is inserted in the set P. 

Then the next one which is not examined data point in 

the sorted list is tested to be an available prototype or 

not. This procedure is repeated until we obtain the 

desired prototypes. The path between pairs of data 

points is calculated, if exists, as a proactive scheme this 

means that we build a proximity matrix o f 0 and 1 

where 0 means that there is no direct connectivity 

between two data points and 1 means there is a direct 

connectivity between two data points. This is calculated 

according to a threshold value ɛ which is calculated 

dynamically for the given data set. The value ɛ defines 

the radius of the region in which  direct connectivity is 

considered. We compute ɛ for the given data set D as 

follows: 

d

d

n

n

dkxxprod
1

.

)15.0(.)).min()(max(













 



        (4) 

Where max(x) treats the columns of x as vectors, and 

returns a row vector containing the maximum element 

from each co lumn. The same th ing for min but it returns 

the min imum element for each column. And prod(A) 

returns the product of elements of vector A. 

Then we use the connectivity proximity matrix to  

find a path between pairs of data points. If the value of 

the path is infinity then there is no path between the 

given pairs of data points. The following two 

subsections describe two versions of EI-Kmeans 

algorithm. 

 

4.2.1 EI-Kmeans version 1 

EI-Kmeans_V1(kn,k) 

1 Begin initialize kn, k, P={ }, G={ }, n 

2  for i = 1 to n  
3   PDi ← density(xi) 
4  end_for 

5  G ← sort(PD) 

6  P1 ← G1 

7  j = 1 

8  do j ← j + 1 

9   if there is no path between Gj and each 

element in P  

10    Append Gj to P 

11   end_if 

12  Until P contains k elements 

13  Return P 

14 end 

Fig. 2: EI-Kmeans algorithm version 1 

 

The proposed version 1 o f the algorithm takes two  

input parameters which are the kn number of nearest 

neighbors and k  the number of clusters in the data set. 

The output is the set of k  prototypes. Figure 2 shows the 

algorithm. The first step initializes two empty sets  P 

and G. The set P contains indexes of chosen prototypes 

and the set G is a sorted list of data points’ indexes 

according to the density in descending order. And n  is 

the number of data points in the D data set. For each 

data point in the data set, we compute the density of this 

data point according to (3) and store the results in an 

array list of Po int Density (PD). Line 5 of the algorithm 

sorts obtained densities in descending order and put the 

result in the set G. Line 6 means that the first element in 

the set G is selected as a first prototype. The first 
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element of G is the index of the densest data point in the 

data set. Then a counter j points to the second densest 

data point and it is incremented by one for each loop 

throughout lines 8 to 12. In each loop we test the 

pointed data point in the set G if there is no path 

between this data point and each prototype in set P, we 

append the index of this data point to the set  P. 

Otherwise, we increment the counter j to test the next 

data point in G. These steps are repeated until k 

prototypes are found. Then the algorithm breaks and 

returns the k  prototypes which they are considered the 

init ial prototypes for the Kmeans clustering algorithm. 

Thus after obtaining these k  prototypes, we run the 

standard Kmeans clustering algorithm. 

 

4.2.2 EI-Kmeans version 2 

The second version of EI-Kmeans takes only one 

input parameter which is the kn number of nearest 

neighbors. Figure 3 p resents the EI-Kmeans algorithm. 

If we mention our algorithm, then we mean the second 

version. Otherwise, it is stated explicitly. 

EI-Kmeans_V2(kn) 

1 Begin initialize kn, k←0, P={ }, G={ }, n 

2  for i = 1 to n  

3   PDi ← density(xi) 

4  end_for  

5  G ← sort(PD) 

6  P1 ← G1 

7  for each data point in data set D 

8   Np ← compute the number  of points within 

radius ɛ  

9   if Np < kn  

10    Mark this point as Noise 

11   end_if  

12  end_for  

13  j = 1 

14  do j ← j + 1 

15   if Gj is not marked as noise 

16      if there is no path between Gj and each   

element in P   

17    Append Gj to P 

18    k ← k + 1 

19      end_if 

20   end_if  

21  Until j = n 

22  Return P and k 

23 end 

Fig. 3: EI-Kmeans algorithm version 2 

 

We add a defin ition for noise points. These points are 

excluded from the computations and they often reside in 

the bottom of the set G. We investigate all of the data 

points in the set G except the points marked as noise. 

The algorithm finds all of the possible prototypes in the 

entire data set. Thus the number of found prototypes 

indicates the number of clusters in the data set. The 

resulted prototypes are used as the initial prototypes for 

clustering the data set using Kmeans algorithm. 

4.3 A new clustering algorithm 

However, EI-Kmeans algorithm finds the best 

init ialized prototypes locations entire the data sets, it 

inherent one of the limitat ions of Kmeans clustering 

algorithm. This limitation is about the type of given data 

sets. In which the Kmeans algorithm has a problem of 

discovering clusters of different non-convex shapes, 

different sizes and densities. Thus we develop a new 

clustering algorithm to cope this limitation. This new 

algorithm is referred to as Efficient Data Clustering 

Algorithm (EDCA). EDCA is able to find clusters with 

different non-convex shapes, different sizes and 

densities. It also has a definition of noise and outliers. 

We benefit from our new definition of data points’ 

densities to propose the EDCA.  

EDCA(kn) 

1 Begin initialize kn, C={ }, G={ }, n,                    

Lq  nq ,...,11    

2  for i = 1 to n  

3   PDi ← density(xi) 

4  end_for  

5  G ← sort(PD) 

6  C1 ← G1 

7  LG1 ← 1 

8  for each data point in data set D  

9   Np ← compute the number of points within 

radius ɛ  

10   if Np < kn   

11    Mark this point as Noise  

12   end_if  

13  end_for  

14  k = 1 

15  j = 1 

16  do j ← j + 1 

17   if Gj is not marked as noise 

18    for m= 1 to k 

19    If there is a path between Gj and Cm 

20     LGj ← m 

21     break 

22    end_if  

23    end_for  

24    if  LGj  == -1 

25    Append Gj to C 

26    k ← k + 1 

27    LGj ← k 

28    end_if 

29   end_if  

30  Until j = n 

31 end 

Fig. 4: EDCA algorithm. 

 

Figure 4 shows the procedures of the algorithm. 

EDCA takes the number of nearest neighbors as the 

only input parameter. The first steps are the same as in 

our proposed EI-Kmeans algorithm. We define the set C 

which contains each cluster identification entire the 

given data set D.   The most dense data point in a cluster 

is considered as the cluster identification. Thus the 

number of entries in the set C represents the number of 
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clusters in the data set. Initially, C is empty. We denote 

the cluster label of the data point by Lq. Init ially all data 

points are assigned the label of -1 to indicate unassigned 

data point, that is  Lq  nq ,...,11  . EDCA appends 

the index of the densest data point according to (3) to 

the set C to be the first cluster identification and we 

label it  to be in  the first cluster. We use this point as the 

first reference to expand the cluster. Each data point in 

the data set is examined in order as in the set G which is 

a set of data points’ indexes arranged in descending 

order according to their densities. If the examined 

unlabeled data point has path reachability as described 

previously to one of the cluster identifications in the set 

C, we assign the label of that cluster identification to 

this examined data point. But if we have an unlabeled 

data point with no path to reach any of the cluster 

identifications in set C, then we know that the data point 

should belong to a new cluster. Thus we increment the 

number of recently obtained clusters and assign this 

cluster label to this data point. 

Lines 2 to 4 are used to compute the density of each 

data point in the given data set D according to our new 

definit ion of density. Line 7 assigns cluster label of 1 to 

the densest data point. Lines 8-13 figure out the noise 

and outliers in the data set. Thus our proposed algorithm 

is robust to noise and outliers. Line 14 defines k  to be 

the number o f clusters in the data set and it is initia lly 

equal to 1. Then we examine all the data points in the 

data set according to the sorted set G. Lines 18 through 

23 assign a cluster label to the current data point. To do 

this, a loop is used to pass through all the elements in 

the set C. In case if there is a match, we assign a 

matched cluster label to the examined data point and 

exit  the loop. If the algorithm fails to assign a label to 

the examined data point, the lines 24 through 28 

appends this data point to the set C to be new cluster 

identification then the value k  is incremented by one to 

reflect the so far number of obtained clusters. Then this 

update value of k  is assigned as a cluster label to this 

examined data point. These procedures are repeated 

until all the data points in the given data set are labeled. 

 

V. Simulation and Results 

We evaluated our proposed algorithms on several 

artificial and real data sets. 

Artificial data set: We generate artificial two 

dimensional data sets, since the results are easily 

visualized. Consider the data set in Fig. 5(a) that 

consists of 300 data points with 5 clusters. Fig. 5(b) 

shows the locations of the prototypes from the first run 

of our algorithm. It is truly identifies that this data set 

contains 5 clusters. Thus our algorith m does not need to 

have an input parameter of the number of clusters.  

Figure 5(c) shows the clustering result when applying 

Kmeans using the prototypes obtained by EI-Kmeans. It 

is obvious that the clustering result in Figure 5(c) is true. 

This is due to the fact that the initial prototypes are 

considered carefully, where each of the five prototypes 

catches one cluster. Figure 5(d) shows the location of 

the initial prototypes after 5 randomly runs of Kmeans, 

and then we select the result that minimizes the criterion 

function in (1). Figure 5(e) shows the failed best 

clustering result after 5 times running of Kmeans based 

on the initial prototypes of Figure 5(d) two clusters are 

identified correctly. However, there are two clusters are 

merged into one and one cluster is split to two clusters. 

This shows the overcome of convergence to local 

optima rather than to global optima. It is shown 

empirically that the Kmeans can truly identify the 5  

clusters of data set in Figure 5(a) after 11 t imes running. 

Thus our proposed EI-Kmeans is stable and finds 

competent locations of the init ial prototypes from the 

first run with one iterat ion to be converged and if we 

repeat the execution of the proposed algorithm more 

than once. The locations of the in itial p rototypes remain 

the same as in the first run. Due to the robust defined of 

data points’ densities. 

Since we base our proposed algorithm on our new 

definit ion of density, it is strongly recommend for 

testing it in a situation where the data set contains 

clusters with different densities. In Figure 6(a) we 

generate a data set with 400 data points and it has three 

clusters with different densities and sizes. When we 

apply our algorithm, it finds out the true number of 

clusters which is three, thus our algorithm automat ically 

generates the number of clusters in this data set. About 

the initial prototypes, the proposed algorithm identifies 

the three prototypes from the first run into satisfactory 

positions as shown in Figure 6(b) which yield a true 

clustering result of three c lusters which is shown in 

Figure 6(c) However, when we apply the Kmeans 

algorithms and inject it with the number of clusters. The 

clustering result has only two clusters and the third one 

is an empty cluster as shown in Figure 6(e). Thus the 

effect of the bad initialized prototypes makes the 

clustering behaves very poorly. 

It is very important to verify our proposed algorithm 

in presence of noise. Figure 7(a) shows a generated four 

clusters data set with noise and outliers. We start our 

EI-Kmeans algorithm to discover out the number of 

clusters in noisy data set and to place prototypes 

correctly. Using our new defin ition of density, our 

proposed EI-Kmeans algorithm senses the noise in the 

data set and filters the given data set. Figure 7(b) 

verifies that the EI-Kmeans algorithm removes the 

noise and outliers from the data set. It automatically 

obtains the number of clusters which  in  this case is four 

and sniffs the locations of the four clusters then it 

init ializes one prototype in the densest region of the 

four clusters. Figure  7(d) shows four init ialized 

prototypes by Kmeans. The clustering result by 

applying Kmeans is shown in Figure 7(e) the sensitivity 

of Kmeans to noise and outliers collects a portion of 

noise as a standalone cluster and it splits one cluster 

into two such that each part belongs to different cluster.  



 Efficient Data Clustering Algorithms: Improvements over Kmeans 43 

Copyright © 2013 MECS                                                           I.J. Intelligent Systems and Applications, 2013, 03, 37-49 

The previous figures show how we can identify the 

locations of the initial prototypes from the first run 

correctly. Th is means that we can able to identify the 

clusters in the data set without using the Kmeans 

algorithm. Thus we develop our new clustering 

algorithm called EDCA. EDCA outperforms the 

Kmeans algorithm in which  it  can identify  the clusters 

that are not linearly separable with different sizes, 

shapes and densities. Figure 8(a) shows an artificial data 

set that contains two clusters one of them has an 

irregular shape that varies in density and the second one 

is a low density cluster. We apply EDCA a lgorithm on 

this data set. EDCA identifies the two clusters correctly 

as shown in  Figure 8(b). In which  we use our new 

formula of data point density as in (3) to specify the 

densest data point entire the data set. Then we start to 

expand the cluster from this data point which considers 

as a first cluster identification until we discover that 

there are other data points that can be specified as 

cluster identifications. Thus the obtained clusters are 

expanded at the same time until all data points in the 

given data set are labeled. Figures 9 –  11 show the 

clustering results of our EDCA algorithm on different 

data sets. The clusters with d ifferent complex shapes, 

sizes and densities are identified successfully and noise 

and outliers are eliminated. 

 

Fig. 5: (a) 

 

Fig. 5: (b) 

 

 

Fig. 5: (c) 

 

Fig. 5: (d) 

 

Fig. 5: (e) 

Fig. 5:  
(a) 300 data points with five clusters.  
(b) Blue ‘o’s are the initialized prototypes by EI-Kmeans.  
(c) Clustering result depends on the initialized prototypes in (b).  

(d) Blue ‘o’s are the best initialized prototypes by Kmeans after 5 
times running of Kmeans.  
(e) Best clustering result depends on the initialized prototypes in (d) 
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Fig. 6: (a) 

 

Fig. 6: (b) 

 

Fig. 6: (c) 

 

Fig. 6: (d) 

 

Fig. 6: (e) 

Fig. 6:  
(a) 400 data points with three clusters having different densities and 
sizes.  
(b) Blue ‘o’s are the initialized prototypes by EI-Kmeans. 

 (c) Clustering result depends on the initialized prototypes in (b).  
(d) Blue ‘o’s are the best initialized prototypes by Kmeans after 5 
times running of Kmeans.  

(e) Best clustering result depends on the initialized prototypes in (d) 

 

 

Fig. 7: (a) 

 

Fig. 7: (b) 
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Fig. 7: (c) 

 

Fig. 7: (d) 

 

Fig. 7: (e) 

 
Fig. 7: A Noisy data set with four clusters.  

(a) Original data set with noise and outliers.  
(b) Blue ‘o’s are the initialized prototypes by EI-kmeans after 
detecting noise and number of clusters. 
(c) Clustering result depends on (b).  

(d) Blue ‘o’s are the best initialized prototypes by k-means after 5 
times running of Kmeans. 
(e) Clustering result depends on the initialized prototypes in (d) 
 

 

 

Fig. 8: (a) 

 

Fig. 8: (b) 

 
Fig. 8:  
(a) Original data set with two clusters.  
(b) Clustering result of (a) using EDCA algorithm. 

 

 

Fig. 9: (a) 
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Fig. 9: (b) 

Fig. 9:  
(a) Original data set with two clusters.  
(b) Clustering result of (a) using EDCA algorithm 

 

 

Fig. 10: (a) 

 

Fig. 10: (b) 

 

Fig. 10:  
(a) Original data set with five clusters including noise and outliers.  

(b) Clustering result of (a) using EDCA algorithm 

 

 

Fig. 11: (a) 

 

Fig. 11: (b) 

 

Fig. 11:  
(a) Original data set with six clusters including noise and outliers.  
(b) Clustering result of (a) using EDCA algorithm 

 

Real data set: We use the iris data set from the UCI 

(http://archive.ics.uci.edu/ml/datasets/Iris) which 

contains three clusters, 150 data points with 4 

dimensions. For measuring  the accuracy of our 

proposed algorithms, we use an average error index in 

which we count the misclassified samples and divide it 

by the total number of samples. We apply  the EI-

Kmeans algorithm and obtain an erro r rate of 6.7%. 

While when applying the Kmeans algorithm 7 times 

running we have an average error index of 38.4%.  The 

details information is shown in Table 1. We can see that 

the error index of EI-Kmeans is the same in all 7 runs. 

This is due to the fact that the prototypes are initially 

calculated based on our definition of density and 

connectivity. Thus we obtain a competent result from 

the first run. On the other hand, the results for Kmeans 

vary from 12% to 65.3%. At each run the prototypes are 

thrown randomly. Thus we can have some results to be 

close to our algorithm. So, the EI-Kmeans outperforms 

the Kmeans as an average. We also apply our EDCA 

algorithm on IRIS data set and we obtain an error index 

of 29.3%. This is due to the fact that the Iris data set has 

one fully separated cluster and the other two clusters 
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contain some of overlapping data points. Thus the use 

of path connectivity should be improved to include the 

similarity data points’ distributions in which the 

overlapping clusters may be distinguishable from each 

other according to their distributions. We apply another 

data set which is Glass data set form UCI 

(http://archive.ics.uci.edu/ml/datasets/Glass+Identificati

on) to show the efficiency of our proposed algorithms.  

The Glass data set contains six clusters, 214 data 

points with 10 dimensions. The obtained results are 

shown in Table 2. We get an average error index of 

56.8% when we apply Kmeans 7 times. While the 

results for the proposed algorithms are the same in all 7 

runs. The results show that the proposed EDCA 

algorithm has an error index of 27.6% which 

outperforms both Kmeans and the proposed EI-Kmeans. 

The Kmeans algorithm has varying results form 43.9% 

to 73.4%. Our proposed EI-Kmeans algorithm has an 

improved result from the first run due to the best 

locations for the initialized prototypes. 

 

Table 1: Comparison between the Results of Kmeans, our proposed EI-Kmeans and our proposed EDCA on IRIS data set  

# of 
Runs 

Kmeans EI-Kmeans EDCA 

# of true 
classified 

# of 
misclassified 

Error Index 
% 

# of true 
classified 

# of 
misclassified 

Error Index 
% 

# of true 
classified 

# of 
misclassified 

Error 
Index % 

1 68 82 54.7 140 10 6.7 106 44 29.3 

2 121 29 19.3 140 10 6.7 106 44 29.3 

3 113 37 24.7 140 10 6.7 106 44 29.3 

4 64 86 57.3 140 10 6.7 106 44 29.3 

5 132 18 12 140 10 6.7 106 44 29.3 

6 97 53 35.3 140 10 6.7 106 44 29.3 

7 52 98 65.3 140 10 6.7 106 44 29.3 

 

Table 2: Comparison between the Results of Kmeans, our proposed EI-Kmeans and our proposed EDCA on GLASS data set  

# of 
Runs 

Kmeans EI-Kmeans EDCA 

# of true 
classified 

# of 
misclassified 

Error Index 
% 

# of true 
classified 

# of 
misclassified 

Error Index 
% 

# of true 
classified 

# of 
misclassified 

Error 
Index % 

1 95 119 55.6 136 78 36.4 155 59 27.6 

2 85 129 60.3 136 78 36.4 155 59 27.6 

3 120 94 43.9 136 78 36.4 155 59 27.6 

4 118 96 44.8 136 78 36.4 155 59 27.6 

5 96 118 55.1 136 78 36.4 155 59 27.6 

6 76 138 64.5 136 78 36.4 155 59 27.6 

7 57 157 73.4 136 78 36.4 155 59 27.6 

 

VI. Conclusion  

We have proposed new algorithms to cope the 

problems of one of the most used clustering algorithm. 

These problems include the bad initialized prototypes 

and predefined number of clusters in the standard 

Kmeans algorithm. The determination of the number of 

clusters in the data set is considered one of the most 

difficult problems in data clustering. We show how the 

bad init ialized prototypes for Kmeans can affect 

clustering results poorly by obtaining empty clusters, 

merging or splitt ing the clusters. Thus we define a novel 

density computation method of data points. So, we can 

efficiently define the dense region in the given data set. 

Which we use it to locate the prototypes in precise 

positions from the first run of our EI-Kmeans algorithm. 

Our proposed EI-Kmeans algorithm is robust to noise 

and outliers where it can detect noise in  the data set and 

eliminate it from the clustering results. We define two 

versions of our algorithm the first version takes the kn-

nearest neighbors and the number o f clusters as input 

parameters and the second version takes only one 

parameter which is the k-nearest neighbors and 

automatically detect number of clusters in the data set. 

The third version of our proposed algorithm considers 

as a new clustering algorithm called EDCA.  EDCA is 

based on our definit ion of density. Thus the proposed 

EDCA focuses on the limitation of the Kmeans 

clustering itself. In which it outperforms the Kmeans in 

finding clusters of non-globular shapes, different sizes 

and densities. Our simulation results show the 

efficiency of the proposed algorithms. 
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