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Abstract— An approach to develop new measures of
fuzzy directed divergence is proposed here. A new
measure of fuzzy directed divergence is proposed, and
some mathematical properties of this measure are
proved. The application of fuzzy directed divergence in
image segmentation is explained. The proposed
technigue minimizes the fuzzy divergence or the
separation between the actual and ideal thresholded
image.

Index Terms— Aggregation, Divergence, Gamma
Distribution, Thresholding

I. Introduction

In 1948 Shannon [1] advanced information theory (IT)
as a new branch of mathematics and a powerful tool for
understanding the intricacies of the communication
process. Because of the limitations of Shannon measure
in certain situations Renyi [2] took the first step and
generalized the Shannon measure. After Renyi many
generalized measures were developed for different
situations. Kullback and Leibler [3] introduced the
measure of discrimination between two probability
distributions, one is ideal another is observed. Literature
on the development of divergence measures has
expanded considerably in the last two decades of 20th
century. Taneja [4], Besseville [5], Esteban and Morales
[6] reviewed the development of generalized
information and divergence measures.

The concept of fuzziness introduced by Zadeh [7]
revolutionized research and development in the area.
De-Luca and Termini [8] defined the measure of fuzzy
entropy corresponding to Shannon [1] measure of
entropy. Bhandari and Pal [9] defined measures of
fuzzy entropy corresponding to Renyi [2] entropy and
measure of fuzzy directed divergence corresponding to
Kullback Leibler [3] divergence measure. Literature on
the development of divergence measures has expanded
considerably in recent years. Bhatia and Singh [10]
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presented a survey of fuzzy information and divergence
measures.

Thresholding, a popular tool for image segmentation,
is used here for extracting the objects from a picture. If
the objects are clearly distinguishable from the
background, the threshold values for segmentation can
be chosen at the valley points of the multimodal
histogram.

Otsu [11] selected the threshold so as to maximize
the class separatability, which was based on within class
variance, between class variance and total variance of
gray levels. A number of excellent investigations on
various thresholding techniques are reported in the
literature. Kapur et al. [12], Sahoo et al. [13,14], Sahoo
and Wong [15], and Brink and Pendcock [16] used
information theoretic measures to threshold an image.

Fuzzy set theory is applied to image thresholding to
partition the image into meaningful regions. The
application of fuzzy notions in image processing has
gained importance because of several reasons like (i)
imprecision of the gray levels of an image, (ii)
ambiguity in some definitions, such as boundaries
between the regions, or region textures etc. Thus it is
possible to allow the segments to be several fuzzy
subsets of the image. The measures like entropy, index
of fuzziness and indexof non fuzziness can be used as
objective functions which may be optimized for image
segmentation. Indexof fuzziness represents the average
amount of fuzziness in an image by measuring the
distance between the fuzzy property of an image and its
nearest two-tone version. The index of non-fuzziness
indicates the amount of non-fuzziness in an image by
taking an absolute difference between the fuzzy
property of an image and its complement.

Several researchers used fuzzy based thresholding
techniques. Pal and Dasgupta [17] introduced a
concept of spectral fuzzy sets for finding the
membership value and then segmented the image.
Huang and Wang [18] assigned the membership value
by taking the reciprocal of the absolute difference of
pixel and the mean of the region to which that pixel
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belongs. Ramar et al. [19] used the neural network for
selecting the best threshold using various fuzzy
measures viz., linear and quadratic indices of
fuzziness, logarithmic and exponential entropy.
Cheng and Chen [20] used fuzzy homogeneity vectors
and fuzzy co-occurrence matrix forimage thresholding.

In this paper a new approach to develop probabilistic
divergence measures and thereby measures of fuzzy
directed divergence is presented. A new measure of
fuzzy directed divergence is introduced and some of its
properties studied. A new method based on
minimization of fuzzy directed divergence using
Gamma distribution to determine the membership
function of pixels of an image introduced by Chaira and
Ray [21] is applied in context with the newly developed
measure of fuzzy directed divergence. The proposed
methodology involves the minimization of the
divergence between the pixels in an ideally thresholded
image and actually thresholded image.

This paper is organized as follows. Section Il
addresses the preliminaries. Section Il presents an
approach to develop probabilistic divergence measures .
In section 1V, a new measure of fuzzy directed
divergence is presented. Section V deals the application
of new measure of fuzzy directed divergence in image
segmentation, and section VI contains concluding
remarks.

I1. Preliminaries
2.1 Information Measure

The measure of information was defined Claude E.
Shannon in his treatise paper [1] in 1948.

n

H(P):Zpi log p; , Pel,
I= @
Where

L ={P=(p,,PyP)/ P; 20, p;=1;n>2}

i=1

is the set of all complete finite discrete probability
distributions. To improve upon the weakness of
Shannon’s measure in certain situations Renyi [2] took

the first step and proposed a parametric measure of
information

Ha(P)=ﬁlog (Zn: p*), a#1,a>0
- = @

2.2 Diwergence Measure

The relative entropy or directed divergence is a
measure of the distance between two probability
distributions. In statistics, it arises as the expected
logarithm of the likelihood ratio. The relative entropy
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D(P,Q) is the measure of inefficiency of assuming that
the distribution is Q when the true distribution is P . For
example, if we knew the true distribution of the random
variable, then we could construct a code with average
description length H(P). If, instead, we used the code
for a distribution Q, we would need H(P) + D(P,Q) bits
on the average to describe the random variable. The
relative entropy or Kullback-Leibler distance Kullback
and Leibler [3] between two probability distributions is
defined as

D(P,Q) =Y p, log X
i=1 q i (3)

A correct measure of directed divergence must satisfy
the following postulates:

a.D (P,Q) >0
b.D(P,Q) =0iff P=Q

c. D (P, Q) is a convex function of both

P =Py P Pa) g @ = (G Gy )

If in addition, symmetry and triangle inequality is
also satisfied by D(P,Q) then it is called a distance
measure. Properties (a)-(c) are essential to define a new
measure of directed divergence. A parametric measure
of directed divergence can also be characterized in
terms of its parameter(s).

2.3 Fuzzy Sets

Definition [7]. Let a universe of discourse X = {X,
X, X3... Xn} then a fuzzy subset of universe X is defined
as

A={x H®) /x EX; u®: X7 [0; 1]}

Where n(¥): X > [0; 1] is a membership function
defined as follow

0 if x does not belong to A and there
is no ambiguity

Ha(® = 1 if x belong to A and there is no
ambiguity
0.5 if there is maximum ambiguity

whether x belongs to A or not

In fact pa(x) associates with each x € X a grade of
membership of the set A. Some notions related to fuzzy

sets [7].

Containment; A S B < H«\(x)S e (X) for all x
€ X

Equality, A=B < () = (¥ forall x €X

Compliment; A= Compliment of A<>
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H33) = 1. 1 for all xEX

Union; AWB = Unionof AandB <

Hae (X) - max{ pa(¥) , ke(X¥)}or allx € X
Intersection; A M B = Intersection of A and B
< Hars(X) = min £ ), 09} for all XE X

Product; AB = ProductofAandB <

Fag (X) - Ma(p() for all xE X

Sum; ADPB=sumofAandB &

Haop (X) = Ha(® () - Ha(® He() forall x€ X

2.4 Fuzzy directed divergence

Definition[22]. Let a universal set X and F (X) be the
set of all fuzzy subsets .A mapping D:F (X) x F

(X) 7R is called a divergence between fuzzy subsets
if and only if the following axioms hold:

a.D (A, B)

b. D (A, B) =0 if A=B
max.{D(AuC,BuUC),D(ANC,BNC)}<
D(A, B)

any A, B, C€ F(X)

C. for

Instead of axiom (c) if D (A, B) is convexin A and B
even then it is a valid measure of divergence.

Bhandari and Pal [9] defined measure of fuzzy
directed divergence corresponding to (3) as follow:

D(AB) = ZuA(xMog”AE ;

: (1~ 11,(%)
1 2, (5 log 22 512
2008 6D

Definition [23]. Let a universal set X and F (X) be
the set of all fuzzy subsets .A mapping D: F (X) xF (X)
—R is called a distance measure on F(X) if and only if
the following axioms hold:

a.D (A, B)=D (B, A)
b. D (A, B) =0 if A=B
c D(T’-F):Max A,BEF(X)D(A’ B) VT eP(X)
g. VABCEF(X) i AcBCC e

D(A,B) < D(A.C) 4,4 D(B,C) <D(AC)
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2.5 Aggregation operations

The aggregation operation on fuzzy sets is the
operations by which several fuzzy sets are combined to
produce a single set. e.g fuzzy union and fuzzy
intersection are special cases of aggregation operations.

Defnition [10]. An aggregation operation is defined
M :[01]" —[01]

by the function verifying
1. M(0,0,0,...0) = 0 , M(1, 1, 1,...,1) = 1 (Boundary
Conditions)

2. M is Monotonic in each argument. (Monotonicity)

The use of monotone functions is justified in many
decision making contexts, since it ensures consistency
and reliability. The boundary conditions here are
specified with the assumption that inputs are provided
on the unit interval, however in certain cases, inputs
naturally expressed on different intervals can be scaled
appropriately. 1f n=2 then M is called a binary
aggregation operation.

Aggregation functions are classed depending on their
behavior relative to the inputs. The most commonly
used in application are averaging functions, which are
usually interpreted as being representative of a given set
of inputs or input vector.

I1l. An Approach to Dewlop Probabilistic
Divergence Measure

et U(a,b)
operators then

and V(a,b) be two binary aggregation

D(P!Q):Z‘U(pi!qi)_v(pi'qi)‘ @
i 4

Where P*Q€Th a5 in section II.

is divergence measure.

A" :[0,1)* —>[0,1]

We have such that

A"(a,b) = L;b o

* 2
and H :[0.]] _)[O’l]suchthat
a’+b?

H (@b)= a+b )

are aggregation operations.

Now using these aggregation operators following
divergence measure is defined by Bhatia and Singh [24].
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D,y (P.Q)= Zﬁj +g' —p‘;q‘}

z(pl

7 2(p, +q) 0

Taneja [25] has defined several probabilistic
divergence measures using this approach. Researchers
have defined measures of fuzzy directed divergence
corresponding to classical probabilistic divergence
measures, a brief review is presented by Bhatia and
Singh [24]. In section IV a new measure of fuzzy
directed divergence corresponding to (7) is defined.

IV. New Measure of Fuzzy Directed Divergence

The measure of fuzzy directed divergence between
two fuzzy sets corresponding to (7) is defined as
follows:

M/..(AB)=

i(yA(xi)—uB(xi»z{ i S — }

i=1 2 ,uA(X|)+zUB(X|) 2 IUA(X|) zua(x|) (8)
MF. (A B

Theorem 1. H A ( ' )s a valid measure of

fuzzy directed divergence.

MF. . (A B)

Proof. In order to prove that H A s a valid
measure of divergence three axioms (a), (b) and (c) of
fuzzy directed divergence must be satisfied.

MF. .(AB)

a. From definition of H A

M/..(AB)_M[..(B A

it is obvious that

and
=
MH A,t(A, A =0

b. To prove axiom (c) we divide the X, the universe of
discourse into six subsets as follow:

W, ={x| X € X, 41, (X) < 15 (%) < pt ()}
W, ={x| X & X, 22 (%) < 1 (¥) < 42 (X)}
W, =X X € X, 41 (%) < 110 (0 < g1 (0}
W, =] x € X, 4t (X) < pre (0) < pac (0}
W, ={x] X € X, ptc () < 10 (%) < 115 (00}

W, ={x| X € X, 21e () < 5 (x) < 42, (0}

In Wl,

AuC ~Union of Aand C
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= Hpc (x) = max.{z, (), He (X)}= Hc (x)
B UC =ynion of Band C

S g ¢ (X) = max {5 (X), e (X)} = e (X)

ANC= Intersection of A and C

S pprc (X) =min . {ue, (X), 11c (X)} = 224 (X)

BNC= Intersection of B and C

& g (X) = min {5 (X), e ()} = 15 (X)
Therefore from Eq.(8), we have
M:*A*(AUC' BuC)=0

and

F F
M’ . (ANC,BAC)=M". (AB)

Wl

Hence in set,
max {M /. .(AUC,BUC),M /. .(AnC,BNC)}<
F
M, .. (AB)
By similar calculations it can be observed that above

W, Wy W, Wy We_

inequality also holds on sets and

F
Thus My-x (A B)

directed divergence.

is a valid measure of fuzzy

Theorem 2. Following properties can be verified for

F
M/, (A B)
M (AUB,ANB) =M. (AB)

, M (A A) =

When Ais acrisp seti.e when
'UA(X) =0orl

F F (AR
5, Mic(AB) =M. (AB) VABecF(X)

Proof. we divide the X, the universe of discourse into
two subsets as follows:

W, = x| x € X, 41, (%) < 2 ()}
={xIxe X, 4, () > 1 (0}

The proof can be obtained by performing similar
W, W,

calculations as in theorem 1 on sets ! and
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F
Theorem3.  H'A" is not a distance measure on
F(X).

F
Proof. From definition of MH*A*(A’ B) it s
obvious that

M. .(AB)_M. . (B,A)
and
ME*A*(A, A)=0
Next we show that,
M T )=y nsero M p (AB) VT €P(X)

Differentiating Eq.(8) partially with respect to
Ha(X) and 5 (x) respectively we have

MF. .
5 A =205 — g1 — 3t + patt
Ha
oM. .
o = 2Ha  Hy — 34y + ity
Hg
For points of maxima and minima,
F F
oM HA™ _ oM H'A -0
Otta and Optg

We observe that

F
H'A" is minimum when £A (X) = p (%)

and maximum when Hp (¥) =112, (x) = 11 (X)

Therefore

M |—F|*A* (T'f):Max aseryM HF*A* (A/B) VT eP(X)

Finally we observe that VAB,CeF(X) if
AcBcC M:, (A,B)SM;*A*(A,C) and

, then A

MF..(B,C)<MF. (AC)

is not satisfied.

V. Application of new measure of fuzzy directed
divergence inimage segmentation

5.1 Mathematical modeling of image

An image can be described by a two-dimensional
function f(x)y), where (x, y) denotes the spatial
coordinate and f(xy) the feature value at (X, y).
Depending on the type of image, the feature value could
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be light intensity, depth, intensity of radio wave or
temperature. A digital image, on the other hand, is a
two-dimensional discrete function f(x,y) which has been
digitized both in spatial coordinates and magnitude of
feature value. We shall view a digital image as a two-
dimensional matrix whose row and column indices
identify a point, called a pixel, in the image and the
corresponding matrix element value identifies the
feature intensity level. Here a digital image will be
represented as

Fuan = [f (X, y)]MXN

Where M XN s the size of the image and f (x. y)
€ G. ={0, 1,..., L-1}, the set of discrete levels of the
feature value. Since the majority of the techniques we
are going to discuss in this paper are developed
primarily for ordinary intensity images, in our
subsequent discussion, we shall usually refer to f(x, y)
as gray value (although it could be depth or temperature
or intensity of radio wave).

5.2 Gray lewel thresholding

Thresholding is one of the old, simple and popular
techniques for image segmentation. Thresholding can
be done based on global information (e.g. gray level
histogram of the entire image) or it can be done using
local information (e.g. co-occurrence matrix) of the
image. Taxt et al.[26] refer to the local and global
information based techniques respectively as contextual
and non contextual methods. Under each of these
schemes (contextual/non-contextual) if only one
threshold is used for the entire image then it is called
global thresholding. On the other hand, when the image
is partitioned into several sub regions and a threshold is
determined for each of the sub regions, it is referred to
as local thresholding. Thresholding techniques can also
be classified as bi-level thresholding and multi-
thresholding. In bi-level thresholding the image is
partitioned into two regions—object (black) and
background (white). When the image is composed of
several objects with different surface characteristics (for
a light intensity image, objects with different coefficient
of reflection, for a range image there can be objects
with different depths and so on) one needs several
thresholds for segmentation. This is known as multi-
thresholding. In such a situation we try to get a set of
thresholds (ty, to, ,...,, tx) such that all pixels with ,i =0,
1, ..., k: constitute the ith region type (to and tx.q, are
taken as O and L-1, respectively). Note that thresholding
can also be viewed as a classification problem. For
example, bi-level segmentation is equivalent to
classifying the pixels into two classes: object and
background.

If the image is composed of regions with different
gray level ranges, ie. the regions are distinct, the
histogram of the image usually shows different peaks,
each corresponding to one region and adjacent peaks
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are likely to be separated by a valley. For example, if
the image has a distinct object on a background, the
gray level histogram is likely to be bimodal with a deep
valley. In this case, the bottom of the valley (T) is taken
as the threshold for object background separation.
Therefore, when the histogram has a (or a set of) deep
valley(s), selection of threshold(s) becomes easy
because it becomes a problem of detecting valleys.
However, normally the situation is not like this and
threshold selection is not a trivial job. There are various
methods available for this. Here we describe
thresholding by fuzzy divergence.

5.3 Fuzziness and membership function

Let X ={fu(fy)} v TeX, be an image of

f.
sizz M XM having L levels and U be grey level of

(i, Hth pixel in X. Let #( f”) denote the membership

Jth 0<p(fy)<1

value of @, pixel in X, where

with H( f”):l denoting full membership and “(fii):o
denoting non-membership.

Fora given threshold value, the membership function
derived from the gamma distribution is proportional to
the exponential function of negative of the absolute
difference between the mean of the region to which the
pixel belongs and the pixel gray level. It is thus obvious
that this is inversely proportional to the membership
value. Let count(f) denote the number of occurrences of
the gray level f in the image. Given a certain threshold
value t, which separates the object and the background,
the average gray level of the background region is
given by the relation:

Zt: f.count(f)
Mo = f:ci
> count(f)
©

and the average gray level of object region is given by

L-1
> f.count(f)

f=t+1

i count(f)
f=t+1 (10)

The membership function of each pixel in the image
depends on its affinity to the region to which it belongs.
The membership values of the pixels are determined
using Gamma distribution as described in next section.

Hy =

5.4 Gamma distribution

The general formula for the probability density
function of Gamma distribution is

Copyright © 2013 MECS

(V)] o[ (X=V)
( B ] Xp[ s J X2Viy,f>0

f(x) =
) () (11)

Where 7 s shape parameter, YV is location

parameter, B is the scale parameter and [' is the
Gamma function given by

I'(y)= J’uHe‘“dU
0

We have the following cases:

Case 1: When V = 0 and ﬂ =1, the distribution
assumes the form

-1
f(x) = X o) x>0, y>0
C(y) (12)

which is known as the standard Gamma distribution.

Case 2: When V# 0 £ 21 and 7 =1, the Gamma
distribution takes the form

f(X) = op(-(x-V)) )
Replacing V'in equation (13) by Ho and 1

separately from equations (9) and (10), the membership
function for the background and object becomes

(fy) =ep(—c|fy —u) if f; <t

" for background

=exp(-c|f; — ) if f; >t

" for object
(14)

where t is any chosen threshold as stated above. It may
be pointed out that in the membership function, the
constant ‘c’ is taken to ensure membership of the gray
level feasible in the range [0,1]. Here ‘c’ is chosen as

1
c

(Trex = Trvin) , where fu, and f. are the
minimum and maximum gray level in the image
respectively. The absolute value of the distance between
the mean of the region to which a pixel belongs and the
gray level of that pixel is considered.

For tri-level thresholding, where there are three
regions in the image, two thresholds values t; and t, are

selected such that0 Syst < L_l, where L is the
maximum gray level of the image. Extending the
concept of bi-level thresholding, the membership
function in case of tri-level thresholding will take the
form
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() =exp(—c,.|fy —po)) i Fy <t

=exp(—c,.|fy — ) if f;>t, )

where, ﬂo, i and H2are the average gray levels
for the three regions separated by the thresholds t; and t,
and the constant “ c;” is like ‘c’ in Eq. (14).

5.5 Fuzzy divergence between two images

Let HalTy) and #s (1) be the membership
values of the pixels in the image and fi s (1, )i
pixel in image A. Then in view of equation (8) fuzzy
divergence between A and B is given by

ME(AB) =
M-1 Mfl(#A(fij)*ﬂB(fij))z 1 S
Z +
iz j=0 2 wa(f) + 1 (%) 2= () — 1 () (16)

5.6 Methodology

For bi-level or multilevel thresholding a searching
methodology based on image histogram is employed
here. The region between the two successive peaks is
the region for searching. If there are more valleys (in
case of multimodal histogram) succeeding and
preceding peaks of each valley are noted and
accordingly the search regions are selected. For
unimodal histogram, linear search is employed for
selecting the threshold. For each threshold, the
membership values of all the pixels in the image are
found out using the above procedure. For each threshold
value, the membership values of the thresholded image
are compared with an ideally thresholded image. Thus
equation (16) reduces to

MFP(AB)=

= Mil(,uA(fij)_l)z 1 1

=0 JZ:I; 2 [ﬂA(f|J)+1+2_ﬂA(fij)_1:|
RS M_l(:uA(fij)_l)z 1 N 1

_|=0 j=0 2 luA(fu)+1 1_:uA(f|])

=0 =0

(17)

As the membership values of each pixel in an
identically threshold image (which is image B in this
case) are taken as unity.

An ideally thresholded image is that image which is
precisely segmented so that the pixels, which are in the
object or the background region, belong totally to the
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respective regions. From the divergence value of each
pixel between the ideally segmented image and the
above chosen thresholded image, the fuzzy divergence
is found out. It is expected that the membership values
of each pixel in the thresholded image should lie close
to that of the ideally thresholded image for good
thresholding. If a pixel lies in the object/background
region, it should contribute more to the corresponding
object/background region to which it belongs. In this
way, for each threshold, divergence of each pixel is
determined according to Eq. (17) and the cumulative
divergence is computed for the whole image. The
minimum divergence is selected and the corresponding
gray level is chosen as the optimum threshold. Here the
minimum divergence yields a measure of the maximum
belongingness of each object pixel to the object region
and that of each background pixel to the background
region. After thresholding, the thresholded image leads
almost towards the ideally thresholded image.

5.7 Experimental result

The thresholding algorithm described above is tested
on unimodal, bimodal and multimodal images. In order
to evaluate the effectiveness of the proposed method,
severel images were tested. Here we present
experimental result of a bimodal image in png format.

Let input image 'Coins' of size 128128 (bimodal)'

Fig. 1 and Fig. 2 show a 'coins' image of size
128128 and its bimodal histogram. Fig. 3 shows the
thresholded image, which is thresholded at gray level 96.

1600
1400
1200
1000
800
600
400
200

0 50 100 150 200 250

Fig. 2
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Fig. 3

V1. Conclusion

In this communication an approach to develop
measures of fuzzy directed divergence using
aggregation operators is proposed. The proposed
measure is not a distance measure but there is
possibility of development of distance measures. To add
flexibility in applications the divergence (distance)
measures may be generalized by using a parameter. In
the literature related to image segmentation, the
optimum threshold is obtained either by maximizing the
fuzzy entropy or by minimizing the fuzzy divergence.
Here the optimum threshold is obtained by minimizing
the proposed fuzzy divergence. The comparison of
proposed measure with the existing measures of fuzzy
directed divergence in context of image segmentation is
not done, but this is a measure to its own right and can
be used for thresholding in some situations because
different measures have their suitability in different
situations.
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