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Abstract— 0/1 Multiple Knapsack Problem, a generalization of 

more popular 0/1 Knapsack Problem, is NP-hard and 
considered harder than simple Knapsack Problem. 0/1 Multiple 

Knapsack Problem has many applications in disciplines related 

to computer science and operations research. Quantum Inspired 

Evolutionary Algorithms (QIEAs), a subclass of Evolutionary 

algorithms, are considered effective to solve difficult problems 
particularly NP-hard combinatorial optimization problems. A 

hybrid QIEA is presented for multiple knapsack problem which 

incorporates several features for better balance between 

exploration and exploitation. The proposed QIEA, dubbed 

QIEA-MKP, provides significantly improved performance over 
simple QIEA from both the perspectives viz., the quality of 

solutions and computational effort required to reach the best 

solution. QIEA-MKP is also able to provide the solutions that 

are better than those obtained using a well known heuristic 

alone.  
 

Index Terms—Hybrid Evolutionary Algorithm, Quantum 

Inspired Evolutionary Algorithm, Combinatorial Optimization, 

Multiple Knapsack Problem 

 

I. INTRODUCTION 

0-1 Multiple Knapsack Problem (MKP) is a 

generalization of the standard 0-1 knapsack problem (KP)  

where multip le knapsacks are considered to be filled  

instead of one. The MKP problem is strongly NP-

complete and no FPTAS is possible for MKP [1]. 

Evolutionary A lgorithms (EAs) refer to a class of 

population based search technique used to obtain good 

solutions for hard optimization problems in general. 

Individuals in population map to solutions of the problem.  

The new generations are evolved with an objective to 

improve quality of solutions. Evolution of a new 

population involves application of various operators on 

members of existing population. Quantum-Inspired 

Evolutionary A lgorithms (QIEAs) is subclass of EAs 

where the representation of indiv iduals and operators 

involved in generation of new individuals are both 

designed based on the concept of Quantum Computing. 

Various forms of QIEAs have been used to solve a 

variety of d ifficult  problems for example  

[2,3,4,5,6,7,8,9,10,11]. QIEAs have been observed as a 

powerful tool because of their better representation 

power [12,13], EDA style of functioning [14,15], 

flexib ility necessary for the inclusion of features 

appropriate for a g iven problem towards delivering better 

search performance [15], inherent quality  of starting with 

exploration and gradually shifting towards the 

exploitation [13]. 

QIEA in itself only provides a very broad framework. 

QIEA, just as other EAs, suffers from several limitations. 

Small qubit rotations lead to slow convergence while 

large qubit rotations may cause the algorithm to miss a 

good solution completely. Inclusion of features 

promoting faster convergence may cause the algorithm to 

get stuck in local optima. Slow convergence limits the 

problem sizes that can be tackled using QIEAs. 

Implementation of QIEAs, therefore, is more an art. Any 

attempt to solve a difficu lt problem has to use this 

framework judiciously and include features suited to the 

particular p roblem in order to get the desired 

performance. The objective in any attempted 

implementation of QIEA is to balance exploration and 

exploitation thus achieving convergence to optimal or 

near optimal solutions without requiring prohib itively  

large computation even for larger problem sizes. 

Hybridizing the population based meta-heuristic search 

technique with heuristics algorithms available for 

particular problem is an approach that is popular since 

last few decades to solve difficu lt optimizat ion problems  

[16]. The main motivation behind the hybridization of 

different algorithms is to exp loit the complementary 

character of different optimization  strategies. Hybrid  

meta-heuristic algorithms try to establish a balance 

between exploration and exploitation of the search space. 

The population based search approaches are good at 

exploration of the search space and identifying areas with 

high quality solutions while they are not so effective in 

exploitation of these high quality areas. On the other 

hand the strength of local search is the capability of 

quickly finding better solutions in the vicinity of starting 

solutions. Generally  the heuristics availab le for 

optimization problems are based on some kind of local 

search on an initial solution. Thus in such algorithms, 

which hybridize a meta-heuristic with a heuristic, the 

meta-heuristic approach can guide the global search and 

problem domain specific heuristic can help searching 

locally around the good solutions found from global 

perspective.  
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Table 1. Modifications applied on QIEA‟s for KP in the literature 

Modifications reference e .g. Type 
Maximum Size  
n= items count 

m=  knapsacks count 

Original QIEA (QIEA-o) [17,18] KP n=500 

Modified initialization of Qubit individuals in QIEA 

[18] 

[19] 
[20] 
[21] 

KP 

KP 
KP 
KP 

n=500 

n=500 
n=500 
n=500 

Modification in Termination Criteria [18] KP n=500 

Modification in attractor, gate, etc while Updating the qubit  

[18] 
[4] 
[3] 

[11] 

[22] 

KP 
KP 

DKP 
QKP 

MoK 

n=500 
n=500 

n=10,000 
n=200 

n=750,m=4 

Modifying Repair function based on domain knowledge [19] KP n=500 

Replacing local and/or global migration of QIEA-o with other strategy 
[23] 

[24] 

KP 

KP 

n=500 

n=500 

Incorporation of genetic operator mutation 
[3] 

[11] 
DKP 
QKP 

n=10,000 
n=200 

Changing number or length of q bit  individuals [25] MoK n=750,m=4 

Reinitialization of Qubits [23] KP n=500 

Inclusion of domain knowledge in the search process. 
[26] 
[25] 
[3] 

MoK 
MoK 
DKP 

n=750, m=2 
n=750, m=4 

n=10,000 

QIEA-o with parallel implementation [27] KP n=500 

QIEA-o implementation on GPU [28] KP n=250 

*KP= 0/1 Knapsack Problem, MoK = Multi-objective Knapsack Problem, QKP = Quadratic Knapsack Problem, DKP= Difficult 0/1 Knapsack 
problems 
 

Thus, QIEAs with various modifications have been 

applied to different variants of popular combinatorial 

problem called Knapsack Problem (KP). Table 1 lists the 

modifications applied to QIEAs with the example 

existing in literature.  

In this paper an attempt is made to design a hybrid 

QIEA balanced in its power to exp loit and exp lore the 

search space in order to solve instances of MKP. The 

population based meta-heuristic QIEA is hybridised with 

an existing heuristic for MKP known as MTHM [29] and 

some additional features of population based search are 

judiciously incorporated in order to solve randomly  

generated instances of MKP. This is first attempt to solve 

MKP using such a meta-heuristic technique. 

The rest of the paper is organized as fo llows. A brief 

description of MKP with a survey of approaches existing 

in literature for MKP is presented in section II. A brief 

conceptual description of a typical QIEA is given in  

section III. The MTHM heuristic used for hybridizing 

QIEA is discussed in section IV. In section V the QIEA 

framework used here and the proposed QIEA-MKP is 

explained in detail.  Computational performance of 

QIEA-MKP is presented in section VI. Conclusions are 

presented in section VII. 

II. MULTIPLE KNAPSACK PROBLEM (MKP) 

Given a set of n items with their profits p j and weights 

wj ,   {     } , and m knapsacks with capacities 

ci,   {     }, the MKP is to select a subset of items to  

fill given m knapsacks such that the total profit is 

maximized and sum of weights in each knapsack i 

doesn‟t exceed the capacity ci. 

maximize :  ∑ ∑ p
j
xij

n
j  

m
i   (1) 

subject to :  ∑ wjxij    ci   i {    m}  n
j   (2) 

                        ∑ xij
m
i        j {    n}   (3) 

                 

xij {   }   i {    m}   j {    n}  
(4) 

where xij = 1 if item j is assigned to knapsack i, xij = 0 

otherwise and coefficients pj, wj and ci are positive 

integers. 

In order to avoid any trivial case, the following  

assumptions are made 

1. Every item has a chance to be placed  at least  in 

largest knapsack: 

maxj N wj  maxi      m ci    (5) 

2. The smallest knapsack can be filled at least by the 

smallest item: 

mini      m ci  minj Nwj    (6) 

3. There is no knapsack which can be filled with all 

items of N: 

∑ wj  ci
n
j     i {     m} .  (7) 

The subset sum variant of MKP having  

p
j
  wj    j {    n}  is known as mult iple subset sum 

problem (MSSP). 

MKP has many applications in  fields related to  

computer science and operations research. An application 
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is seen when scheduling jobs on processors where some 

machines unavailable fo r a fixed duration or some h igh 

propriety jobs are pre-assigned to processors [30]. A real 

world  applicat ion of MKP is the problem of cargo 

loading where some containers need to be chosen from a 

set of n containers to be loaded in m vessels with 

different loading capacities for the shipment of the 

containers [31]. Another real world problem for MSSP is 

mentioned in [32] from a company producing objects of 

marble. The company receives m marb le slabs, of 

uniform size, from a quarry.  Each product, that company 

produces, requires a piece from marble slab having a 

specified length. Out of the list of products to be prepared, 

some products need to be selected and cut from the slabs 

so that the total amount of wasted marble is minimized. 

This problem is modelled as MSSP with slabs 

corresponding to knapsacks and the lengths 

corresponding to the weights. 

Several attempts to solve the MKP exist e.g. [33,29,34] 

etc. Hung & Fisk [33] presented a depth first branch and 

bound algorithm where the upper bounds were derived 

by Lagrangian relaxation. Martello & Toth [29] proposed 

a different branch and bound algorithm where 

constraint  ∑ xij
m
i      is omitted at each decision node 

and the branching item was chosen as an item which had 

been packed in  k>1 knapsacks of the relaxed problem. In  

a later work Martello & Toth [34] proposed a bound and 

bound algorithm where at each node of the branching tree 

both the upper bound and lower bound are derived. 

Some approximat ion algorithms also exist for MKP. 

Kellerer [35] presented the PTAS for MKP with identical 

capacities. Chekuri & Khanna [1] generalized it  and 

presented the PTAS for MKP. He also discussed MKP as 

a special case of the generalized assignment problem 

(GAP). GA P is APX-hard and only a 2-approximat ion 

exists. It is also shown that no FPTAS is possible for 

MKP. A PTAS containing the two steps, guessing the 

items as first and packing them as second, is presented 

subsequently in [1]. The EPTAS is designed based on the 

LP relaxation of the MKP by Jansen [36,37]. Jansen [37] 

presented a faster version of the algorithm designed in  

[36]. These approximat ion schemes claim to provide 

solution having approximat ion ratio  of 1/ϵ. The algorithm 

is shown to take polynomial t ime with respect to size of 

the problem but is exponential with respect to the 1/ϵ. 

 

III. QUANTUM INSPIRED EVOLUTIONARY ALGORITHM 

(QIEA) 

The QIEAs introduced in [17] are population-based 

stochastic evolutionary algorithms. They use the qubit, a 

vector, to represent the probabilistic state of individual. 

Each qubit is represented as q
i
 * i

 
i

+    i   i
 are complex 

numbers so that  | i
|  is the probability of state being 1 

and | 
i
|
 

 is the probability of state being 0 such that  

| i
|  | 

i
|
 
   . For the purpose of QIEAs,    and  

i
 are 

assumed to be real. Thus, a qubit string with n bits 

represents a superposition of 2
n
 binary states and 

provides an extremely compact representation of entire 

space. 

The process of generating binary strings from the qubit  

string, Q, is known as observation. To observe the qubit 

string Q, a string consisting of the same number of 

random numbers between 0 and 1 (R) is generated. The 

element Pi is set to 0 if Ri is less than square of Qi and 1 

otherwise. In each of the iterations, several solution 

strings are generated from Q by observation as given 

above and their fitness values are computed. The solution 

with best fitness is identified. The updating process 

moves the elements of Q towards the best solution 

slightly such that there is a higher probability of 

generation of solution strings, which are similar to best 

solution, in subsequent iterations. A quantum gate is 

utilised for this purpose [17]. 

 
 Procedure QIEA-original 
1      t  ←   
2      initialize Q(t) 
3      make P(t) by observing the states of Q(t) 
4      repair P(t) 

5      evaluate P(t) 
6      store the best solutions among P(t) into B(t) 
7      while ( t<MAX_GEN) 

8      { 
9           t  ← t   
10           make P(t) by observing the states of Q(t-1) 
11           repair P(t) 

12           evaluate P(t) 
13           update Q(t) 
14           store the best solutions among B(t -1) and P(t) into 

B(t) 

15           if (migration-period) 
16             {migrate b or   

  to B(t) globally or locally, 

respectively.} 
17       } 

Fig. 1. Quantum Inspired Evolutionary Algorithm 

 

One such gate, used by the QIEAs presented in this 

work, is the Rotation Gate, which updates the qubits as 

follows: 

[
 i
t  

 
i

t  
] [

cos   i   sin   i 

sin   i cos   i 
] [
 i
t

 
i

t ] 

 

(8) 

where,  i
t   and  

i

t  
denote probabilit ies for i

th
 qubit in 

(t + 1)
th

 iteration and     is equivalent to the step size in  

typical iterative algorithms in  the sense that it defines the 

rate of movement towards the currently perceived 

optimum.  

The above description outlines the basic elements of 

QIEA  Observing a qubit string  „n‟ times yields „n‟ 

different solutions because of the probabilities involved. 

The fitness of these is computed and the qubit string Q is 

updated towards higher probability of producing strings 

similar to the one with highest fitness. This sequence of 

steps continues; these ideas can be easily generalised to 

work with multiple qubit strings.  

Pseudo-code for the QIEA orig inally proposed by Han 

& Kim [17] is presented in fig 1. 
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IV. MTHM HEURISTIC FOR MKP 

Martello & Toth [29] gave a heuristic algorithm, called  

MTHM, for solving the MKP. This algorithm consists of 

three phases as described in the following. The details are 

available in [38].  

1.  Init ial feasible solution is obtained in  the first phase 

of MTHM by applying the Greedy algorithm to the first 

knapsack; a set of remaining items is obtained, then the 

same procedure is applied for the second knapsack; this 

is continued till the m
th

 knapsack.  

2.  The init ial solution is improved during the second 

phase by swapping every pairs of items assigned to 

different knapsacks and insert a new item such that the 

total profit is increased.  

3.  Each selected item is tried to be replaced by one or 

more remaining items during the last if possible so that 

the total profit sum is increased.  

The MTHM heuristic has the advantage that some 

items can be exchanged from a knapsack to another or 

excluded from the solution set so that total profit  

increases, which can  lead to an  efficient and fast solution 

when the solution given by the first phase is good. 

Moreover they can be applied to any feasible solution 

effectively. The main drawback of MTHM heuristic is 

that it considers only the exchanges between a pairs of 

items and not the combinations of items. 

Various phases of this heuristic can be introduced in 

QIEA to improve the quality of solutions found. In 

section V use of these to improve the performance of 

QIEA-MKP is examined in detail. The first phase of this 

heuristic is used to repair the infeasib le solutions 

generated by collapse operation of QIEA. The second 

and third phases are applied as local search technique on 

the solutions improved from g lobal perspective during 

the iterations of QIEA.  

 

V. QIEA-MKP 

In this work a modified QIEA framework is used as 

the starting point. In a QIEA the update operator is used 

to gradually modify the qubit indiv iduals using an 

attractor such that it can generate solutions more similar 

to the attractor. QIEA as described by Han & Kim [17] 

maintains a population of local best indiv iduals 

corresponding to the population of qubit indiv iduals 

besides the global best individual generated so far. Thus, 

the qubit individuals evolve according to different local 

best solutions but same global best solution. The update 

operator is applied either locally or g lobally, at local level 

the corresponding local best individual is used as an 

attractor and at global level the global best individual is 

used as an attractor. The global and/or local best 

solutions are replaced if found worse than the new 

solutions generated using a qubit individual. These new 

solutions are used as attractors subsequently. Here 

instead of generating single solution, a qubit individual 

generates multiple individuals every time before 

comparing those with stored best individuals generated 

so far such that only the best out of all these mult iple 

solutions generated is actually compared with local or 

global best individuals available. This helps in  

exploitation of the areas of solution space represented by 

the particular qubit individuals more intensively before 

rotating them towards an attractor. The qubit indiv idual is 

rotated towards the local best solution more often than 

the global best solution. Such an arrangement establishes 

the balanced capability to explore and exp loit  

simultaneously which is a foremost requirement for any 

meta-heuristic implementation.  

The above description provides a broad framework of 

QIEA with scope for enhancements for rapid solution of 

a specific problem. This frame work is used as the 

starting point here which has been enhanced with several 

features. The modified algorithm designed for MKP is 

named as QIEA-MKP. The improvements brought about 

in QIEA-MKP are as follows.  

(i)The items are sorted in order of decreasing profit by  

weight ratio to  improve the domain  knowledge in the 

following  

a. Initializing the Qubit Indiv iduals so that they 

generate better solutions. 

b. Modifying the repair function to improve quality of 

solutions. 

(ii) Improving the local best solutions using local search 

(iii)Mutation of solutions when they appear to be stuck in  

a local optimum 

(iv) Re-initialization of Qubit individuals  

(v) Local exploitation before global exploration 

 

A. Sorting of items in input  

The items having a greater profit by weight ratio are 

considered to have higher probability of their inclusion in  

the optimal solution. Thus the items in input are sorted in  

the decreasing order of their profit by weight rat io. Th is 

sorting is used to initialize qubit indiv iduals so that they 

can generate better solutions and also to improve repair 

procedure so that it provides better solutions. 

Initializing the Qubit Individuals to depict the better 

estimations of distribution models: In order to init ialize 

the qubit individuals, the items are div ided in  to 3 classes 

based on where they lie in order of preference; the first 

class contains items having high preference for selection 

in a knapsack, items in second part have intermediate 

preference and third contain items having low preference. 

Hence, qubits for items lying in first class (third class) 

are assigned values closer to 1 (0) so that they have high 

(low) probability of collapsing to value 1. Items  lying in  

the second class require more processing for convergence 

to either 0 or 1, hence intermediate values between 0 and 

1 are assigned to them.  

As a result, QIEA-MKP starts exploit ing the area o r 

region in solution space having higher probability of 

having solutions closer to optimal.  

 



 Balanced Quantum-Inspired Evolutionary Algorithm for Mult iple Knapsack Problem 5 

Copyright © 2014 MECS                                                             I.J. Intelligent Systems and Applications, 2014, 11, 1-11 

 
Fig. 2. Initialization of qubits. Qubits for items shown are sorted in decreasing profit  by weight ratio from left to right  

 

 
Procedure RepairMKP (x) 

1 let        ∑             {     } 
   ; 

2 for i from 1 to m{ 

3     while (    ) { 

4                  {     }   |       

5                          
6     }//*while*// 
7 }//* for i*// 
8     for j from 1 to n { 

9 
       if (k =       {     }   |       ) 

{xkj  1;         ;} 

10     } //*for j*// 

Fig. 3. Pseudo-code for RepairMKP 

 

Modifying the repair function to improve quality of 

solutions: QIEA uses a simple “repair” function after it  

observes the qubits through the “make” procedure to 

make the observed solution feasible. In  QIEA-MKP, the 

repair function is modified to improve the quality of 

solutions while making them feasible based on the phase 

1 of MTHM heuristic presented in section IV. This 

improves the speed of convergence. As exp lained earlier 

the items are sorted in order of their preference to include 

them into a knapsack. So, in each repair step, items 

closest to the end are removed and items closest to the 

beginning are added as necessary. The knapsacks are 

assumed to be sorted in  order of their  increasing capacity 

and that‟s the order in which they are considered when 

items are added into knapsacks. The pseudo-code is 

given in Fig. 3. 

B. Improving the local best solutions  

The local best solutions are further improved in  two  

stages based on the phases 1 and 2 of MTHM heuristic 

[29] described in section IV. In first stage it tries to 

exchange every pair of items assigned to different 

knapsacks along with inserting a new item so that total 

profit is increased. Secondly, every selected item 

(starting from last in the sorted order) is tried to be 

replaced by one of the remaining items so that the total 

profit sum is increased. The pseudo-code of these 

procedures is given in Fig. 4. and Fig. 5. 

C. Mutation of solutions appearing to be stuck in local 

optimum. 

EAs  suffer from tendency of getting stuck in  local 

optima. All the modificat ions described above help the 

algorithm to explo it the search space around the greedy 

solutions increasing the speed of convergence but they 

also increase the tendency to get stuck in local optima. 

To combat this problem, if a new solution generated is 

seen to be close to global best solution found so far it is 

mutated. During mutation, after 2-3 bits in the solution 

vector are randomly selected and changed to 0, the partial 

solution is improved using ImroveStage1. To  check 

closeness of two  solutions, Hamming distance between 

them is calculated. Such an operator improves diversity 

without increasing the computational effort. It helps to 

explore the solution space around a current solution such 

that local optimal in vicinity is not missed. This improves 

the chances of finding optimal in case it is in vicinity of 

the converging solution. 

 
 Procedure ImproveStage1(x) 

1 let        ∑             {     } 
   ; 

2 for each pair i and j  in      n    
3    if (         {      }|                         

                       ){ 

4        if       {     } |                       

            { 

5              let  k = (       {     }    |            

                      ) 
6              if (              ){            

                     } 

7              else  {                               

  } 

8         }//* if*// 
9      }//* if*// 
10 }//*for pair i and j*// 

Fig. 4. Pseudo-code for ImproveStage1 

 
 Procedure ImproveStage2(x) 

1 let        ∑             {     } 
   ;  

2 for    {     }{ 
3     if (   {     }|      { 

4        for    {     }|          {     } {  

5             if(Ru   wi   wj     P j   p
j
 p

i
; else P j   ; 

6        }//* for j*/ 
7        let  Pk  max j {    n}P j;  

8        if( Pk     { xui     xuk    Ru   Ru   wi  
 wk  } 

9     }//*If u *//        

10 }//*for i *// 

Fig. 5. Pseudo-code for ImproveStage2 

D. Re-initialization of Qubit individuals. 

It may happen even after applying mutation as 

explained in section 5.3 that all the solutions generated 

from a qubit indiv idual are still same after a sequence of 

generations. It clearly indicates that such a qubit 

individual has converged and no further new solutions 

can be generated using them. Thus, each qubit in 

individuals which generate same solution for more that 3 

times out of 5 is reset as exp lained in section 5.1. It  
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increases the diversity of solutions explored through the 

qubit individuals without increasing the computational 

effort.  

E. Local exploitation before global exploration. 

QIEA has the property that it updates the qubits over 

the time period such that they represent Estimation of 

Distribution models. Thus, basic steps of QIEA are 

executed for some iterations  to update some of the qubit 

individuals in itialized as described in section V.A.1. The 

steps listed in the following are performed on half o f the 

qubit individuals for small number of t imes (empirically  

set as 15 for th is work) before starting QIEA -MKP on the 

entire population. 

 Make 

 RepairMKP 

 ImproveStage1 

 ImproveStage2 

 Update 

The execution of these steps of QIEA will also exp loit  

intensively the area represented by the current qubit 

individuals before starting the QIEA-MKP which is 

balanced with respect to its power of exp loitation and 

exploration. The resulting qubit indiv iduals thus favour 

the small solution subspace close to better solutions. 

A solution to MKP must specify whether the item is  

included or not and if it is included then the index of 

knapsack it has been put into. Hence an optimal solution 

does not require only the selection of correct items but 

also that they are packed into the correct knapsacks.  In  

this work, two components (in the form of two  binary  

strings) are used to represent a solution individual where, 

first of length n contains 0 or 1 for each item conveying 

about its selection status, and second of length (n*     ) 

contains the index in b inary of knapsack in which it is 

packed. The integers in        m  are represented by a 

bit string of length      . A qubit indiv idual is thus 

represented by two components  of lengths n and 

n*      correspondingly. 

The complete pseudo-code for QIEA-MKP is  

presented in Fig. 6. In the pseudo-code for MKP; t refers 

to the current iteration, two components of population of 

qubit individuals after t
th

 iteration are represented using 

Q1(t) and Q2(t), P1(t) and P2(t) represent the population 

of indiv idual solutions, B1(t) and B2(t) is the set of best 

solutions corresponding to each individual, c i is the 

capacity of the i
th

 knapsack. Ind ividuals represented by 

Q1(t) and Q2(t) are referred to as q
j
t   (composed of q 

j

t
  

and q 
j

t
), individuals in P1(t) and P2(t) are referred to as 

p
j
t   (composed of p 

j

t
  and p 

j

t
), similarly individuals in  

B1(t) and B2(t ) are referred to as bj
t
  (composed of b j

t
  

and b j
t
) for each j n  ; b refers to global best solution 

having components viz., b1 and b2.  In the following 

paragraph a brief description is g iven for p rocedures 

called in QIEA-MKP but have not been described yet. 

InitializeGreedy (q 
j

t
): where q 

j

t
 is j

th 
qubit indiv idual 

in a population Q1(t). The procedure initializes the qubit 

individual q
j
t as explained in section V.A. 

Make P1(t) and P2(t) from Q1(t) and Q2(t): The 

procedure collapses the qubit individuals in Q1(t) (or 

Q2(t)) observing solution individuals in P1(t) (or P2(t)).  

HamDistance(  p 
j

s
, b1): Returns hamming distance 

between two binary strings. 

Mutate( p 
j

s
): Mutates the solution  p 

j

s
 as described in  

section V.D. 

Update  q
j
t based on bj

t
: Rotates the qubits  q 

j

t
  towards  

bits in  b j
t
 and  q 

j

t
  towards bits in  b j

t
 as explained 

earlier and defined in [17] using the rotation angle as 

0.01. 

Evaluate P(s): Assign individuals in P(s) to their 

profit values. 

The maximum number of iterations in algorithm is  

controlled using a global constant, MaxIterations. 

 

VI. RESULTS AND DISCUSSION 

The experiments are done on Intel® Xeon® Processor 

E5645 ( 12M Cache, 2.40 GHz, 5.86 GT/s Intel® QPI ). 

The machine uses Red Hat Linux Enterprise 6.  

The solutions converged for most of the problem 

instances considered here within 10 iterat ions hence 

maxIterat ions is set to 10. Empirically,     and    are set 

to 5 and population size is set to 10.  

The experiments are performed to observe the effect of 

the modifications presented in sections V.A through V.E 

on basic QIEA framework discussed in the beginning of 

section V. The performance of QIEA and QIEA-MKP is 

observed on randomly generated instances having 

elements 1000, 5000 and 10000 with number of 

knapsacks as 2, 5 and 10. 

The problem instances are randomly generated, using 

the generator of instances available at the Pisinger‟s 

home page viz. http://www.d iku .dk/~pisinger/codes.html, 

where weights wj are distributed in  [1, R] and profits p j 

are calculated as p j = wj + R/10. Such instances 

correspond to a real-life situation where the return is 

proportional to the investment plus some fixed charge for 

each project. 

Two different classes of capacities are considered for 

the knapsacks in randomly  generated instances viz., 

similar and dissimilar. In instances with similar 

capacities the first m-1 capacities ci   i      m-    are 

distributed in 

[   ∑ wj m⁄n
j      ∑ wj m⁄n

j  ]  i      m-    
 

(9) 

while instances with dissimilar capacit ies have these ci 

distributed in 

*     (∑ wj
n
j  - ∑ ck

i- 

k  
)+  for i     m-   (10) 

The last capacity cm  in both classes is chosen as   

cm      ∑ wj
n
j   ∑ ci

m  
i   (11) 
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Tables 2 and 3 present the performance of QIEA and  

QIEA-MKP for the instances having similar capacit ies. 

Tables 4 and 5 present the performance of QIEA and 

QIEA-MKP for the instances having dissimilar capacit ies. 

Instances are randomly generated with number of 

elements ranging from 1000 to 10000 and number of 

knapsacks ranging from 2 to 100. The instances having 

100 knapsacks of dissimilar capacities could not be 

generated. 

 Procedure QIEA-MKP 
1 SortGreedy the Input; 
2 t  ←  ; b ← 0;  

3 InitializeGreedy ( q 
j

t
) for each j  {    n}; 

4 Initialize q 
j

t
 to       for each j  {    n  log

 
m}; 

5 Make  P1(t) and P2(t) from Q1(t) and Q2(t); 
6 RepairMKP (P1(t)); 
7 copy P1(t) to B1(t) and P2(t) to B2(t);  

8 for each j  {    n  } { 
9      Make   p

j

t from  q
j

t; 

10     RepairMKP (P1(t)); 
11      ImproveStage1(P1(t));   
12      ImproveStage2(P1(t)); 

13      if ( p
j

t is better than bj
t
) bj

t
← p

j

t; 

14 } 
15 while ( t<MaxIterations) { 

16     t  ← t  ;cntj     
17     for r from 0 to  

 
 do 

18         for s from 0 to  
 
 do 

19                Make  P(s) from Q(t);                          
20                RepairMKP (P(s)); 
21                Evaluate P(s); 
22                for each j  {    n} if   p

j

s better than  p
j

t )  p
j

t 

←  p
j

s; else cntj  cntj  ; 

23          }  //*for s*// 
24          for each j  {    n} { 

25                 if (HamDistance (  p
j

s ,b)<2) 

{Mutate( p
j

s);ImproveStage1( p
j

s ;} 

26          }//*for j*// 
27          if(cntj   ){ 

28                 InitializeGreedy ( q 
j

t
) for each j  {    n}; 

29                 Initialize q 
j

t
 to       for each j  {    n 

log
 
m}; 

30          }//*if cntj*// 

31          for j  {    n  } ImproveStage2( p
j

t) ; 

32          for each j  {    n} if (  p
j

t  is better than bj
t

) 

bj
t
← p

j

t; 

33          for each j  {    n} if (bj
t
 is better than b   b← bj

t
 ; 

34          for each j  {    n} Update  q
j

t  based on  bj
t
 ; 

35      } //*for r*// 
36      for each j  {    n} Update  q

j

t based on b; 

37 } // *while*// 

Fig. 6. Pseudo-code for QIEA-MKP 

 

The tables show a comparison of profit  values 

obtained using the specific format of QIEA with values 

obtained using the heuristic mentioned in  section IV. The 

best, average, worst, standard deviation in profit values 

obtained within 30 independent runs of the algorithm 

have been reported along with the min imum and average 

computaional effort required in terms of number of 

function evaluations (FES) as to reach the best (MinFES 

and AvgFES respectively) and RDH relative d istance of 

best solution from heuristic. If profit for the instances 

obtained using exact algorithm is Ph and best profit 

obtained is Pb the RDH is calculated as follows. 

R H ((Pb -Ph) Ph)      (12) 

The convergence of profit values  achieved using QIEA 

and QIEA-MKP is studied and compared. Fig 7 shows 

how the best profit value obtained through QIEA and 

QIEA-MKP converges. The iteration number and the 

profit achieved have been plotted on x-axis and y-axis 

respectively. QIEA-MKP executes the basic steps of 

QIEA for 15 times during in itializat ion of half of the 

qubit individuals as explained in section V.E. Results for 

these additional steps are plotted using iteration numbers 

from I0 to I15 on x-axis, where values exist only for 

QIEA-MKP. 

It is clear from fig 7 that 

 Both algorithms start with similar profits. 

 QIEA-MKP forgoes ahead of QIEA during  

initialization steps. 

 However, QIEA-MKP finds significantly better 

solutions with in a few iterat ions of the main loop of 

the algorithm. 

 Even after 50 iterations of the main loop, QIEA is still 

far away from the value achieved using QIEA -MKP in  

a few iterations 

 
 

Table 2. Performance of QIEA on instances with similar capacities 

n m Heuristic (MTHM) Best Average Worst  Stddev MinFES AvgFES RDH 

1000 

2 258382 256590 256523.7 256502 17.36852 306 2375.17 -0.6935 

5 258192 256549 256524.7 256503 11.00763 584 2405.53 -0.6363 

10 257594 256610 256576.7 256556 12.89302 1867 2702.2 -0.3820 

100 238909 256157 256057.4 255992 38.94619 15 631.73 7.2195 

5000 

2 1311752 1302242 1302143 1302100 32.39831 110 1775.07 -0.7250 

5 1311602 1302117 1302070 1302036 23.06684 86 1286.67 -0.7232 

10 1310793 1302151 1302094 1302059 19.87617 162 1912.03 -0.6593 

100 1295826 1302426 1302353 1302316 26.17703 1571 2648.83 0.5093 

10000 

2 2607179 2587373 2587291 2587187 48.8818 19 858.4 -0.7597 

5 2606773 2587174 2587092 2587012 47.10786 48 994.9 -0.7518 

10 2606811 2587191 2587090 2587020 42.17266 1 872.23 -0.7526 

100 2591142 2587730 2587459 2587371 76.72193 1743 2643.23 -0.1317 
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Table 3. Performance of QIEA-MKP on instances with Similar Capacities 

n m Heuristic (MTHM) Best Average Worst  Stddev MinFES AvgFES RDH 

1000 

2 258382 258379 258370.7 258363 4.648569 19 27.4 -0.0012 

5 258192 258384 258376.1 258363 5.030482 4 28.1 0.0744 

10 257594 258373 258352.7 258306 17.00943 7 25.57 0.3024 

100 238909 258158 257781 257207 233.6354 1 15.47 8.0570 

5000 

2 1311752 1311764 1311735 1311704 14.21445 21 30.7 0.0009 

5 1311602 1311814 1311797 1311783 8.027324 21 29.83 0.0162 

10 1310793 1311810 1311773 1311713 21.78252 20 30.53 0.0776 

100 1295826 1311638 1311506 1311387 58.71624 1 16.3 1.2202 

10000 

2 2607179 2607091 2607052 2606995 26.76444 24 31 -0.0034 

5 2606773 2607224 2607188 2607155 21.01031 21 32.7 0.0173 

10 2606811 2607225 2607192 2607173 19.30918 20 30.2 0.0159 

100 2591142 2606844 2606714 2606555 66.10837 1 15.63 0.6060 

 
 

Table 4. Performance of QIEA on instances with dissimilar capacities 

n m Heuristic (MTHM) Best Average Worst  Stddev MinFES AvgFES RDH 

1000 

2 258367 256520 256492.8 256476 10.61451 295 2363.367 -0.7149 

5 257915 256562 256527.1 256499 15.35185 405 2506.3 -0.5246 

10 258078 256560 256528.4 256509 14.1067 813 2620.933 -0.5882 

5000 

2 1311854 1302136 1302057 1302025 22.84641 69 1243.367 -0.7408 

5 1311710 1302115 1302059 1302012 24.81018 109 1506.233 -0.7315 

10 1311663 1302055 1302016 1301987 16.4835 42 2526.633 -0.7325 

10000 

2 2607147 2587170 2587070 2587006 44.68634 12 713.6667 -0.7662 

5 2606951 2587346 2587245 2587166 49.82521 73 580.5667 -0.7520 

10 2606167 2587387 2587207 2587137 58.89777 8 719.3333 -0.7206 

 

 
Table 5. Performance of QIEA-MKP on instances with dissimilar capacities 

n m Heuristic (MTHM) Best Average Worst  Stddev MinFES AvgFES RDH 

1000 

2 258367 258384 258378.9 258374 4.232333 9 27.7 0.0066 

5 257915 258383 258369.2 258358 5.628744 19 30.37 0.1815 

10 258078 258362 258345.5 258328 7.69124 14 27.5 0.1100 

5000 

2 1311854 1311824 1311806 1311794 7.764419 20 30.2 -0.0023 

5 1311710 1311796 1311776 1311754 10.88545 21 31.3 0.0066 

10 1311663 1311824 1311795 1311768 14.31035 16 30.2 0.0123 

10000 

2 2607147 2607235 2607211 2607187 13.51496 22 30.83 0.0034 

5 2606951 2607165 2607114 2607067 21.29422 23 31.7 0.0082 

10 2606167 2607191 2607144 2607065 26.99104 21 30.3 0.0393 

 
 

 

Fig. 7. Comparing convergence of best value achieved using QIEA and QIEA-MKP (an instance having n=5000, m=100) 
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Instances with Similar Capacities 

 

 
Instances with Dissimilar Capacities 

Fig. 8. Comparison of QIEA and QIEA-MKP on the basis of RDH 
 
 

 
Instances with Similar Capacities 

 

 
Instances with dissimilar capacities 

Fig. 9. Comparison of QIEA and QIEA-MKP on the basis of FES 
required reaching their best solution. 

 

Figures 8 and 9 present a comparison of QIEA and 

QIEA-MKP on the basis of quality of solutions and 

computational effo rt. RDH of the solutions obtained 

using QIEA and QIEA-MKP with respect to size of 

problem instances having different classes of capacities 

considered is shown in fig 8. Fig 9 p lots the Average FES 

required using QIEA and QIEA-MKP with respect to 

size of problem instances having different classes of 

capacities considered. 

Following points are observed from the results: 

 QIEA-MKP shows considerable improvement both in 

quality of solutions obtained and computational effort  

required to reach the best as compared to QIEA. 

 The solutions obtained from QIEA-MKP are much  

better than the heuristic used to improve solutions 

locally for most of the instances tested. This 

improvement is better for instances which required to  

fill more number of knapsacks. 

 The hybridised QIEA-MKP is able to provide much 

better solutions within  very less number of FES as  

compared to QIEA used as the base. 

 The graph showing quality of solutions with respect to 

heuristic solution (i.e. RDH) for QIEA-MKP is similar 

in shape as of QIEA but with a shift from area having  

solution worse than heuristic to the area having better 

solution than heuristic.  

 

VII. CONCLUSIONS 

The QIEA is improved by embedding within it the 

local improvement based on a known effect ive heuristic 

for MKP with an objective to improve exploitat ion. Apart 

from it some techniques viz. mutation of solutions 

appearing to be close to local optima, and reinit ializing 

qubit individuals found incapable to generate new 

solutions are also induced in order to improve the power 

to explore the search space. This way the proposed QIEA,  

with balanced power of exp loitation and exp loration of 

search space, provide significantly better solutions with 

respect to both the QIEA used as base and the heuristic 

used for proposed hybridizat ion. The proposed QIEA 

provide better results using much reduced computational 

effort than basic QIEA. 
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