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Abstract— In this paper, we first propose a new 

generalized derivative for non-smooth functions and 

then we utilize this generalized derivative to convert a 

class of non-smooth optimal control problem to the 

corresponding smooth form. In the next step, we apply 

the discretization method to approximate the obtained 

smooth problem to the nonlinear programming problem. 

Finally, by solving the last problem, we obtain an 

approximate optimal solution for main problem. 

 

Index Terms—  Generalized Derivative, Non-Smooth 

Optimal Control, Non-Linear Programming 

 

I. Introduction 

Consider the following non-smooth optimal control 

problem: 

Minimize ( )                                         

subject to ( ) ( ( )) ( ( )), [0, ],

  (0) , ( ) , ( ) , [0, ].

  

   

x T

x t g x t f u t t T

x x t X u t U t T

(1) 

where (.) :[0, ] x T X
 
is the state variable, 

(.) :[0, ] u T U
 
is the control variable and 

, T  . Moreover assume that function (.)f
 
is 

smooth and function (.)g is non-smooth (or non-

differentiable) but piecewise continuous. This kind of 

optimal control problems appears in many fields of 

sciences such as mathematics, physics, economics and 

engineering. In  general, non-smoothness arises varies in 

a wide range and one can consider the following typical 

application areas: mechanics (contact and friction 

problems), electrical engineering (circu its with 

switching and/or piecewise linear elements), hydraulics 

(one-way valves), mathemat ical programming (dynamic 

optimization subject to inequality constraints), and 

mathematical finance (pricing o f derivatives with early 

exercise opportunities) (see [1]). Also, many dynamical 

systems arising in  applications are non-smooth. There is 

a mature literature describing many different 

approaches to the study of non-smooth dynamics such 

as complementarity systems, differential inclusions and 

Filippov systems (see [2]). 

In the past, a large collection of various problems of 

non-smooth systems has been investigated within 

several fields. These efforts already resulted in  a 

substantial literature in the corresponding fields. Many 

researchers combined their effo rts in resolving the 

challenges of non-smooth systems (see [1]). 

But, methods for numerically solving optimal control 

problems are d ivided into two categories: Indirect 

methods and direct methods. Indirect methods are based 

on the variational formulation, resulting in a mult iple-

point boundary value problem. In as much  as a 

multip le-point boundary value problem in general 

cannot be solved analytically, one has to rely on 

numerical methods. On the other hand, in direct 

methods discretized state variables and control variables 

are treated as the design variables in the nonlinear 

programming method, and the performance index is 

directly min imized by having the state equations 

included in  constraint conditions. Furthermore, direct 

methods allow rather straight-forward  treatment of 

inequality conditions, and the solutions are more robust 

to init ial solution guesses. These properties of the direct 

methods have recently attracted attention for solving 

complex optimal control problems (see [3]).  

Despite existence of these methods, solving of non-

smooth optimal control problems is difficult and often 

an impossible act. To solve these problems, the 
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generalized derivative plays an important role. Before 

of this paper, we have proposed two new approaches [4, 

5, 6] for generalized  derivative of non-smooth functions 

and in addition, we used it for non-smooth ordinary 

differential equations, non-smooth optimization 

problems and  system of non-smooth equations (see [7, 

8]).  

The advantages of our generalized derivatives with 

respect to the other approaches except simplicity and 

practically are as follows: 

i. The generalized  derivative of a non-smooth 

function by our approach does not depend on the 

non-smoothness points of function. Thus we can 

use this GD for many cases that we do not know 

the points of non-differentiability of the function. 

ii. The generalized derivative of non-smooth 

functions by our approach gives a good global 

approximate derivative as on the domain of 

functions, whereas in the other approaches the GD 

are calculated in one given point. 

iii. The generalized derivative by our approach is 

defined for non-smooth piecewise continuous 

functions, whereas the other approaches are 

defined usually for locally Lipschiptz or convex 

functions. 

In this paper, in first step, we define a new 

generalized derivative where it  has the above-mention 

advantages. Then, we utilize this generalized derivative 

to convert the non-smooth optimal control problem (1) 

to the smooth form, and obtain an approximate optimal 

solution. 

The structure of this paper is as fo llows. Sect ion 2 

proposes a new generalized derivative for non-smooth 

functions. In Section 3, the main non-smooth optimal 

control problem is converted to a smooth problem. In 

Section 4, the obtained smooth problem is 

approximated to a discrete problem. In Sections 5, 

numerical example is  presented for efficiency of our 

approach and in Section  6, the conclusion of our 

approach is given. 

 

II. A Novel Generalized Derivative 

We begin with the following lemma. 

Lemma II.1: Let (.) :   be a bounded and 

integrable function. We have  

Lim ( , ) ( ) ( ),




    
  m

m
k x y y dy x x           (2) 

where 

2 2( )( , )   m y x
m

m
k x y e


, 

2( , )x y .             (3) 

Proof: See page 124 and 125 of [9]. 

By attention to the above Lemma and (2), for any 

function (.) :  which is integrable on interval 

[ , ]a b  and zero on \ [ , ]a b , we have  

Lim ( , ) ( ) ( ), [ , ].


    
 

b

mam
k x y y dy x x a b      (4) 

Now, we have the following theorem: 

Theorem II.2: Let (.) :[ , ]g a b  be a bounded and 

differentiable function. We have 

Lim ( , ) ( ) ( ), [ , ]


    
 

b

mam
L x y g y dy g x x a b     (5) 

where  

( , ) ( , )


 


m mL x y k x y
y

, 2( , )x y .               (6) 

and (.,.)mk satisfies (3). 

Proof: We define the function (.) : g as 

( ), [ , ]
( )

0, otherwise.


 


g x x a b
g x  

It is trivial that function (.)g is bounded and 

integrable. So by integrating by parts and Lemma II.1, 

for any [ , ]x a b , we have 

  

Lim ( , ) ( ) lim ( , ) ( )

lim ( , ) ( )

lim ( , ) ( ) ( , ) ( )

                                        ( , ) ( )

lim ( , ) (

b b

m ma am m

b

mam

m m
m

b

ma

m
m

L x y g y dy L x y g y dy

k x y g y dy
y

k x b g b k x a g a

k x y g y dy

k x b g b

 







      
   

 
  

 

  

 


 

 





  ) ( , ) ( )

                                        lim ( , ) ( )

lim ( , ) ( )

= lim ( , ) ( )

( )

( ).

m

b

mam

b

mam

m
m

k x a g a

k x y g y dy

k x y g y dy

k x y g y dy

g x

g x



























 

Now, we consider the following problem: 

Let (.)g  be a piecewise continuous non-smooth 

(PCN) function. Find function (.) such that for  

Lim ( , ) ( ) ( ) , [ , ]


    
 

b

mam
L x y g y dy x x a b     (7) 
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where (.,.)mL is defined by (4). 

Note that if (.)g is a continuous differentiable 

function, then the unique solution of (7) is (.) (.). g  

Now, we define the following generalized derivative for 

the PCN functions: 

Definition II.4: Let (.)g  be a PCN function on [ , ]a b  

and (.)
 
is the solution of (7). The generalized 

derivative of function (.)g is denoted by (.)x g and 

defined as (.) (.) x g  . 

Remark II.5: Note that by Theorem II.2, if (.)g  is a 

smooth (or differentiable) function then (.) x

dg
g

dx
. 

This shows the validity and stability of this type of 

generalized derivative.  

Now consider (7) and assume that  

0

( ) ( ), [ , ]




  n n
n

x a x x a b   

where  (.), 0,1,...n n is a total set for space of 

piecewise continuous functions on [ , ].a b  By  this 

assumption, we have the following problem: 

Let  (.)g  be a PCN function. Find  coefficients  

, 0,1,2,...na n such that for all [ , ]x a b   

0

Lim ( , ) ( ) ( ) ,





   
 


b

m n nam
n

L x y g y dy a x            (8) 

where (.,.)mL is defined by (6). 

For converting the infinite d imensional (8) to the 

fin ite problem, we assume that P and M  are two 

sufficiently big numbers and write (8) as follows: 

0

( , ) ( ) ( ) , [ , ].


 
P

b

M n na
n

L x y g y dy a x x a b    (9) 

Here, we define the following optimization problem 

for the solving above equation: 

, 0,1,2,...,

0

( , ) ( )

Minimize .

( )

b

Mab
P

aa n Pn
n n

n

L x y g y dy

dx

a x









                      (10) 

Let N  be a big natural number and assume 

, 0,1,2,...,


   j j

b a
y x a j j N

N
.                (11) 

We utilize the trapezoidal approximat ion to convert 

the integral in (10) to the fin ite sum. We obtain the 

following nonlinear programming (NLP) problem: 

Minimize

N

j M i j j
N

j=0
i

Pa ,n=0,1,2,...,Pn i=0
n n i

n=0

w L (x ,y )g(y )

w

- a (x )





                  

(12) 

where the weights , 0,1,2,...,kw k N are as follows: 

0 , , 0,1,2,..., .
2

 
   N k

b a b a
w w w k N

N N
 

By assumption  

0 0

( , ) ( ) ( ) ,
 

  
N P

i j M i j j n n i
j n

z w L x y g y a x  

for 0,1,2,...,i N the NLP (12) be converted to the 

corresponding linear programming (LP) p roblem as 

follows: 

,
0

Minimize



N

i i
z ai n i

w z                                            (13) 

0 0

0 0

subject to   

   ( ) ( , ) ( ),

   ( ) ( , ) ( ),

     0, 0,1,...,

 

 

   

  

 

 

 

P N

i n n i j M i j j
n j

P N

s n n i j M i j j
n j

i

z a x w L x y g y

z a x w L x y g y

z i N





 

where (.) : g  is a given PCN function 

and, P and M  are sufficiently big numbers.  

But, For obtaining a better generalized derivative we 

are going to  consider some constraints for (13). For this 

goal, we utilize the following lemma: 

Lemma II.6: Let (.)g be a continuously differentiable 

function on interval [ , ]a b . Then there exists N  

such that for all 1,2,..., 1 l N and 1, 1,  k l l
 

( ) ( ) ( ) ,  
  

   k l k

a b b a b a
g x g x g x

N N N
   (14) 

where points 0 1, ,..., Nx x x
 
are defined by (11).  

Proof: This is a result of derivative’s definition.  

Now, we assume 

( ) ( ), 0,1,2,...,  i n n i
n

g x a x i N  

and add the constraint (14) to (13). We obtain the 

following LP problem: 
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,
0

Minimize



N

i i
z ai n i

w z                                            (15) 

0 0

0 0

0

0

subject to

       ( ) ( , ) ( ),

       ( ) ( , ) ( ),

        ( ) ( ) ( ),

         ( ) ( ) ( ),

         

 

 





   

  

 
  

 
  

 

 





P N

i n n i j M i j j
n j

P N

i n n i j M i j j
n j

P

n n k k l
n

P

n n k k l
n

z a x w L x y g y

z a x w L x y g y

b a b a
a x g x g x

N N

a b b a
a x g x g x

N N









 0, 0,1,..., , 1, 2,..., 1, 1, 1.      iz i N l N k l l

 

By solving the above LP problem, we obtain the 

optimal solutions , 0,1,..., iz i N  and , 0,1,..., na n P . 

So we have 

0

( ) ( ), [ , ].



  
P

x n n s
n

g x a x x a b                        (16) 

In the next  section, we convert the non-smooth 

optimal control problem (1) to the smooth form by 

using above GD. 

 

III. Smoothing Process 

Consider the nonsmooth optimal control problem (1). 

Let (.)x g  is the generalized derivative of nonsmooth 

function (.)g  defined by (16). We assume  X  is 

the set of non-smoothness points of function (.)g  . We 

also assume   is a  countable set. So by Remarks 

II.5, (.) (.) x

dg
g

dx
 on set \X . Thus (.) ( (.))xx g x  

(.) ( (.))
dg

x x
dx

almost everywhere (a.e) on X . Further, 

for all [0, ]t T , we have 

0 0

0

( ) ( ( )) ( ) ( ( ))

( ( )) ( ( )) ( (0))

( ( )) ( ).

 

  

 

 



t t

x

t

dg
x z g x z dz x z x z dz

dx

d
g x z dz g x t g x

dz

g x t g 
 

So by above relation the nonsmooth optimal control 

problem (1), is converted to the following smooth form: 

Minimize ( )x T                                                   (17) 

0
( ) ( ) ( ) ( ( )) ( ( )),

 (0) , ( ) , ( ) , [0, ]

t

x

subject to

x t g x z g x z dz f u t

x x t X u t U t T





   

   

  

IV. Discretization Process 

In this stage, we approximate the smooth optimal 

control problem (17), to the discrete form. For this goal, 

select points , 0,1,2,..., j

T
t j j N

N
 where N  is a 

sufficiently b ig number, and assume ( ) ,j jx t x  

0,1,2,...,j N . By these, we approximate the velocity 

(.)x in points , 0,1,2,...,jt j N as follows: 

 

 

1

1

( ) ,

( ) , 0,1,2,..., 1





 

   

N N N

j j j

N
x t x x

T

N
x t x x j N

T

 

Moreover, by using the trapezoidal approximations, 

we approximate the integral term in (17) as follows: 

0
0

( ) ( ( )) ( ) ( ( )),


  
j

t j j
x k x kk

k

x z g x z dz w x t g x t  

for 0,1,...,j N , where the weights 

, 0,1,2,...,
j
kw k j  are as follows: 

0 1 1
0 0 1

0

0, ,
2

, , 2,3,...,
2

  

   
j j j

j k

T
w w w

N

T T
w w w k j

N N

. 

So the discrete form of smooth optimal control 

problem (10) is as follows: 

Minimize Nx                                                      (18) 

   

   

 

1 1
0

1 1

1

1
0

subject to

( ) ( )

                                             ( ), 0,1,..., 1

( ) ( )

                     ( ) (

 


 






    

  

    

   





j
j

j j k k x kk
k

j

N
N N N N N x N

N
N
k k k x k N

k

N N
x x g w x x g x

T T

f u j N

N N
x x g w x x g x

T T

N
w x x g x f u

T





),

 

0 , , , 0,1,..., .   j jx x X u U j N  

By solving the above smooth NLP problem, we 

obtain the following approximate optimal solutions for 

the nonsmooth optimal control problem (1). 

( ) , ( ) , 0,1,...,     k k k kx t x u t u k N
 

We define the pointwise error for above approximate 

optimal solution as follows:  

( ) ( ) ( ( ) ( ( )) ,

0,1,..., .

k k k kE t x t g x t f u t

k N

    


              

(19) 
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V. Numerical Result 

Consider the following non-smooth optimal control 

problem:  

Minimize ( )x T                                                   (20) 

subject to

( ) ( ) 0.5 ( ), [0, ],

   (0) 0.3, 0 ( ) 1, 0 ( ) 1, [0, ],

x t x t u t t T

x x t u t t T

    

     
 

where 2T . Here, we assume  ( ) 0.5 ,  g x x  

( ) cos( ), [0,1] n x n x x  and 69,P  20,N  

10M .  We solve the LP problem (15) and obtain the 

generalized derivative of function ( ) 0.5  g x x as 

69

0

( ) cos( ), [0,1]



  x n
n

g x a n x x  

which is shown in Fig. 1. Further, by solving the 

corresponding smooth NLP (18), we obtain the 

approximate optimal state and optimal control for the 

nonsmooth optimal control problem (20) as follows: 

( ) , ( ) , 0,1,...,20,     k k k kx t x u t u k  

where they are illustrated in Figs. 2 and 3, respectively. 

Here the objective function is (2) 0x and the error of 

obtained approximate optimal state and control, 

corresponding to the relation (19), is shown in Fig. (4). 

The upper bound for pointwise error is 52.33 10 .  

 

Fig. 1: The graph of generalized derivative 

 

 

Fig. 2: The approximate optimal state 
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Fig. 3: The approximate optimal control 

 

 

Fig. 4: The graph of error function 

 

VI. Conclusion 

In this work, we showed that the non-smooth optimal 

control problems are converted to the smooth form by 

using a new practical generalized derivative.  Moreover, 

we showed that the smooth optimal control problems 

were approximated to the nonlinear programming 

problem by using the discretization method.  
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