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Abstract— An approach to develop new measures of 

fuzzy d irected d ivergence is proposed here. A new 

measure of fuzzy directed divergence is proposed, and 

some mathematical properties of th is measure are 

proved. The application of fuzzy directed divergence in 

image segmentation is exp lained. The proposed 

technique min imizes the fuzzy divergence or the 

separation between the actual and ideal thresholded 

image. 

 

Index Terms— Aggregation, Divergence, Gamma 

Distribution, Thresholding 

 

I. Introduction 

In 1948 Shannon [1] advanced information theory (IT) 

as a new branch of mathematics and a powerfu l tool for 

understanding the intricacies of the communication 

process. Because of the limitations of Shannon measure 

in certain situations Renyi [2] took the first step and 

generalized the Shannon measure. After Renyi many 

generalized measures were developed for different 

situations. Kullback and Leib ler [3] introduced the 

measure of discrimination between two probability 

distributions, one is ideal another is observed. Literature 

on the development of divergence measures has 

expanded considerably in the last two decades of 20th 

century. Taneja [4], Besseville [5], Esteban and Morales 

[6] reviewed the development of generalized 

information and divergence measures.  

The concept of fuzziness introduced by Zadeh [7] 

revolutionized  research and development in the area. 

De-Luca and Termin i [8] defined the measure of fuzzy 

entropy corresponding to Shannon [1] measure of 

entropy. Bhandari and Pal [9] defined measures of 

fuzzy entropy corresponding to Renyi [2] entropy and  

measure of  fuzzy directed divergence corresponding to 

Kullback Leibler [3] divergence measure. Literature on 

the development of d ivergence measures has expanded 

considerably in recent years. Bhatia and Singh [10] 

presented a survey of fuzzy informat ion and divergence 

measures. 

Thresholding, a popular tool for image segmentation, 

is used here for extracting the objects from a picture. If 

the objects are clearly distinguishable from the 

background, the threshold values for segmentation can 

be chosen at the valley points of the multimodal 

histogram.  

Otsu [11] selected the threshold so as  to maximize 

the class separatability, which was based on within class 

variance, between class variance and total variance of 

gray levels. A  number of excellent investigations on 

various thresholding techniques are reported in the 

literature. Kapur et al. [12], Sahoo et al. [13,14], Sahoo 

and Wong [15], and Brink and Pendcock [16] used 

information theoretic measures to threshold an image. 

Fuzzy set theory is applied  to image thresholding to 

partition the image into meaningful regions. The 

application of fuzzy notions in image processing has 

gained importance because of several reasons like (i) 

imprecision of the gray levels of an image, (ii) 

ambiguity in some definitions, such as boundaries 

between the regions, or region textures etc. Thus it is 

possible to allow the segments to be several fuzzy 

subsets of the image. The measures like entropy, index 

of fuzziness and index of non fuzziness can  be  used  as    

objective  functions which may be optimized for image 

segmentation.  Index of fuzziness represents the average 

amount of fuzziness in an image by measuring the 

distance between the fuzzy property of an image and its 

nearest two-tone version. The index of non-fuzziness 

indicates the amount of non-fuzziness in an image by 

taking an absolute difference between the fuzzy 

property of an image and its complement. 

Several researchers used fuzzy based thresholding 

techniques. Pal and Dasgupta [17] introduced  a  

concept  of  spectral  fuzzy   sets  for finding  the  

membership  value  and  then  segmented the image. 

Huang and Wang [18] assigned  the  membership  value  

by  taking  the reciprocal of the absolute difference of 

pixel and the mean of the region to which that pixel 
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belongs. Ramar et al. [19] used the neural network for 

selecting the best threshold using various fuzzy 

measures  viz.,  linear  and  quadratic  indices  of 

fuzziness,  logarithmic  and  exponential  entropy. 

Cheng and Chen [20] used fuzzy homogeneity vectors 

and fuzzy co-occurrence matrix for image thresholding. 

In this paper a new approach to develop probabilistic 

divergence measures and thereby measures of fuzzy 

directed divergence is presented. A new measure of 

fuzzy directed divergence is introduced and some of its 

properties studied. A new method based on 

minimizat ion of fuzzy directed divergence us ing 

Gamma distribution to determine the membership 

function of pixels of an image introduced by Chaira and 

Ray [21] is applied in context with the newly  developed 

measure of fuzzy directed divergence. The proposed 

methodology involves the minimization of the 

divergence between the pixels in an ideally thresholded 

image and actually thresholded image. 

This paper is organized as follows. Section II 

addresses the preliminaries . Section III presents an 

approach to develop probabilistic divergence measures . 

In section IV, a new measure of fuzzy directed 

divergence is presented. Section V deals the application 

of new measure of fuzzy  directed d ivergence in  image 

segmentation, and section VI contains concluding 

remarks. 

 

II. Preliminaries 

2.1 Information Measure 

The measure of informat ion was defined Claude E. 

Shannon in his treatise paper [1] in 1948.  
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distributions. To improve upon the weakness of 

Shannon‘s measure in certain  situations   Renyi [2] took 
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2.2 Divergence Measure 

The relat ive entropy or directed divergence is a 

measure of the distance between two probability 

distributions. In statistics, it arises as the expected 

logarithm of the likelihood ratio. The relat ive entropy 

D(P,Q) is the measure of inefficiency of assuming that 

the distribution is Q when the true d istribution is P  . For 

example, if we knew the true distribution of the random 

variable, then we could construct a code with average 

description length H(P). If, instead, we used the code 

for a distribution Q, we would need H(P) + D(P,Q) b its 

on the average to describe the random variable. The 

relative entropy or Kullback-Leibler distance Kullback 

and Leib ler [3] between two probability distributions is 

defined as 
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A correct measure of directed divergence must satisfy 

the following postulates: 

a. D (P,Q) ≥ 0  

b. D (P,Q) = 0 iff P = Q  

c. D (P, Q) is a convex function of both  

),...,,( 21 npppP 
 and 

),...,,( 21 nqqqQ 
 

If in addit ion, symmetry and triangle inequality is 

also satisfied by D(P,Q) then it is called a distance 

measure. Properties (a)-(c) are essential to define a new 

measure of directed divergence. A parametric measure 

of directed divergence can also be characterized in 

terms of its parameter(s). 

 

2.3 Fuzzy Sets 

Definition [7]. Let a universe of discourse X = {x1, 

x2, x3 … xn} then a fuzzy subset of universe X is defined 

as  

A = {(x; µA(x)) / x X; µA(x): X   [0; 1]} 

Where µA(x): X  [0; 1] is a membership function 

defined as follow 

                 0        if x does not belong to A and there   

is no ambiguity 

µA(x) =    1      if x belong to A and there is no 

ambiguity 

0.5    if there is maximum ambiguity 

whether x belongs to A or not 

 

In fact  µA(x) associates with  each x   X a grade of 

membership of the set A. Some notions related to fuzzy 

sets [7]. 

Containment; A   B   µA(x)   µB(x) fo r all x 
  X 

Equality; A = B   µA(x) = µB(x)  for all x X 

Compliment; A = Compliment of A  
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)(x
A


 = 1- µA(x) for all xX 

Union; A B = Union of A and B    

)(xBA
= max.{ µA(x) , µB(x)}for all x   X 

Intersection; A  B = Intersection of A and B 

 )(xBA
 = min.{ µA(x) , µB(x)} for all xX 

Product; AB = Product of A and B     

)(xAB
 =  µA(x)µB(x) for all xX 

Sum; A B = Sum of A and B    

)(xBA
 = µA(x) +µB(x) - µA(x) µB(x) for all x  X 

 

2.4 Fuzzy directed divergence  

Definition[22]. Let  a universal set X and F (X) be the 

set of all fuzzy subsets .A mapping D:F (X) × F 

(X) R is called a divergence  between fuzzy subsets 

if and only if the following axioms hold: 

a. D (A, B) 

b.  D (A, B) =0 if A=B 

c. 
),(

)},(),,(.{max

BAD

CBCADCBCAD 

 for 

any A, B, C F(X) 

 

Instead of axiom (c) if D (A, B) is convex in A and B 

even then it is a valid measure of divergence. 

Bhandari  and Pal [9] defined measure of fuzzy  

directed divergence corresponding to (3) as follow: 
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Definition [23]. Let a universal set X and F (X) be 

the set of all fuzzy  subsets .A mapping D: F (X) × F (X) 

→R is called a distance measure on F(X) if and only if 

the following axioms hold: 

a. D (A, B) =D (B, A) 

b.  D (A, B) =0 if A=B 

c. 
)(),(),( )(, XPTBADTTD XFBAMax     

d. 
)(,, XFCBA 

if  CBA  , then 

),(),( CADBAD   and 
),(),( CADCBD 

 

2.5 Aggregation operations  

The aggregation operation on fuzzy sets is the 

operations by which several fuzzy sets are combined to 

produce a single set. e.g fuzzy  union and fuzzy 

intersection are special cases of aggregation operations. 

Defnition [10]. An aggregation operation is defined 

by the function ]1,0[]1,0[: nM  verifying 

1. M(0,0,0,...0) = 0 , M(1, 1, 1,…,1) = 1 (Boundary 

Conditions) 

2. M is Monotonic in each argument. (Monotonicity) 

The use of monotone functions is justified in many 

decision making contexts, since it ensures consistency 

and reliab ility. The boundary conditions here are 

specified with the assumption that inputs are provided 

on the unit interval, however in certain cases, inputs 

naturally expressed on different intervals can be scaled 

appropriately. If n=2 then M is called a b inary 

aggregation operation. 

Aggregation functions are classed depending on their 

behavior relative to the inputs. The most commonly 

used in application are averag ing functions, which are 

usually interpreted as being representative of a given set 

of inputs or input vector. 

 

III. An Approach to Develop Probabilistic 

Divergence Measure 

Let 
),( baU

and 
),( baV

 be two binary aggregation 

operators then  
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Where nQP ,
 as in section II. 

is divergence measure. 

We have 
]1,0[]1,0[: 2* A

 such that  
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and 
]1,0[]1,0[: 2* H

such that 
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are aggregation operations. 

Now using these aggregation operators following 

divergence measure is defined by Bhatia and Singh [24]. 
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Taneja [25] has defined several p robabilistic 

divergence measures using this approach. Researchers 

have defined measures of fuzzy directed divergence 

corresponding to classical probabilistic divergence 

measures, a brief review is presented by Bhatia and 

Singh [24]. In  section IV a new measure of fuzzy 

directed divergence corresponding to (7) is defined. 

 

IV. New Measure of Fuzzy Directed Divergence 

The measure of fuzzy directed divergence between 

two fuzzy sets corresponding to (7) is defined as 

follows: 
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Theorem 1. 
),(** BAM F

AH s a valid measure of 

fuzzy directed divergence. 

Proof. In order to prove that 
),(** BAM F

AH s a valid 

measure of d ivergence three axioms (a), (b) and (c) of 

fuzzy directed divergence must be satisfied. 

a. From definition of 
),(** BAM F

AH it is obvious that 

),(** BAM F

AH = 
),(** ABM F

AH   

and  

0),(** AAM F

AH  

b. To prove axiom (c) we div ide the X, the universe of 

discourse into six subsets as follow: 

)}()()(,|{1 xxxXxxW CBA  
 

)}()()(,|{2 xxxXxxW BCA  
 

)}()()(,|{3 xxxXxxW CAB  
 

)}()()(,|{4 xxxXxxW CCB  
 

)}()()(,|{5 xxxXxxW BAC  
 

)}()()(,|{6 xxxXxxW ABC  
 

In 1W
, 

CA Union of A and C 

)()}(),(.{max)( xxxx CCACA     

CB Union of B and C 

)()}(),(.{max)( xxxx CCBCB     

CA
Intersection of A and C 

)()}(),(.{min)( xxxx ACACA     

CB
Intersection of B and C 

)()}(),(.{min)( xxxx BCBCB     

Therefore from Eq.(8), we have 
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By similar calculations it can be observed that above 

inequality also holds on sets 2W
, 3W

, 4W
, 5W

 and 6W
.  

Thus 
),(** BAM F

AH is a valid measure of fuzzy  

directed divergence. 

 

Theorem 2. Following properties can be verified for 

),(** BAM F

AH . 

1. 
),( ),( **** BAMBABAM F

AH

F

AH


 

2. 
nAAM F

AH
),(**

 when A is a crisp set i.e when 

)(xA  = 0 or 1. 

3. 
)(,),( ),( **** XFBABAMBAM F

AH

F

AH


 

Proof. we div ide the X, the universe of discourse into 

two subsets as follows: 

)}()(,|{1 xxXxxW BA  
 

)}()(,|{2 xxXxxW BA  
 

The proof can be obtained by performing similar 

calculations as in theorem 1 on sets 1W
 and 2W

. 
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Theorem3. 

F
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 is not a d istance measure on 

F(X). 

Proof. From defin ition of 
),(** BAM F

AH it is 

obvious that 
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Next we show that, 
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is not satisfied. 

 

V. Application of new measure of fuzzy directed 

divergence in image segmentation 

5.1 Mathematical modeling of image 

An image can be described by a two-dimensional 

function f(x,y), where (x, y) denotes the spatial 

coordinate and f(x,y) the feature value at  (x, y). 

Depending on the type of image, the feature value could 

be light intensity, depth, intensity of radio wave or 

temperature. A digital image, on the other hand, is a 

two-dimensional discrete function f(x,y) which has been 

digitized both in spatial coordinates and magnitude of 

feature value. We shall view a dig ital image as a two-

dimensional matrix whose row and column indices 

identify a point, called a pixel, in the image and the 

corresponding matrix element value identifies the 

feature intensity level. Here a dig ital image will be 

represented as 

 
NMNM yxfF

  ),(
 

Where NM   is the size of the image and f (x. y) 
  GL ={0, 1,..., L-1}, the set of discrete levels of the 

feature value. Since the majority of the techniques we 

are going to discuss in this paper are developed 

primarily for o rdinary intensity images, in  our 

subsequent discussion, we shall usually  refer to  f(x, y) 

as gray value (although it could be depth or temperature 

or intensity of radio wave). 

 

5.2 Gray level thresholding 

Thresholding is one of the old , simple and popular 

techniques for image segmentation. Thresholding can 

be done based on global information (e.g. gray level 

histogram of the entire image) or it can be done using 

local in formation (e.g. co-occurrence matrix) of the 

image. Taxt et al.[26] refer to the local and global 

informat ion based techniques  respectively as contextual 

and non contextual methods. Under each of these 

schemes (contextual/non-contextual) if only one 

threshold is used for the entire image then it is called 

global thresholding. On the other hand, when the image 

is partitioned into several sub regions and a threshold is 

determined for each of the sub regions, it  is referred to 

as local thresholding. Thresholding techniques can also 

be classified as bi-level thresholding and multi-

thresholding. In bi-level thresholding the image is 

partitioned into two regions—object (black) and 

background (white). When the image is composed of 

several objects with different surface characteristics (for 

a light intensity image, objects with different coefficient 

of reflection, for a range image there can be objects 

with d ifferent depths and so on) one needs several 

thresholds for segmentation. This is known as multi-

thresholding. In such a situation we try to get a set of 

thresholds (t1, t2, ,...,,  tk) such that all pixels with  ,i = 0, 

1, ..., k: constitute the ith region type (t0 and tk+1, are 

taken as 0 and L-1, respectively). Note that thresholding 

can also be viewed as a classification problem. For 

example, bi-level segmentation is equivalent to 

classifying the pixels into two classes: object and 

background. 

If the image is composed of regions with different 

gray level ranges, i.e. the reg ions are distinct, the 

histogram of the image usually shows different peaks, 

each corresponding to one region and adjacent peaks 



86 A New Measure of Fuzzy Directed Divergence and Its Application in Image Segmentation   

Copyright © 2013 MECS                                                           I.J. Intelligent Systems and Applications, 2013, 04, 81-89 

are likely to be separated by a valley. For example, if 

the image has a distinct object on a background, the 

gray level h istogram is likely to be bimodal with  a deep 

valley. In this case, the bottom of the valley (T) is taken 

as the threshold for object background separation. 

Therefore, when the histogram has a (or a set of) deep 

valley(s), selection of threshold(s) becomes easy 

because it becomes a problem of detecting valleys. 

However, normally the situation is not like this and 

threshold selection is not a triv ial job. There are various 

methods available for this. Here we describe 

thresholding by fuzzy divergence. 

 

5.3 Fuzziness and membership function 

Let 
,)}(,{ XfffX ijijij  
 be an image of 

size MM   having L levels and ijf
 be grey level of 

thji ),(
 pixel in  X. Let 

)( ijf
 denote the membership 

value of  
thji ),(

 pixel in  X, where 
1)(0  ijf

 

with 
)( ijf

=1 denoting full membership and 
)( ijf

=0 

denoting non-membership. 

For a given threshold value, the membership function 

derived from the gamma d istribution is p roportional to 

the exponential function of negative of the absolute 

difference between the mean of the region to which the 

pixel belongs and the pixel gray level. It  is thus obvious 

that this is inversely proportional to the membership 

value. Let count(f) denote the number of occurrences of 

the gray level f in the image. Given a certain threshold 

value t, which separates the object and the background, 

the average gray level  of  the background region is 

given by the relation: 
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and the average gray level of object region is given by 
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The membership function of each pixel in the image 

depends on its affin ity to the region to which  it  belongs. 

The membership values of the pixels are determined 

using Gamma distribution as described in next section.  

 

5.4 Gamma distribution 

The general fo rmula for the probability density 

function of Gamma distribution is  
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Where 


 is shape parameter, v  is location  

parameter, 


 is the scale parameter and    is the 

Gamma function given by 
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We have the following cases: 

Case 1: When v = 0 and 


=1, the distribution 

assumes the form  

0;0
)(

)exp(
)(

1














x
xx

xf

          (12) 

which is known as the standard Gamma distribution. 

Case 2: When 0v , 


=1 and  


=1,  the Gamma  

distribution takes the form  

))(exp()( vxxf 
                                     (13) 

Replacing v  in equation (13) by 0  and 1  

separately from equations (9) and (10), the membership 

function for the background and object becomes  

,).exp()( 0 tfiffcf ijijij  
 for background 

,).exp( 1 tfiffc ijij  
 for object 

                                (14) 

where t is any chosen threshold as stated above. It may 

be pointed out that in the membership function, the 

constant ‗c‘ is taken to ensure membership of the gray 

level feasible in  the range [0,1] . Here ‗c‘ is chosen as 

)(

1

minmax ff
c




, where fmin and fmax  are the 

minimum and maximum gray level in the image 

respectively. The absolute value of the distance between 

the mean of the reg ion to which a p ixel belongs and the 

gray level of that pixel is considered. 

For tri-level thresholding, where there are three 

regions in the image, two thresholds values t1 and t2 are 

selected such that
10 21  Ltt

, where L is the 

maximum gray level of the image. Extending the 

concept of bi-level thresholding, the membership 

function in case of tri-level thresholding will take the 

form 
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101 ).exp()( tfiffcf ijijij  
 

2111 ).exp( tftiffc ijij  
 

211 ).exp( tfiffc ijij  
            (15)  

where, 0 , 1  and 2 are the average gray levels 

for the three regions separated by the thresholds t1 and t2 

and the constant ‗ c1‘  is like ‗c‘ in Eq. (14). 

 

5.5 Fuzzy divergence between two images  

Let 
)( ijA f

 and 
)( ijB f

 be the membership 

values of the pixels in the image and ijf
 is  

thji ),(
 

pixel in image A. Then in v iew of equation (8) fuzzy 

divergence between A and B is given by 








 




















1

0

21

0 )()(2

1

)()(

1

2

))()((

),(*

M

j ijBijAiBijA

ijBijA
M

i

F

ffxf

ff

BAM


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(16) 

 

5.6 Methodology 

For b i-level or mult ilevel thresholding a searching 

methodology based on image h istogram is employed 

here. The reg ion between the two successive peaks is 

the region for searching. If there are more valleys (in 

case of multimodal h istogram) succeeding and 

preceding peaks of each valley are noted and 

accordingly the search regions are selected. For 

unimodal h istogram, linear search is  employed for 

selecting the threshold. For each threshold, the 

membership values of all the pixels in the image are 

found out using the above procedure. For each threshold 

value, the membership values of the thresholded image 

are compared with an ideally thresholded image. Thus 

equation (16) reduces to 
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  (17) 

As the membership values of each pixel in an 

identically threshold image (which  is image B in this 

case) are taken as unity.  

An ideally thresholded image is that image which is 

precisely segmented so that the pixels, which are in the 

object or the background region, belong totally to the 

respective regions. From the divergence value of each 

pixel between the ideally segmented image and the 

above chosen thresholded image, the fuzzy divergence 

is found out. It is expected that the membership values 

of each pixel in the thresholded image should lie close 

to that of the ideally thresholded image for good 

thresholding. If a p ixel lies in the object/background 

region, it should contribute more to the corresponding 

object/background region to which it belongs. In  this  

way, for each  threshold,  divergence  of each pixel is 

determined according to Eq. (17) and the  cumulative  

divergence  is  computed  for  the whole image. The 

minimum d ivergence is selected and the corresponding 

gray level is chosen as the optimum threshold.  Here the 

minimum divergence yields a measure of the maximum 

belongingness of each object pixel to the object region 

and that of each background pixel to the background 

region. After thresholding, the thresholded image leads 

almost towards the ideally thresholded image. 

 

5.7 Experimental result 

The thresholding algorithm described above is  tested 

on unimodal, bimodal and multimodal images. In order 

to evaluate the effectiveness of the proposed method, 

severel images were tested. Here we present 

experimental result of a bimodal image in png format. 

Let input image 'Coins' of size 128 128 (bimodal)' 

Fig. 1 and Fig. 2 show a 'coins' image of size 

128128 and its bimodal histogram. Fig. 3 shows the 

thresholded image, which is thresholded at gray level 96.  

 
Fig. 1 

 

 
Fig. 2 
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Fig. 3 

 

VI. Conclusion 

In this communication an approach to develop 

measures of fuzzy directed divergence using 

aggregation operators is proposed. The proposed 

measure is not a distance measure but there is 

possibility of development of d istance measures. To add 

flexib ility in applicat ions the divergence (distance) 

measures may be generalized by using a parameter. In 

the literature related to image segmentation, the 

optimum threshold is obtained either by maximizing the 

fuzzy entropy or by min imizing the fuzzy divergence. 

Here the optimum threshold is obtained by minimizing 

the proposed fuzzy d ivergence. The comparison of 

proposed measure with the existing measures of fuzzy 

directed divergence in context of image segmentation is 

not done, but this is a measure to its own right and can 

be used for thresholding in some situations because 

different measures have their suitability in  different 

situations.  
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