
I.J. Intelligent Systems and Applications, 2014, 01, 20-28

Published Online December 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2014.01.03

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 01, 20-28

Study on Different Crossover Mechanisms of

Genetic Algorithm for Test Interval Optimization

for Nuclear Power Plants

Molly Mehra, M.L. Jayalal, A. John Arul, S. Rajeswari, K. K. Kuriakose, S.A.V. Satya Murty

Indira Gandhi Centre for Atomic Research, Kalpakkam - 603102, Tamil Nadu, India

E-mail: mollymehra@igcar.gov.in

Abstract— Surveillance tests are performed

periodically on standby systems of a Nuclear Power

Plant (NPP), as they improve the systems‘ availab ility

on demand. High availability of safety crit ical systems

is very essential to NPP safety, hence, carefu l analysis

is required to schedule the surveillance activ ities for

such systems in a cost effective way without

compromising the plant safety. This forms an

optimization problem wherein, two different cases can

be formulated for deciding the value of Surveillance

Test Interval. In one case, cost is the objective function

to be minimized while unavailab ility is constrained to

be at a given level and in another case, unavailability is

minimized for a g iven cost level. Here, optimizat ion is

done using Genetic Algorithm (GA) and real encoding

has been employed as it caters well to the requirements

of this problem. A detailed procedure for GA

formulat ion is described in this paper. Two different

crossover methods, arithmetical crossover and blend

crossover are exp lored and compared in this study to

arrive at the most suitable crossover method for such

type of problems.

Index Terms— Genetic Algorithm, Arithmetical

Crossover, Blend Crossover, Surveillance Test Interval,

Nuclear Power Plants, Safety Grade Decay Heat

Removal System, Prototype Fast Breeder Reactor

I. Introduction

In NPPs there are many standby systems that may be

called to perform safety function whenever certain

identified events occur. In this study, we considered the

Safety Grade Decay Heat Removal System (SGDHRS)

of Prototype Fast Breeder Reactor (PFBR) which is a

standby system that is used for decay heat removal

when the plant is shut down and the Operational Grade

Decay Heat Removal System (OGDHR) is not availab le.

It is a safety critical system because its availability is

important for the safety of the plant and of the

personnel involved. To reduce the probability of failu re

on demand which is proportional to the system standby

time, the components of this system need to undergo

functional testing periodically. Such periodic testing of

components guarantees their availability and also

decreases their failure frequency. But there are costs

involved in the testing procedure due to manpower

required, number of tests conducted, testing costs etc.

Also, there is downtime associated with each test. So,

for safe and economical operation of plants we must

carry out a minimum number of tests without affecting

the plant safety. This forms an optimization problem

where cost has to be min imized with unavailab ility

being fixed or unavailability has to be minimized

keeping the cost fixed. Here, we have used Genetic

Algorithm (GA) to solve the test interval optimization

problem.

GA is adaptive heuristic search algorithm premised

on the evolutionary ideas of natural selection and

genetics. GA has been proven successful in Test

Interval optimization problem and many authors have

suggested its use. A study on Design and Development

of Genetic Algorithm for Test Interval Optimizat ion has

already been done by us [1]. We have selected GA since

the problem involves non-linear constraint and is

multimodal in nature [2]. A lso, when the domain of

decision variables is large, the presence of constraints

makes the problem more complex. It becomes difficu lt

to locate and sustain feasible solutions in a very large

search space. GA with binary encoding does not suffice

in providing a globally best feasible solution. Therefore,

real parameter GA is employed for this problem. Here,

two different categories of crossover are considered –

Arithmetical crossover and Blend crossover and their

performances are compared. A genetic algorithm library

was developed in C++ using Object Oriented

Methodology that implements different GA encodings,

operators and methods. Test Intervals for all

components are optimized such that minimum cost is

involved in testing without affecting the safety of plant.

The paper is organized as follows. In section II, the

process of decay heat removal (DHR) of PFBR in

general and DHR through SGDHRS in part icular is

discussed with a detailed description of various

components of SGDHRS. In section III, the equations

for cost and unavailability are formulated. In section IV

an overview of GA is given and the control flow of GA

with fitness penalization is explained. In section V,

mailto:mollymehra@igcar.gov.in

 Study on Different Crossover Mechanisms of Genetic Algorithm for 21

Test Interval Optimization for Nuclear Power Plants

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 01, 20-28

details are given for the various methods and operators

implemented in our GA code. In section VI, the

experiments to find a suitable crossover mechanis m for

this problem are described. In section VII, the results

are discussed. Finally, some conclusions are proposed

in the last section.

II. Problem Description

Prototype Fast Breeder Reactor (PFBR) is sodium

cooled pool type reactor of 500 MWe capacity,

designed by Indira Gandhi Centre for Atomic Research

(IGCAR) which is under construction at Kalpakkam.

We have selected the Safety Grade Decay Heat

Removal (SGDHR) system of Prototype Fast Breeder

Reactor (PFBR) for our study which is used for decay

heat removal in the event of reactor shutdown.

Removal of decay heat is necessary to maintain core

integrity. Heat is generated due to residual fission

power and decay of fission products even after

shutdown of the reactor. It is about 1.5 % and 0.6 % of

nominal power at 1 hour and at 1 day respectively after

the reactor shutdown. Thus Decay Heat Removal (DHR)

system is an important safety system that is designed

with a failure frequency of less than 10-7/reactor year.

Sufficient redundancy and diversity is provided for this.

Decay heat removal in all the normal operating

conditions and in some of the upset conditions where

the steam - water system is not impaired is through the

normal heat transport system i.e. through the steam

generators and steam - water system. This system is

known as the Operational Grade Decay Heat Removal

System (OGDHR). Following any other event, decay

heat is removed through four Safety Grade Decay Heat

Removal (SGDHR) circu its, each having 33 % of the

required capacity. Each loop consists of a Decay Heat

Exchanger (DHX) with tube side linked to an

intermediate sodium circu it, which is connected to a

sodium air heat exchanger (AHX). The primary sodium

flows on the shell side of DHX.

Fig. 1: Simplified Schematic of SGDHR System of PFBR

The SGDHR system comprises of many components;

with redundancy in design for increased reliability. It is

a passive standby system for decay heat removal which

is called into operation when the normal active heat

removal path, through Operational Grade Decay Heat

Removal (OGDHR) system is unavailable. For

successful decay heat removal both Primary Heat

Transport and SGDHR should work. So, the

components in p rimary sodium circuit (like pump,

motors), intermediate sodium circuit (Direct Heat

22 Study on Different Crossover Mechanisms of Genetic Algorithm for

Test Interval Optimization for Nuclear Power Plants

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 01, 20-28

Exchanger (DHX), p iping, valves) and air circu it

(Sodium to Air Heat Exchanger (AHX), dampers) need

to undergo periodic testing and maintenance to

guarantee their availability when actual demand on the

system comes. Fig. 1 shows the schematic o f the

SGDHR system with its various components in a

representative manner where the actual system

complexity is hidden. There are four SGDHR loops,

two of which are provided with straight tube design

sodium to sodium heat exchanger (DHX-Type A) and

serpentine tube design sodium to air heat exchanger

(AHX-Type A). The other two loops are having

diversity in design to avoid common cause failu re

during reactor operation. These two loops consists of U

tube design DHX-Type B & straight tube design AHX-

Type B. Heat transfer in the primary circuit i.e. from

core to the DHX is by natural convection. The primary

circuit contains two PSPs (Primary Sodium Pumps) for

forced circulation o f sodium through core where the

heat is generated.

For PFBR Test Interval data has been given from

experience of previous fast reactors, this value can be

improved with further cost reduction without affecting

the unavailability. The cost values are only

representative in this study. The reliability analysis was

done [3] and fault trees [4] for Primary Circuit,

Intermediate and air circuit were considered.

III. Equation Formulation

Models for unavailability and cost of testing of

individual components are established with Surveillance

Test Interval as decision variable. Reliab ility parameters

like standby failure rate, per demand failure probability,

mean time to test, testing cost per hour, mean time to

repair and cost of repair per hour are considered for

modeling. The list of symbols used to represent

reliability parameters testing and maintenance of whole

system is found by adding individual component costs

and the system unavailability is found by adding the

minimal cutsets derived from the fault tree analysis of

the system. These models for system cost and

unavailability serve as objective functions that have to

be min imized by decid ing on the values of test and

maintenance intervals.

Table 1: Reliability Related Symbols Used

Symbol Meaning

T Surveillance test interval

t Mean time to test

λ Standby failure rate

T R Mean time to repair

Cht Surveillance Testing cost per hour

Chr Cost of repair per hour

The unavailability equation for a periodically tested

component of SGDHR system was formulated as:

 (1)

where ui(x) represents unavailability of ith

component(or basic event) that depends on the vector of

decision variables x and Ti represents the test interval

for ith component(or basic event). In this study, we are

optimizing based on the value of test interval, so x has a

single decision variable that is Ti. Total system

unavailability was found from the cut-set equations

obtained from the fault tree analysis , and is given as the

sum of j number o f minimal cut sets , each with the

product k extending to the number of basic events in the

jth cut set:

 (2)

where U(x) is the total system unavailability that

depends on test interval values of all the components in

the system and ujk represents the unavailability

associated with the basic event k belonging to minimal

cut set number j. The cost model is established as:

 (3)

The total yearly cost of the system having i number

of components is given by:

 (4)

The problem is solved using GA for two cases:

Case 1: Keeping the cost as objective function to be

minimized and unavailability as constraint. That is

represented as:

 (5)

 (6)

Case 2: Keeping the unavailability as objective

function to be min imized and cost as constraint. That is

represented as:

 (7)

 (8)

For the high redundancy systems like SGDHR, data

for large number of simultaneous failures does not exist.

So, a common cause analysis is done with beta factor

model, in which common cause failure (CCF) rate is

obtained as a fraction (Beta) of single component

failure rate. The value of beta is assumed to depend on

the number of such redundant components. The

approach followed in this study is that active

 Study on Different Crossover Mechanisms of Genetic Algorithm for 23

Test Interval Optimization for Nuclear Power Plants

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 01, 20-28

components with levels of redundancy less than or

equal to three, a beta of 5% is used. If redundancy is

greater than or equal to four, a beta of 1% is used.

IV. Genetic Algorithm Design - Overview

In a genetic algorithm, many individual solutions are

randomly generated to form an in itial population. This

population then evolves over successive generations to

give better solutions. Each generation comprises of

various phases, the most important being – fitness

evaluation, selection (competit ion), reproduction (cross -

over) and mutation [5]. Fig. 2 shows the control flow of

GA for a constrained problem with fitness penalizat ion.

Initial population is generated which is a collection of

many solution vectors or indiv iduals. Each solution

vector comprises of the test intervals of all components

being tested which are represented by T1, T2, T3…Tn.

These are the decision variables whose value is to be

decided by GA such that the objective functions ‘ value

reaches optima. In the fitness evaluation step, quality of

each individual is assessed based on the objective

function. Then each individual is checked for constraint

violation where a constraint may be implicit i.e . the

value of the individual lies outside the defined range or

it may be explicit i.e. it requires evaluation of a function.

If an indiv idual violates the constraint then its fitness is

reduced in the penalizat ion step. Then the termination

criteria are checked. Selection, crossover and mutation

operators are applied to the population as discussed in

section V. This process is repeated until the maximum

number of generations is reached which is the

termination criterion for our study.

An individual is represented as a string of numbers

known as a chromosome. Chromosomes are composed

of genes where each gene is a set of values called alleles

that represents an encoded decision variable. Real value

representation is used here for test interval optimization;

as it has the property that two points close to each other

in the representation space must also be close in the

problem space and vice versa. It is also conceptually

closest to the problem space and allows easy and

efficient implementation of closed and dynamic

operators. Test Interval (TI) values are g iven in hours

and the maximum bound on each component‘s Test

Interval value is 8760 hours, which corresponds to 1

year.

Goldberg DE [6] suggested that good GA

performance requires the choice of h igh cross over

probability, low mutation probability and a moderate

population size. For all the experiments, crossover rate

of 0.6 was taken. Mutation rate of 0.002 was found to

be the best for cost optimizat ion and a rate of 0.03 was

found suitable for risk min imization, based on a number

of trials. Population size was taken as 100 for each case

and GA was run for 10000 generations.

V. Genetic Algorithm Operators & Methods

GA is implemented for TI optimization with the

following methods and operators:

5.1 Fitness Evaluation

Fitness evaluation is the step in which the quality of

an individual is assessed. An individual is decoded and

its cost and unavailability are found using the models in

(2) and (4), as described in section III. Fitness is

evaluated as the inverse of cost or unavailability

depending on which one is taken as the objective

function. In this way, the problem is converted into a

maximizing one by taking the fitness function as the

reciprocal o f the actual function value that is to be

minimized.

5.2 Penalization

Optimization of test schedules is done by taking

either cost or unavailability as the objective function

N

Y

Begin

Initial Solution Vector

[T1 T2 T3…Tn]

Fitness

Evaluation
Objective

Function

Constraint

Violation?

Penalization

End

Selection

Crossover

Mutation

Y Termination

criteria reached?

Fig. 2: Control Flow of GA

24 Study on Different Crossover Mechanisms of Genetic Algorithm for

Test Interval Optimization for Nuclear Power Plants

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 01, 20-28

and the other as the constraint. Penalization is the

process of converting a constrained problem into

unconstrained one by reducing the fitness of solutions

that violate the constraint. Here, we have implemented a

dynamic penalty function, as suggested by Martorell [2],

where the penalty value depends on the amount of

constraint violation and generation number of GA. This

penalty function is given as:

 (9)

where the parameters α and β are defined by the user

and K(g,α) is an α-function that establishes the pressure

on infeasible individuals taking into account the number

of generations evolved, g. SVC(β, i) is a β -function that

represents the sum of violated constraints for a given

individual i, which is formulated as follows:

 (10)

The sum in (10) extends to the total number of

constraints to which each individual, i, is subjected,

where for a g iven constraint, j, the corresponding

is defined by the expression:

 (11)

which represents the degree of violation associated

with restriction j, where gj(i) represents the value

achieved by the individual i with regard to constraint j,

whereas is the maximum value a llowed for this

constraint j.

The dynamic penalization feature is provided in this

solution using an appropriate function K (g, α). The

pressure on infeasible individuals has to rise as the

number of evolved generations increases. Different

expressions for K (g, α) have been proposed. In this

solution, the function selected is given by:

 (12)

where g corresponds to the current generation

number, and K1 and p are the two parameters to be

determined according to the desired values of δ1 and

δGs , and the number of generations, Gs, for a given μs,

as:

 (13)

 (14)

Suitable values for δ1, δGs, Gs and μs are 0.01, 0.001,

1000 and 0.01, respectively. In addit ion, common

values for the couple (α, β) include (0.5, 2), (1, 2) and

(2, 2).

In our GA, the function used to penalize infeasible

solutions is a variat ion of the family functions described

by (9). This function introduces penalization relative to

the worst score encountered in the population after the

evaluation stage for the current generation, which also

depends on the number of generations evolved, g. Thus,

the penalized objective function fo r a given ind ividual, i,

is as follows:

 (15)

where f(i) represents the raw score of the init ial

objective function for the indiv idual i, and f(w) is the

corresponding score for the worst indiv idual found in

the population at current generation g. The sign of (15)

differs whether the objective function is minimized or

maximized. In the former case, the penalization is

added to the initial objective function score, while it is

subtracted otherwise.

5.3 Fitness Scaling

Linear Fitness Scaling was introduced to improve the

performance of GA by controlling copies of individuals

in the beginning of run and as the run matures, thereby

preventing convergence to suboptimal solutions. If the

raw fitness is defined as f and the scaled fitness as f‘

then linear scaling is a linear relationship between f‘

and f as follows:

 (16)

The coefficients a and b may be chosen in a number

of ways; however in all cases we want the average

scaled fitness f‘avg to be equal to the average raw

fitness favg because subsequent use of the selection

procedure will ensure that each average population

member contributes one expected offspring to the next

generation. To control the number of offspring given to

the population member with maximum raw fitness , we

choose the other scaling relationship to obtain a scaled

maximum fitness, f‘max = Cmult.favg, where Cmult is

the number of copies desired for the best population

member. For typical s mall population (n = 50 to 100) a

Cmult = 1.2 to 2 has been used successfully.

Toward the end of the run, this choice of Cmult

stretches the raw fitness significantly. This may in turn

cause difficulty in applying the linear scaling rule. At

first there is no problem apply ing the linear scaling rule,

because the few extraord inary indiv iduals get scaled

down and the lowly members of the population get

scaled up.

 Study on Different Crossover Mechanisms of Genetic Algorithm for 25

Test Interval Optimization for Nuclear Power Plants

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 01, 20-28

5.4 Elitism

This was implemented to retain the best individual of

a generation in the next generation so that highest

fitness solutions are not lost in reproduction and

mutation. For this a single individual with highest

fitness from the current generation‘s population is

copied directly to the population in the next generation.

5.5 Selection

Selection is an operation used to decide which

individuals to use for reproduction and mutation in

order to produce new search points. For the purpose of

this study we have implemented Roulette wheel

selection scheme that samples the indiv iduals by

simulating the roulette-wheel for fitness proportionate

selection.

5.6 Mutation

Mutation is normally applied to one individual in

order to produce a new version of it where some of the

original genetic material has been randomly changed.

By itself, mutation is a random walk through the string

space. When used sparingly with reproduction and

crossover, it is an insurance policy against premature

loss of important information. Here, we have

implemented non-uniform mutation which is a dynamic

mutation operator aimed at both improving single-

element tuning and reducing the disadvantage of

random mutation in the real representation. For a parent

TIgen, where TI is Test Interval and gen is generation

number, if the kth element TIk,gen was selected for

mutation, the resulting offspring is:

 (17)

where,

The delta function above is denoted in a general form

as - Δ (t, y), which returns a value in the range [0, y]

such that the probability of Δ (t, y) being close to 0

increases as t increases (here we have used t as the

generation number). This property causes the operator

to search the space uniformly when generation number

is small and then very locally in the later stages. The

following functional form has been used:

 (18)

where r is a random no in the range [0, 1], T is the

maximal generation number, and b is a system

parameter determin ing the degree of non-uniformity.

Non-uniform mutation causes global search of the

search space at the beginning of the iterative process,

but an increasingly local exp loitation later on. This is

suited for a prob lem where the number of feasib le

solutions in the space is very small.

5.7 Crossover

Reproduction is the process by which the genetic

material in two or more parent individuals is combined

to obtain one or more offspring. For the purpos e of

comparison the following crossover schemes were

considered:

5.7.1 Arithmetical Crossover:

This operator is used in real representation and is

defined as a linear combination of two vectors

(chromosomes) [7]. If the parent solutions and

 are to be crossed, the resulting offspring are:

 (19)

 (20)

where ‗a‘ is random no. in the range [0, 1], as it

always guarantees closure ().

Such a crossover is called average crossover when a =

½. The average value of the selected parents is

calculated (with a=0.5) and assigned to the offspring

chromosomes as follows:

 (21)

5.7.2 Blend Crossover (BLX-α):

This is also known as BLX-α crossover [8] and has

been used with real representation. For two parent

solutions and , if and are

genes to be crossed (assuming <), then

BLX-α randomly picks a solution in the range

Thus, if u is random number between 0 and 1,

following is the resulting gene in an offspring:

 (22)

where . BLX- α has an

interesting property that the location of the offspring

depends on the difference in parent solutions. This will

be clear from the equation below:

 (23)

26 Study on Different Crossover Mechanisms of Genetic Algorithm for

Test Interval Optimization for Nuclear Power Plants

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 01, 20-28

If the differences between the parent solutions are

small, the difference between the offspring and parent

solution is also small. This property of the search

operator allows us to constitute an adaptive search.

Thus such an operator allows us the searching of entire

space early on (when a random population over entire

space is initialized) and concentrate the search more on

the later stages when the population tends to converge

in some region of the search space.

VI. Selection Of Suitable Crossover Mechanism

For this study, the crossover for Real-parameter

Genetic Algorithm was implemented in two different

ways –Arithmet ical crossover and BLX-α crossover –

to make a comparison of their performance. The value

of alpha parameter of BLX-α was first selected based

on a number of trial runs for cost minimization with

Common Cause Failure (CCF) and without CCF. Then

with this value fixed in BLX-α, a comparison was done

for arithmetical and BLX-α crossover. For cost

minimizat ion, the results are given as the minimum cost

of testing per year in Indian Rupees ; for unavailab ility

minimizat ion, the results are given as the minimum

unavailability per demand.

6.1 Choosing a Value for Blend Crossover:

Cost optimizat ion was done using GA for different α

values (α = 0.1, 0.2…0.9) of BLX-α crossover, each

with the same init ial population (generated by using the

same seed for random number generation) keeping the

other GA parameters fixed. This was repeated for ten

different sets of in itial population i.e. ten different trial

runs and the results for each α value were averaged and

plotted as shown in Fig. 3 and Fig. 4 for components

with CCF and without CCF, respectively. It is clear

from these figures that BLX-α performed better with α

value of 0.4 for cost minimization with CCF and value

of 0.5 for cost minimization without CCF. Hence, we

selected these values for further analysis.

Fig. 3: BLX-α crossover with CCF

Fig. 4: BLX-α crossover without CCF

6.2 Comparison of Arithmetical and Blend

Crossover:

The arithmet ical and BLX-α crossover were

employed for optimizat ion, each with the same init ial

population, over ten trials (i.e. ten different sets of

init ial population). Here, BLX-α crossover‘s alpha

parameter was set to 0.4 for cost minimizat ion with

CCF and to 0.5 for all the other cases. The results

obtained were p lotted in Fig. 5, Fig. 6, Fig. 7 and Fig. 8

for cost min imization with CCF, cost min imization

without CCF, unavailability minimizat ion with CCF

and unavailability minimizat ion without CCF,

respectively. It can be noted that the curve for BLX-α

lies below the arithmet ical crossover for all the cases,

showing a better performance.

Fig. 5: Cost minimization with CCF

Fig. 6: Cost minimization without CCF

 Study on Different Crossover Mechanisms of Genetic Algorithm for 27

Test Interval Optimization for Nuclear Power Plants

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 01, 20-28

Fig. 7: Unavailability minimization with CCF

Fig. 8: Unavailability minimization without CCF

VII. Results and Discussions

The results for cost minimizat ion with CCF and

without CCF are significantly better for BLX-α

compared to arithmetical crossover as shown in Table 2.

For unavailability min imization the d ifference between

the results obtained with BLX-α crossover and

arithmetical crossover is small, but BLX-α crossover

produces better results than arithmet ical for the same

init ial population. In general the better performance of

BLX-α is due to its implementation that allows for

generating offspring in the neighborhood outside the

two parent solutions as well, rather than taking only the

interpolated values between two points. This is helpful

when the problem is mult imodal i.e. there exist more

than one solution to the problem. Whereas, arithmetical

crossover is more suitable for problems that have a

single mode and which can be represented by constantly

increasing or decreasing functions. Also, BLX-α allows

for better exploration of the search space and is suitable

for problems that involves non-linear objective

functions and/or constraints, like ours.

Table 2: Optimized Results with Different Crossover Mechanisms

S. No. Case

O ptimum value
obtained from

Arithmetical
Crossover

BLX-α
crossover

1 Cost Min with CCF 1432570 1395360

2 Cost Min Without CCF 3059780 2993220

3 Unav Min with CCF 4.93157E-06 4.93023E-06

4 Unav Min without CCF 4.98975E-07 4.98947E-07

VIII. Conclusion

 Here, we considered the problem of decid ing test

intervals for a safety crit ical system of PFBR, wherein

the test strategy for the plant was improved such that

unnecessary testing burdens are reduced without

compromising the plant safety. The reliab ility

parameters values were taken from an internal report [3]

and serve as input data for solving the unavailability

and cost equations, (2) and (4). Two separate

optimization cases were considered namely cost

minimizat ion and availability maximizat ion. The

optimization was done using Genetic Algorithms which

takes cost or availability as the objective function and

solves for the set of best test interval values for all

components. We have done a comparative study on two

different crossover implementations namely

arithmetical crossover and BLX-α crossover. Firstly, the

‗α‘ parameter of BLX-α was fixed by comparing the

optimum results obtained with d ifferent α values. It was

found that α = 0.4 gave better results for cost

minimizat ion with CCF and for all the other cases α =

0.5 was found more suitable. The suitable values of α

were used with BLX-α crossover and the different

crossover mechanisms were evaluated for each case.

BLX-α crossover was found to perform better than

arithmetical crossover for this problem domain.

References

[1] Molly Mehra, M.L. Jayalal, A. John Arul, S.

Rajeswari, K. Kuriakose, S.A.V. Satya Murty,

Design and Development of Genetic Algorithm for

Test Interval Optimization of Safety Critical

System for a Nuclear Power Plant, Online

Proceedings on Trends in Innovative Computing,

Intelligent Systems Design and Applications

Conference, Kochi, India (2012) 166 – 170.

[2] Martorell S, Carlos S, Sanchez A, Serradell V,

Constrained optimization of test intervals using

steady-state genetic algorithms, Reliability

Engineering System Safety (2000) 67:215–32.

[3] Confidential Internal Report: ―Probabilistic Safety

Assessment, Level 1: Internal Events for PFBR,

System Reliability Analysis‖ Volume II, April

2011.

28 Study on Different Crossover Mechanisms of Genetic Algorithm for

Test Interval Optimization for Nuclear Power Plants

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 01, 20-28

[4] Confidential Internal Report: ―Probabilistic Safety

Assessment, Level 1: Internal Events for PFBR,

Event Tree and Cutsets,‖ Volume III & Systems

Basic Events Volume IV, April 2011.

[5] Haupt R.L and Haupt S.E, Practical Genetic

Algorithms, John Wiley & Sons, 1998.

[6] Goldberg D.E, Genetic A lgorithms in Search

Optimization and Machine Learning, Addison-

Wesley Publishing Company, 1989.

[7] Michalewicz Z, Genetic Algorithm + Data

Structure = Evolution Programs, Springer-Verlag,

New York, 1994.

[8] Deb K, Multi-Object ive Optimization using

Evolutionary A lgorithms, John Wiley & Sons,

2008.

Author’s Profiles

Molly Mehra received M. Tech. in Computer

Engineering from Homi Bhabha National Institute,

Mumbai in 2013. She is working as Scientific Officer in

Computer Division, Indira Gandhi Centre for Atomic

Research, Kalpakkam. Her research interests include

Genetic Algorithms and Evolutionary Computation.

How to cite this paper: Molly Mehra, M.L. Jayalal, A. John

Arul, S. Rajeswari, K. K. Kuriakose, S.A.V. Satya

Murty,"Study on Different Crossover Mechanisms of Genetic
Algorithm for Test Interval Optimization for Nuclear Power

Plants", IJISA, vol.6, no.1, pp.20-28, 2014. DOI:

10.5815/ijisa.2014.01.03

