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Abstract— Surveillance tests are performed 

periodically on  standby systems of a Nuclear Power 

Plant (NPP), as they improve the systems‘ availab ility 

on demand. High availability of safety crit ical systems 

is very essential to NPP safety, hence, carefu l analysis 

is required  to schedule the surveillance activ ities for 

such systems in a cost effective way without 

compromising the plant safety. This  forms an 

optimization problem wherein, two different cases can 

be formulated for deciding the value of Surveillance 

Test Interval. In one case, cost is the objective function 

to be minimized while unavailab ility is constrained to 

be at a given level and in another case, unavailability is 

minimized  for a g iven cost level. Here, optimizat ion is 

done using Genetic Algorithm (GA) and real encoding 

has been employed as it caters well to the requirements 

of this problem. A detailed procedure for GA 

formulat ion is described in this paper. Two different 

crossover methods, arithmetical crossover and blend 

crossover are exp lored  and compared in this study to 

arrive at the most suitable crossover method for such 

type of problems.  

 

Index Terms— Genetic Algorithm, Arithmetical 

Crossover, Blend Crossover, Surveillance Test Interval, 

Nuclear Power Plants, Safety Grade Decay Heat 

Removal System, Prototype Fast Breeder Reactor 

 

I. Introduction 

In NPPs there are many standby systems that may be 

called to  perform safety function whenever certain 

identified events occur. In this study, we considered the 

Safety Grade Decay Heat Removal System (SGDHRS) 

of Prototype Fast Breeder Reactor (PFBR) which is a 

standby system that is used for decay heat removal 

when the plant is shut down and the Operational Grade 

Decay Heat Removal System (OGDHR) is not availab le. 

It is a safety critical system because its availability is 

important for the safety of the plant and of the 

personnel involved. To reduce the probability of failu re 

on demand which is proportional to the system standby 

time, the components of this system need to undergo 

functional testing periodically. Such periodic testing of 

components guarantees their availability and also 

decreases their failure frequency. But there are costs 

involved in the testing procedure due to manpower 

required, number of tests conducted, testing costs etc. 

Also, there is downtime associated with each test. So, 

for safe and economical operation of plants we must 

carry out a minimum number of tests without affecting 

the plant safety. This forms an optimization problem 

where cost has to be min imized with unavailab ility 

being fixed or unavailability has to be minimized 

keeping the cost fixed. Here, we have used Genetic 

Algorithm (GA) to solve the test interval optimization 

problem.  

GA is adaptive heuristic search algorithm premised 

on the evolutionary ideas of natural selection and 

genetics. GA has been proven successful in  Test 

Interval optimization  problem and many authors have 

suggested its use.  A study on Design and Development 

of Genetic Algorithm for Test Interval Optimizat ion has 

already been done by us [1]. We have selected GA since 

the problem involves non-linear constraint and is 

multimodal in nature [2]. A lso, when the domain of 

decision variables is large, the presence of constraints 

makes the problem more complex. It becomes difficu lt 

to locate and sustain feasible solutions in a very large 

search space. GA with binary encoding does not suffice 

in providing a globally best feasible solution. Therefore, 

real parameter GA is employed for this problem. Here, 

two different categories of crossover are considered – 

Arithmetical crossover and Blend crossover and their 

performances are compared. A genetic algorithm library 

was developed in C++ using Object Oriented 

Methodology that implements different GA encodings, 

operators and methods. Test Intervals for all 

components are optimized  such that minimum cost is 

involved in testing without affecting the safety of plant. 

The paper is organized as follows. In section II, the 

process of decay heat removal (DHR) of PFBR in 

general and DHR through SGDHRS in part icular is 

discussed with a detailed description of various 

components of SGDHRS. In section III, the equations 

for cost and unavailability are formulated. In  section IV 

an overview of GA is given and the control flow of GA 

with fitness penalization is explained. In section V, 
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details are given for the various methods and operators 

implemented in our GA code. In section VI, the 

experiments to find a suitable crossover mechanis m for 

this problem are  described. In  section VII, the results 

are discussed. Finally, some conclusions are proposed 

in the last section. 

 

II. Problem Description 

Prototype Fast Breeder Reactor (PFBR) is sodium 

cooled pool type reactor of 500 MWe capacity, 

designed by Indira Gandhi Centre for Atomic Research 

(IGCAR) which is under construction at Kalpakkam. 

We have selected the Safety Grade Decay Heat 

Removal (SGDHR) system of Prototype Fast Breeder 

Reactor (PFBR) for our study which is used for decay 

heat removal in the event of reactor shutdown.  

Removal of decay heat is necessary to maintain core 

integrity. Heat is generated due to residual fission 

power and decay of fission products even after 

shutdown of the reactor. It is about 1.5 % and 0.6 % of 

nominal power at 1 hour and at 1 day respectively after 

the reactor shutdown. Thus Decay Heat Removal (DHR) 

system is an  important safety system that is designed 

with a failure frequency of less than 10-7/reactor year. 

Sufficient redundancy and diversity is provided for this. 

Decay heat removal in all the normal operating 

conditions and in some of the upset conditions where 

the steam - water system is not impaired is through the 

normal heat transport system i.e. through the steam 

generators and steam - water system. This system is 

known as the Operational Grade Decay Heat Removal 

System (OGDHR). Following any other event, decay 

heat is removed through four Safety Grade Decay Heat 

Removal (SGDHR) circu its, each having 33 % of the 

required capacity.  Each loop consists of a Decay Heat 

Exchanger (DHX) with tube side linked  to an 

intermediate sodium circu it, which is connected to a 

sodium air heat exchanger (AHX). The primary sodium 

flows on the shell side of DHX.  

 

 

Fig. 1: Simplified Schematic of SGDHR System of PFBR 

 

The SGDHR system comprises of many components; 

with redundancy in design for increased reliability. It is 

a passive standby system for decay heat removal which 

is called into operation when the normal active heat 

removal path, through Operational Grade Decay Heat 

Removal (OGDHR) system is unavailable. For 

successful decay heat removal both Primary Heat 

Transport and SGDHR should work. So, the 

components in p rimary  sodium circuit (like pump, 

motors), intermediate sodium circuit  (Direct Heat 
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Exchanger (DHX), p iping, valves) and air circu it 

(Sodium to Air Heat Exchanger (AHX), dampers) need 

to undergo periodic testing and maintenance to 

guarantee their availability when actual demand on the 

system comes. Fig. 1 shows the schematic o f the 

SGDHR system with its various components  in a 

representative manner where the actual system 

complexity  is hidden. There are four SGDHR loops, 

two of which are provided with straight tube design 

sodium to sodium heat exchanger (DHX-Type A) and 

serpentine tube design sodium to air heat exchanger 

(AHX-Type A). The other two loops are having 

diversity in design to avoid common cause failu re 

during reactor operation. These two loops consists of U 

tube design DHX-Type B & straight tube design AHX-

Type B. Heat transfer in the primary circuit  i.e. from 

core to the DHX is by natural convection. The primary 

circuit contains two PSPs (Primary Sodium Pumps) for 

forced circulation o f sodium through core where the 

heat is generated. 

For PFBR Test Interval data has been given from 

experience of previous fast reactors, this value can be 

improved with further cost reduction without affecting 

the unavailability. The cost values are only 

representative in this study. The reliability analysis was 

done [3] and fault  trees [4] for Primary Circuit, 

Intermediate and air circuit were considered. 

 

III. Equation Formulation 

Models for unavailability and cost of testing of 

individual components are established with Surveillance 

Test Interval as decision variable. Reliab ility parameters 

like standby failure rate, per demand failure probability, 

mean time to test, testing cost per hour, mean time to 

repair and cost of repair per hour are considered for 

modeling. The list of symbols used to represent 

reliability parameters testing and maintenance of whole 

system is found by adding individual component costs 

and the system unavailability is found by adding the 

minimal cutsets derived from the fault tree analysis of 

the system. These models for system cost and 

unavailability serve as objective functions that have to 

be min imized by decid ing on the values of test and 

maintenance intervals. 

 
Table 1: Reliability Related Symbols Used 

Symbol Meaning 

T Surveillance test interval 

t  Mean time to test 

λ Standby failure rate 

T R Mean time to repair 

Cht Surveillance Testing cost per hour 

Chr Cost of repair per hour 

 

The unavailability equation for a periodically tested 

component of SGDHR system was formulated as: 

                                          (1) 

where ui(x) represents unavailability of ith 

component(or basic event) that depends on the vector of 

decision variables x and Ti represents the test interval 

for ith component(or basic event). In this study, we are 

optimizing based on the value of test interval, so x has a 

single decision variable that is Ti. Total system 

unavailability was found from the cut-set equations 

obtained from the fault  tree analysis , and is given as the 

sum of j number o f minimal cut sets , each with the 

product k extending to the number of basic events in the 

jth cut set:  

                                              (2) 

where U(x) is the total system unavailability that 

depends on test interval values of all the components in 

the system and ujk represents the unavailability 

associated with the basic event k belonging to minimal 

cut set number j. The cost model is established as: 

                                          (3) 

The total yearly cost of the system having i number 

of components is given by: 

                                                      (4) 

 

The problem is solved using GA for two cases: 

Case 1: Keeping the cost as objective function to be 

minimized  and unavailability as constraint. That is 

represented as: 

                                                     (5) 

                                                    (6) 

Case 2: Keeping the unavailability as objective 

function to be min imized and cost as constraint. That is 

represented as: 

                                                              (7) 

                                           (8) 

For the high redundancy systems like SGDHR, data 

for large number of simultaneous failures does not exist. 

So, a common cause analysis is done with beta factor 

model, in which common cause failure (CCF) rate is 

obtained as a fraction  (Beta) of single component 

failure rate. The value of beta is assumed to depend on 

the number of such redundant components. The 

approach followed in this study is that active 
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components with levels of redundancy less than or 

equal to three, a beta of 5% is used. If redundancy is 

greater than or equal to four, a beta of 1% is used. 

 

IV. Genetic Algorithm Design - Overview 

In a genetic algorithm, many individual solutions are 

randomly generated to form an in itial population. This 

population then evolves over successive generations to 

give better solutions. Each generation comprises of 

various phases, the most important being – fitness 

evaluation, selection (competit ion), reproduction (cross -

over) and mutation [5]. Fig. 2 shows the control flow of 

GA for a constrained problem with fitness penalizat ion. 

Initial population is generated which is a collection of 

many solution vectors or indiv iduals. Each solution 

vector comprises of the test intervals of all components 

being tested which are represented by T1, T2, T3…Tn. 

These are the decision variables whose value is to be 

decided by GA such that the objective functions ‘ value 

reaches optima. In  the fitness evaluation step, quality of 

each individual is assessed based on the objective 

function.  Then each individual is checked for constraint 

violation where a constraint may be implicit i.e . the 

value of the individual lies outside the defined range or 

it may be explicit i.e. it  requires evaluation of a function. 

If an indiv idual violates the constraint then its fitness is 

reduced in the penalizat ion step. Then the termination 

criteria are checked. Selection, crossover and mutation 

operators are applied to the population as discussed in 

section V. This process is repeated until the maximum 

number of generations is reached which is the 

termination criterion for our study. 

An individual is represented as a string of numbers 

known as a chromosome. Chromosomes are composed 

of genes where each gene is a set of values called alleles 

that represents an encoded decision variable. Real value 

representation is used here for test interval optimization; 

as it has the property that two points close to each other 

in the representation space must also be close in the 

problem space and vice versa. It is also conceptually 

closest to the problem space and allows easy and 

efficient implementation of closed and dynamic 

operators. Test Interval (TI) values are g iven in hours 

and the maximum bound on each component‘s Test 

Interval value is 8760 hours, which corresponds to 1 

year. 

Goldberg DE [6] suggested that good GA 

performance requires the choice of h igh cross over 

probability, low mutation probability and a moderate 

population size. For all the experiments, crossover rate 

of 0.6 was taken. Mutation rate of 0.002 was found to 

be the best for cost optimizat ion and a rate of 0.03 was 

found suitable for risk min imization, based on a number 

of trials. Population size was taken as 100 for each  case 

and GA was run for 10000 generations.  

 

 

 

V. Genetic Algorithm Operators & Methods 

GA is implemented for TI optimization with the 

following methods and operators: 

 

5.1 Fitness Evaluation 

Fitness evaluation is the step in which the quality of 

an individual is assessed. An individual is decoded and 

its cost and unavailability are found using the models in 

(2) and (4), as described in section III. Fitness is 

evaluated as the inverse of cost or unavailability 

depending on which one is taken as the objective 

function. In this way, the problem is converted into a 

maximizing one by taking the fitness function as the 

reciprocal o f the actual function value that is to be 

minimized. 

 

5.2 Penalization 

Optimization of test schedules is done by taking 

either cost or unavailability as the objective function 

N 

Y 

Begin 

Initial Solution Vector 

[T1   T2   T3…Tn] 

Fitness 

Evaluation 
Objective 

Function 

 
Constraint 

Violation? 

Penalization 
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Selection 
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criteria reached? 

Fig. 2: Control Flow of GA 
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and the other as the constraint. Penalization is the 

process of converting a constrained problem into 

unconstrained one by reducing the fitness of solutions 

that violate the constraint. Here, we have implemented a 

dynamic penalty function, as suggested by Martorell [2], 

where the penalty value depends on the amount of 

constraint violation and generation number of GA. This 

penalty function is given as: 

                  (9) 

where the parameters α and β are defined by the user 

and K(g,α) is an α-function that establishes the pressure 

on infeasible individuals taking into account the number 

of generations evolved, g. SVC( β, i) is a β -function that 

represents the sum of violated constraints for a given 

individual i, which is formulated as follows: 

                                          (10) 

The sum in  (10) extends to the total number of 

constraints to which each individual, i, is subjected, 

where for a g iven constraint, j, the corresponding  

is defined by the expression: 

             (11) 

which represents the degree of violation associated 

with  restriction j, where gj(i) represents the value 

achieved by the individual i with regard to constraint j, 

whereas  is the maximum value a llowed for this 

constraint j. 

The dynamic penalization feature is provided in  this 

solution using an appropriate function K (g, α). The 

pressure on infeasible individuals has to rise as the 

number of evolved generations increases. Different 

expressions for K (g, α) have been proposed. In this 

solution, the function selected is given by: 

                            (12) 

where g corresponds to the current generation 

number, and K1 and p are the two parameters to be 

determined according to the desired  values of δ1 and 

δGs , and the number of generations, Gs, for a given μs, 

as: 

                                                           (13) 

                                                (14) 

Suitable values for δ1, δGs, Gs  and μs are 0.01, 0.001,  

1000 and 0.01, respectively. In addit ion, common 

values for the couple (α, β) include (0.5, 2), (1, 2) and 

(2, 2). 

In our GA, the function used to penalize infeasible 

solutions is a variat ion of the family functions described 

by (9). This function introduces penalization relative to 

the worst score encountered in the population after the 

evaluation stage for the current generation, which also 

depends on the number of generations evolved, g. Thus, 

the penalized  objective function fo r a given ind ividual, i, 

is as follows: 

                  (15) 

where f(i) represents the raw score of the init ial 

objective function for the indiv idual i, and f(w) is the 

corresponding score for the worst indiv idual found in 

the population at current generation g. The sign of (15) 

differs whether the objective function is minimized or 

maximized. In the former case, the penalization is 

added to the initial objective function score, while it  is 

subtracted otherwise. 

 

5.3 Fitness Scaling 

Linear Fitness Scaling was introduced to improve the 

performance of GA by controlling copies of individuals 

in the beginning of run and as the run matures, thereby 

preventing convergence to suboptimal solutions. If the 

raw fitness is defined as f and the scaled fitness as f‘ 

then linear scaling is a linear relationship between f‘ 

and f as follows: 

                                                      (16) 

The coefficients a and b may be chosen in a number 

of ways; however in all cases we want the average 

scaled fitness f‘avg to be equal to the average raw 

fitness favg because subsequent use of the selection 

procedure will ensure that each average population 

member contributes one expected offspring to the next 

generation. To control the number of offspring given to 

the population member with maximum raw fitness , we 

choose the other scaling relationship to obtain a scaled 

maximum fitness, f‘max = Cmult.favg, where Cmult  is 

the number of copies desired for the best population 

member. For typical s mall population (n = 50 to 100) a 

Cmult = 1.2 to 2 has been used successfully. 

Toward the end of the run, this choice of Cmult  

stretches the raw fitness significantly. This may in turn 

cause difficulty in applying the linear scaling rule. At 

first there is no problem apply ing the linear scaling rule, 

because the few extraord inary indiv iduals get scaled 

down and the lowly members of the population get 

scaled up. 
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5.4 Elitism 

This was implemented to retain  the best individual of 

a generation in the next generation so that highest 

fitness solutions are not lost in reproduction and 

mutation. For this a single individual with highest 

fitness from the current generation‘s population is 

copied directly to the population in the next generation. 

 

5.5 Selection 

Selection is an operation used to decide which 

individuals to use for reproduction and mutation in 

order to produce new search points. For the purpose of 

this study we have implemented Roulette wheel 

selection scheme that samples the indiv iduals by 

simulating the roulette-wheel for fitness proportionate 

selection. 

 

5.6 Mutation 

Mutation is normally applied to one individual in 

order to produce a new version of it where some of the 

original genetic material has been randomly changed. 

By itself, mutation is a random walk through the string 

space. When used sparingly with reproduction and 

crossover, it is an insurance policy against premature 

loss of important information. Here, we have 

implemented non-uniform mutation which is a dynamic 

mutation operator aimed at  both improving single-

element tuning and reducing the disadvantage of 

random mutation in  the real representation. For a parent 

TIgen, where TI is Test Interval and gen is generation 

number, if the kth element TIk,gen was selected for 

mutation, the resulting offspring is: 

  (17) 

where,  

 

 

The delta function above is denoted in a general form 

as -   Δ (t, y), which returns a value in the range [0, y] 

such that the probability of Δ (t, y) being close to 0 

increases as t increases (here we have used t as the 

generation number). This property causes the operator 

to search the space uniformly when generation number 

is small and then very locally in the later stages. The 

following functional form has been used: 

                                         (18) 

where r is a random no in the range [0, 1], T is the 

maximal generation number, and b is a system 

parameter determin ing the degree of non-uniformity. 

Non-uniform mutation causes global search of the 

search space at the beginning of the iterative process, 

but an increasingly local exp loitation later on. This is 

suited for a prob lem where the number of feasib le 

solutions in the space is very small. 

 

5.7 Crossover 

Reproduction is the process by which the genetic 

material in two or more parent individuals is combined 

to obtain one or more offspring. For the purpos e of 

comparison the following crossover schemes were 

considered: 

 

5.7.1 Arithmetical Crossover:  

This operator is used in real representation and is 

defined as a linear combination of two vectors 

(chromosomes) [7]. If the parent solutions  and 

  are to be crossed, the resulting offspring are: 

                   (19) 

                   (20) 

where ‗a‘ is random no. in the range [0, 1], as it  

always guarantees closure ( ). 

Such a crossover is called average crossover when a = 

½. The average value of the selected parents is 

calculated (with a=0.5) and assigned to the offspring 

chromosomes as follows: 

      (21) 

 

5.7.2 Blend Crossover (BLX-α):  

This is also known as BLX-α crossover [8] and has 

been used with real representation. For two parent 

solutions  and , if  and  are 

genes to be crossed (assuming  < ), then 

BLX-α randomly picks a solution in the range 

 

Thus, if u is random number between 0 and 1, 

following is the resulting gene in an offspring:  

         (22) 

where . BLX- α has an 

interesting property that the location of the offspring 

depends on the difference in parent solutions. This will 

be clear from the equation below: 

         (23) 
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If the differences between the parent solutions are 

small, the difference between the offspring and parent 

solution is also small. This property of the search 

operator allows us to constitute an adaptive search. 

Thus such an operator allows us the searching of entire 

space early on (when a random population over entire 

space is initialized) and concentrate the search more on 

the later stages when the population tends to converge 

in some region of the search space. 

 

VI. Selection Of Suitable Crossover Mechanism 

For this study, the crossover for Real-parameter 

Genetic Algorithm was implemented in two different 

ways –Arithmet ical crossover and BLX-α crossover – 

to make a comparison of their performance. The value 

of alpha parameter of BLX-α was first selected based 

on a number of trial runs for cost minimization with 

Common Cause Failure (CCF) and without CCF. Then 

with this value fixed in BLX-α, a comparison was done 

for arithmetical and BLX-α crossover. For cost 

minimizat ion, the results are given as the minimum cost 

of testing per year in Indian Rupees ; for unavailab ility 

minimizat ion, the results are given as the minimum 

unavailability per demand. 

 

6.1 Choosing a Value for Blend Crossover: 

Cost optimizat ion was done using GA for different α 

values (α = 0.1, 0.2…0.9) of BLX-α crossover, each 

with the same init ial population (generated by using the 

same seed for random number generation) keeping the 

other GA parameters fixed. This was repeated for ten 

different sets of in itial population i.e. ten different trial 

runs and the results for each α value were averaged and 

plotted as shown in Fig. 3 and Fig. 4 for components 

with CCF and without CCF, respectively. It is clear 

from these figures that BLX-α performed better with α 

value of 0.4 for cost minimization with CCF and value 

of 0.5 for cost minimization without CCF. Hence, we 

selected these values for further analysis.  

 

 

Fig. 3: BLX-α crossover with CCF 

 

Fig. 4: BLX-α crossover without CCF 

 

6.2 Comparison of Arithmetical and Blend 

Crossover: 

The arithmet ical and BLX-α crossover were 

employed for optimizat ion, each with the same init ial 

population, over ten trials (i.e. ten different sets of 

init ial population). Here, BLX-α crossover‘s alpha 

parameter was set to 0.4 for cost minimizat ion with 

CCF and to 0.5 for all the other cases. The results 

obtained were p lotted in Fig. 5, Fig. 6, Fig. 7 and Fig. 8 

for cost min imization with CCF, cost min imization 

without CCF, unavailability minimizat ion with CCF 

and unavailability minimizat ion without CCF, 

respectively. It can be noted that the curve for BLX-α 

lies below the arithmet ical crossover for all the cases, 

showing a better performance.  

 

 

Fig. 5: Cost minimization with CCF 

 

 

Fig. 6: Cost minimization without CCF 
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Fig. 7: Unavailability minimization with CCF 

 

 

Fig. 8: Unavailability minimization without CCF 

 

VII. Results and Discussions 

The results for cost minimizat ion with CCF and 

without CCF are significantly better for BLX-α 

compared to arithmetical crossover as shown in Table 2. 

For unavailability min imization the d ifference between 

the results obtained with BLX-α crossover and 

arithmetical crossover is small, but BLX-α crossover 

produces better results than arithmet ical for the same 

init ial population. In general the better performance of 

BLX-α is due to its implementation that allows for 

generating offspring in  the neighborhood outside the 

two parent solutions as well, rather than taking only the 

interpolated values between two points. This is helpful 

when the problem is mult imodal i.e. there exist more 

than one solution to the problem. Whereas, arithmetical 

crossover is more suitable for problems that have a 

single mode and which can be represented by constantly 

increasing or decreasing functions. Also, BLX-α allows 

for better exploration of the search space and is suitable 

for problems that involves non-linear objective 

functions and/or constraints, like ours. 

 

 

Table 2: Optimized Results with Different Crossover Mechanisms 

S. No. Case  

O ptimum value  
obtained from 

Arithmetical  
Crossover 

BLX-α  
crossover 

1 Cost Min with CCF 1432570 1395360 

2 Cost Min Without CCF 3059780 2993220 

3 Unav Min with CCF 4.93157E-06 4.93023E-06 

4 Unav Min without CCF 4.98975E-07 4.98947E-07 

 

VIII. Conclusion 

 Here, we considered the problem of decid ing test 

intervals for a safety crit ical system of PFBR, wherein 

the test strategy for the plant was improved such that 

unnecessary testing burdens are reduced without 

compromising the plant safety. The reliab ility 

parameters values were taken from an internal report [3] 

and serve as input data for solving the unavailability 

and cost equations, (2) and (4). Two separate 

optimization cases were considered namely cost 

minimizat ion and availability maximizat ion. The 

optimization was done using Genetic Algorithms which 

takes cost or availability as the objective function and 

solves for the set of best test interval values for all 

components. We have done a comparative study on two 

different crossover implementations namely 

arithmetical crossover and BLX-α crossover. Firstly, the 

‗α‘ parameter of BLX-α was fixed by comparing the 

optimum results obtained with d ifferent α values. It  was 

found that α = 0.4 gave better results for cost 

minimizat ion with CCF and for all the other cases α = 

0.5 was found more suitable. The suitable values of α 

were used with BLX-α crossover and the different 

crossover mechanisms were evaluated for each case.  

BLX-α crossover was found to perform better than 

arithmetical crossover for this problem domain. 

 

References 

[1] Molly Mehra, M.L. Jayalal, A. John Arul, S. 

Rajeswari, K. Kuriakose, S.A.V. Satya Murty,  

Design and Development of Genetic Algorithm for 

Test Interval Optimization of Safety Critical 

System for a Nuclear Power Plant, Online 

Proceedings on Trends in Innovative Computing, 

Intelligent Systems Design and Applications 

Conference, Kochi, India (2012) 166 – 170. 

[2] Martorell S, Carlos S, Sanchez A, Serradell V, 

Constrained optimization of test intervals using 

steady-state genetic algorithms, Reliability 

Engineering System Safety (2000) 67:215–32.  

[3] Confidential Internal Report: ―Probabilistic  Safety 

Assessment, Level 1: Internal Events for PFBR, 

System Reliability Analysis‖ Volume II, April 

2011. 



28 Study on Different Crossover Mechanisms of Genetic Algorithm for   

Test Interval Optimization for Nuclear Power Plants  

Copyright © 2014 MECS                                                           I.J. Intelligent Systems and Applications, 2014, 01, 20-28 

[4] Confidential Internal Report: ―Probabilistic  Safety 

Assessment, Level 1: Internal Events for PFBR, 

Event Tree and Cutsets,‖ Volume III & Systems 

Basic Events Volume IV, April 2011. 

[5] Haupt R.L and Haupt S.E, Practical Genetic 

Algorithms, John Wiley & Sons, 1998. 

[6]  Goldberg D.E, Genetic A lgorithms in  Search 

Optimization and Machine Learning, Addison-

Wesley Publishing Company, 1989. 

[7] Michalewicz Z, Genetic Algorithm + Data 

Structure = Evolution Programs, Springer-Verlag, 

New York, 1994. 

[8] Deb K, Multi-Object ive Optimization using 

Evolutionary A lgorithms, John Wiley & Sons, 

2008. 

 

Author’s Profiles 

Molly Mehra received M. Tech. in Computer 

Engineering from Homi Bhabha National Institute, 

Mumbai in  2013. She  is working as Scientific Officer in 

Computer Division, Indira Gandhi Centre for Atomic 

Research, Kalpakkam. Her research interests include 

Genetic Algorithms and Evolutionary Computation. 

 

 
 

How to cite this paper: Molly Mehra, M.L. Jayalal, A. John 

Arul, S. Rajeswari, K. K. Kuriakose, S.A.V. Satya 

Murty,"Study on Different Crossover Mechanisms of Genetic 
Algorithm for Test Interval Optimization for Nuclear Power 

Plants", IJISA, vol.6, no.1, pp.20-28, 2014. DOI: 

10.5815/ijisa.2014.01.03 


