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Abstract— Chaos control is an important subject in 

control theory. Chaos control usually confronts with 

some problems due to unavailability of states or losing 

the system characteristics during the modeling process. 

In this situation, using an appropriate observer in 

control strategy may overcome the problem. In this 

paper, states are estimated using an observer without 

having complete prior information from nonlinear term 

based on neural network. Simulation results verify 

performance of the proposed structure in estimating 

nonlinear term specifically for an online practical use.  

 

Index Terms— Nonlinear Observer, Adaptive Neural 

Network, Chaos Control, Pendulum System, Modif ied 

Duffing System 

 

I. Introduction 

Chaos phenomenon is addressed in various fields of 

engineering and several mult i-d isciplinary subjects . 

Chaos may be of a beneficial phenomenon like circu it 

secure telecommunication [1], although the chaos has a 

destructive effects in  physical and pract ical applications. 

Due to complicated dynamic of such these systems, 

identification and/or the estimation may  fail to comply 

with the needs. Furthermore when there is lack of 

enough prior informat ion where two approaches are 

possible: 1) Using a controller to cope with 

uncertainties of system [2]. 2) Or gain ing an observer in 

the close loop path of the system. Accordingly an 

adaptive neural network is presented in this study to 

estimate chaotic states even an online use. This ability 

helps designer to control chaotic system with 

satisfactory performance. 

Different observers are presented to construct a 

proper structure to estimate states of systems. This 

includes nonlinear observers such as EKF and UKF [4-

7].  

A first nonlinear adaptive observer was presented in 

[8] whereas several other observers were proposed in 

[9-11]. In the current study an adaptive neural network 

observer will be used when the weights are tuned online 

[12]. A key issue in using neural networks is the method 

of train ing networks. Train ing process can be performed 

either online or offline. The proposed observer will be 

online trained whilst there is no need of prior 

knowledge about nonlinear terms during the estimation 

procedure. 

This paper is organized as follows: 

Neural network will be briefly exp lained in section 

two. In section III characteristic of the adaptive 

observer will be described. The observer will be used to 

estimate state of a chaotic pendulum system in  section 

four. The work will be continued to observe states a 

modified Duffing system. Finally a conclusion ends the 

discussion at section V. 

 

II. Brief review of Neural Networks 

Neural network is inspired from b iological system. 

Preliminary a schematic form of neural network is 

shown in Fig. 1. 
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Fig. 1: A model of neural network with one layer 

 

where the input and the relevant weights vectors of 

neural network are: 1 2[ ......... ]nx x x x and 

1 2[ ......... ]nv v v v  respectively. The output is 

denoted by y whilst 0v is a bias term. The activation 

function is also shown by  which may be of a step 

function, purelin or a sigmoid transfer function.  

Output of neural network with one layer is stated by 

the following equation: 

0

1

( ) ( )

n

j j

j

y t v x v



                                         (1) 

Input

Hidden layer

Output

 

Fig. 2: A two-layer neural network model [12] 

 

In order to model the behavior of complex system, 

neural network structure will be enhanced. A first kind 

of promotion will be taken p laces when the number of 

layers and neurons of neural network are increased. 

According to this purpose, the concept of is 

demonstrated. A structure of mult i-layer neural network 

using two layers is presented in Fig. 2.  

Although a two-layer neural network is beneficial, 

using three layers with sufficient neuron in hidden 

layers is found effective to simulate most of nonlinear 

systems. 

 

III. Adaptive Neural Network Observer 

In this section a structure of adaptive neural network 

[12] will be described. Consider the following single 

input-single output nonlinear plants  when pair of 

( , )A C  is observable: 

[ ( ) ( ) ( )]

T

x Ax b f x g x u d t

y C x

   


                           (2) 

Where nx R  , y R , u R  and 
nb R  are 

states, output, control signal and its coefficients whereas 

( )d t  (is an unknown disturbance with known upper 

bounded.  

Terms , : nf g R R denote unknown smooth 

nonlinear functions. Apart from, the linear term is also 

defined in a canonical form which as in the following: 

T

x Ax

y C x




                                                                  (3) 

Where: 
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   
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                      (4) 

A nonlinear state observer proposed as follows:  

 

ˆˆ ˆ ˆ ˆ ˆ ˆ[ ( ) ( ) ( )] [ ]

ˆ

T

T

x Ax b f x g x u v t k y C x

y C x

     


         (5) 

where x̂ denotes an estimation of state x whereas 

1 2[ ......... ]TnK k k k is the observer gain. It is chosen 

such that the term ( )TA KC must be strictly Hurwitz. 

Term ( )v t provides a robust term of observer to reduce 

effects of disturbance on system. The rest of variables 

are the same as in (3). In the following the observer 

design is presented.  
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The estimation error is defined by: 

ˆx x x                                                                   (6) 

This immediately  yields the estimat ion erro r dynamic 

which is as follows: 

( ) [ ( ) ( )]T

T

x A KC x b f gu d t v t

y C x

     


           (7) 

Where ˆ ˆ( ) ( )f f x f x   and  ˆ ˆ( ) ( )g g x g x   

define relevant error terms from that of the orig inal. The 

design takes place by tuning the observer gain K such 

that 
TA KC to become stable.  It is the aim to use a 

neural network to estimate nonlinear terms of the 

system in an on-line train scheme. The applied neural 

network [12] observer involves two layers which is 

described with the following equation: 

( ) ( )T Tf x W V x                                            (8) 

In simulation procedure the first layer is considered 

as s rV I  where s and r denote number of the input 

and the output layers, respectively. The activation 

functions in the first and second layer are the sigmoid 

and the purelin functions respectively. These form the 

nonlinear equation which is as follows [12]:  

( ) ( )

( ) ( )

T
f ff

T
g g g

f x W x

g x W x

 

 

 

 
                                          (9) 

Biases of both two functions are considered zero. 

Meanwhile t rain ing of the network needs a series of 

data in order to tune parameters during the training 

procedure.  

In fact, in [12]; an equation is proposed for training 

the network to maintain the stability of system. 

Outcome of this equation provides the weight 

coefficients of the system at any circumstances. 

Train ing of this neural network for two nonlinear terms 

is achieved from the following differential equation: 

ˆˆ

ˆˆ

f f f f f f

g g g g g g

W F y k F y W

W F y u k F y W





 

 
                         (10) 

fF  , gF  , fK  and gK  are constant parameters of 

equation which must be tuned to determine desired 

weights.  Meanwhile   is a sigmoid activation function 

as in:  

1
ˆ ˆ( )

ˆ1 exp( )
x

x
  

 
                                         (11) 

Constant parameters in  (10) are tuned to guaranty the 

observer stabilizat ion to estimate those relevant 

nonlinear terms.  

 

IV. Application 

4.1 Chaotic Pendulum System 

In this section, the proposed approach will be 

implemented on a pendulum system. Consider the 

following state space representation of pendulum 

system assuming (0) [0 0]x   as an initial condition 

[13]:  

1 2

2 1 1 2sin ( ) ( )

x x

x x x x f t d t 



     
               (12) 

where 

2
1 1

1 0 0

( ) ( ) cos( ) sin ( )

sin ( cos( ) )

f t a t a t

a t a a

    

 

  

  
             (13) 

Where and ( )d t  is disturbance. The dynamic 

using 0.5  , 1 0.3a  , 0.12  , 0.75  , 0 3a    

is of chaotic with the phase portrait in Fig. 3.   

In order to become more practical, the nonlinear term 

of the plant is assumed unknown whilst the first state of 

plant, i.e. 1x , is also available. It  should be noted that 

this observer as a full order observer is able to 

reconstruct all states. However the other available states 

are used to configure the correct ion term i.e. v . An aim 

is to estimate some states using neural network observer 

in presence of external disturbance. The state 1x and the 

estimation are accordingly shown in Fig. 4.  

 

Fig. 3: Chaotic behavior of pendulum system in 250 seconds 
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Fig. 4: State trajectories 1x , 1x̂  

 

The estimation procedure results the estimat ion error 

of 1x  as shown in Fig. 5.   

Fi

g. 5: Estimation error of 1x  

 

The procedure will be in  progress to estimate the 

second state continued i.e. 2x .  

 

Fig. 6: State trajectories 2 2ˆ,x x  

 

Although the second term in (12) i.e. 2x  is more 

complex, the performance of the observer is  found 

acceptable. This essentially confirms the capability of 

the proposed observer. 

 

Fig. 7: Estimation error of 2x  

 

According to the observer performance, the 

estimation error of second state is shown in Fig. 7.  

Meanwhile a frequency analysis of the error will be 

given here for the worst case i.e. 2x error in Fig. 8. 

The correction term is provided by means of the 

estimation error. However an appropriate produced 

error is shown in Fig. 7. First few samples of the 

estimation seem unrealistic. This is due to choosing 

different initial condition for the observer from that of 

the real state. In fact the correction term needs some 

times i.e. the first few samples, to be settled against 

discrepancy of the initial conditions from that of the real.  

In order to assess the realizability to gain in the 

closed loop, a spectral frequency analysis is made as 

shown in Fig. 8.  



 

Fig. 8: Spectral analysis of the complete estimation error 

 

As it can be seen there is almost a big energy (49) in  

0.1 Hz, which dominates the rest of response. To find 

further components the frequency analysis , the 

frequency analysis is gone further by choosing some 

other parts of the signal. This results no more success 

which means intermediate signals are also realizable.  
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4.2 Modified Duffing System 

The capability of the proposed observer will be 

investigated on another second order chaotic Modified 

Duffing system. Consider the following state space 

equation of the system, considering (0) [2 1]x   as an 

initial condition [14]: 

1 2

3
2 1 1 2( cos( )) ( )

x x

x p x q x a b t x d t



     
     (14) 

Where ( )d t  stands for the disturbance. Similarly the 

system will be of chaotic 1p   , 

1q  , 1b   , 1  , 0.001a   where  can be seen is 

the phase portrait in Fig. 9.  The assumption in the last 

section will be similarly again made. This means that the 

system state 1x , is measurable whilst the nonlinear term 

of the system is not identifiable. 

 

Fig. 9: Chaotic behavior of modified Duffing system in 250 seconds 

 

Figure 10 depicts the states and that of the estimated.  

 

Fig. 10: State trajectories 1 1ˆ,x x  

 

As seen from Fig. 10, the outcome of the estimation 

of the states is satisfactory. The estimation error of 1x  

can also be seen Fig. 11. 

 

Fig. 11: Estimation error of 1x  

 

The estimat ion process will be continued to 

reconstruct the second state, which can be seen in 

Figure 12. The nonlinearity of the system is mostly 

occurred on the second state. Therefore the estimation of 

the second state is challenging. However Fig.  12 shows 

the estimation result of using the proposed observer. 

 

Fig. 12: State trajectories 2 2ˆ,x x  

 

Furthermore performance of the proposed observer is 

verifies as the estimation error is seen in Fig. 13. 

 

Fig. 13: Estimation error of 2x  
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The same frequency analysis is made for the 

estimation error. Since the estimation error of the second 

state (Fig. 13) is more challenging, an analysis is done 

for this error using the fft command in MATLAB
TM

 

software. The frequency spectrum and that of the 

processed data is shown in Fig. 14. As shown in the 

figure dominant frequency are located at the lower 

region i.e. below 10 Hz. Similar to that of in the first 

case, i.e. the pendulum, most of the energy is condensed 

at low frequency e.g. 5 Hz. Th is confirms the proposed 

observer is realizable. Unlike to the first case there are 

higher components  with almost lower energy. This may 

be caused by the higher nonlinear term in the model. 

However this may be filtered by the process itself. 



 

Fig. 14: Spectral analysis of the most part of the control effort  

 

V. Conclusion 

In this study, an adaptive neural network based 

observer is proposed to estimate states of a complex 

chaotic system. The procedure is found capable of being 

realized in practical systems. Apart from few first 

samples spectral frequency analysis verifies the 

proposed observer is realizable. Cure of the shortcoming 

in some few instances of the frequency is promising by 

choosing less discrepancy of the initial conditions of the 

estimation procedure and also filtering characteristics of 

the process. The neural network tunes the weight of the 

connection from each node from the first layer to the 

second. This structure appropriately approximates 

unknown nonlinearity in the system dynamics.  The 

observer found capable to estimate the chaotic system 

states. 

In this paper, the observer procedure is primarily 

implemented on a chaotic pendulum system with 

complex and nonlinear dynamic.  The work is continued 

to estimate states as well as the unknown nonlinear 

terms of the chaotic modified Duffing system. A 

frequency analysis is also performed to verify the 

generated control effort is realizable. Simulation results 

confirm the performance of the proposed structure of the 

sensor-less control of chaotic systems.  

 

References 

[1] J. Stark, K. Hardy, ―Chaos: useful at last? ‖, 

Science, Vol 301,pp.1192-1193 ,2003 . 

[2] Samuel Bowong, F.M. Moukam Kakmeni, Jean 

Luc Dim. ―Chaos control in the uncertain Duffing 

oscillator‖, Journal of sound and vibration, 

Vol.292, pp. 869–880,2006 

[3] Ercan Solak, Omer Morgul, Umut Ersoy. 

―Observer-based control of a class of chaotic 

systems‖, Physics Letters A, Vol.279, pp. 47-55, 

2001. 

[4] L.Ljung, ―Asymptotic behavior of the extended 

kalman filter as a parameter estimator for linear 

systems‖, IEEE Transaction. Automat. Contr. AC-

24, pp. 36-50,1979 . 

[5] Y. Song and J. W. Grizzle, ―The extended Kalman 

filter as a local asymptotic observer for nonlinear 

discrete-time systems‖, in Proc. Amer. Contr. Conf. 

pp.3365-3369.1992  

[6] -, ―Special issue on applications of kalman 

filtering‖, IEEE Trans. Automat. Contr.,Vol. AC-

28, no 3,1983.  

[7] J. Julier and K. Uhlmann, ―A new method for 

nonlinear transformation of means and covariances 

in filter and estimation‖ IEEE Trans. Autom. 

Control, Vol. 45,no 3,pp 477-482,2000.  

[8] G. Bastin and M R Gevers, ―Stable adaptive 

observers for nonlinear time-vary ing systems‖, 

IEEE Trans. Auto. Ctrl. Vol. 33, no 7, pp 650-657, 

1988.  

[9] R. Marino, ―Adaptive observers for single output 

nonlinear systems‖, IEEE Trans. Auto. Ctrl, Vol. 

35, no 9, pp 1054-1058, 1990.  

[10] R. Marino and P. Tomei, ―Global adaptive 

observer for nonlinear systems via filtered 

transformations‖, IEEE Trans. Auto. Ctrl. Vol. 37, 

no 8, pp 1239-1245.1992.  

[11] R. Marino and P. Tomei, ―Adaptive observers with 

arbitrary exponential rate of convergence for 

nonlinear systems‖, IEEE Trans. Auto. Ctrl.,Vol. 

40,no 7, pp 1300-1304,1995.  

[12] Young H. Kim, Frank L. Lewis and Chaouki T. 

Abdallahs ―A dynamic recurrent neural network 

based adaptive observer for a class of nonlinear 

systems‖, Automatica, Vol. 33, no 8,pp 1539-

1543,1997.  

[13] Ruiq i Wang, Zhujun Jing ―Chaos control of 

chaotic pendulum system‖, Chaos, Solitons and 

Fractals., Vol. 21, pp 201-207,2004. 

[14] Dongchuan Yu, Dongqing Wang, Ninhua Xia ―A 

class of nonlinear PID control for modified 

Duffing system‖, Proceeding of the 2006 



 Application of Adaptive Neural Network Observer in Chaotic Systems  43 

Copyright © 2014 MECS                                                           I.J. Intelligent Systems and Applications, 2014, 02, 37-43 

American control conference Minneapolis,  

Minnesota, USA, IEEE.2006. 

 

Authors’ Profiles 

Milad Malekzadeh received his B. 

Sc. degree in Power Electeronic 

Engineering from the Faculty of 

Electrical and Computer 

Engineering, University of 

Mazandaran, Babol, Iran, in 2010. 

He is pursuing his M.Sc. in Control 

Engineering at the Babol University 

of Technology, Babol, Iran. His Major interests are 

Robust Control, Optimal Control and Artificial 

Intelligent Systems.  

 

Alireza Khosravi received the 

Ph.D. degree in Control 

Engineering from Iran University 

of Science and Technology (IUST), 

Iran, in 2008. He is currently 

assistant professor at Electrical 

Engineering Department, Babol 

(Noushirvani) University of 

Technology, Babol, Iran. His 

research interests include robust and optimal control, 

modeling and system identification and intelligent 

systems. 

 

Abolfazl Ranjbar N.  was born in  

Gorgan, Iran on 21st of Mar. 1964. 

He received B. Sc. in 1988 from 

Isfahan Univ. of Technology, 

IRAN, M. Sc. in 1992 from 

Tarbiat Modaress Univ., IRAN and 

Ph. D. in 2000 from Surrey Univ. 

UK, in Control Eng. . Currently he 

is an associate prof. at Control Eng. 

Dept. of Babol Univ. of Tech., Babol, Iran. His research 

Interests are Machine Control, Nonlinear and Chaos 

systems, Robust and Adaptive Control and Fractional 

Calculus. E- mail: a.ranjbar@nit.ac.ir. 

 

Reza Ghaderi. was born in 

Gorgan, 1962. He received B. Sc.  

in 1989 from Ferdoosi Univ. of 

Mashhad, IRAN, M. Sc. in 1991 

from Tarbiat Modaress Univ., 

IRAN and Ph. D. in 2001 from 

Surrey Univ. UK all in  

Electronic Eng.. Currently he is 

an associate prof. at Control Eng. 

Dept. of Shahid Beheshti Univ., 

Tehran, Iran. His research interests are neural networks, 

pattern recognition, system modeling, signal processing, 

Fuzzy logic, artificial intelligent. E- mail: 

r_ghaderi@sbu.ac.ir.  

 

 

 
How to cite this paper: Milad Malekzadeh, Alireza Khosravi, 

Abolfazl Ranjbar Noei, Reza Ghaderi,"Application of 

Adaptive Neural Network Observer in Chaotic Systems", 

International Journal of Intelligent Systems and 

Applications(IJISA), vol.6, no.2, pp.37-43, 2014. DOI: 
10.5815/ijisa.2014.02.05 

mailto:a.ranjbar@nit.ac.ir

