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Abstract— This paper aims to apply a modified current 

search method, adaptive current search (ACS), for 

assembly line balancing problems. The ACS algorithm 

possesses the memory list (ML) to escape from local 

entrapment and the adaptive radius (AR) mechanis m to 

speed up the search process. The ACS is tested against 

five benchmark unconstrained and three constrained 

optimization problems compared with genetic algorithm 

(GA), tabu search (TS) and current  search (CS). As 

results, the ACS outperforms other algorithms and 

provides superior results. The ACS is used to address 

the number of tasks assigned for each workstation, 

while the heuristic sequencing (HS) technique is 

conducted to assign the sequence of tasks for each 

workstation according to precedence constraints. The 

workload variance and the idle t ime are performed as 

the mult iple-object ive functions. The proposed 

approach is tested against four benchmark ALB 

problems compared with the GA, TS and CS. As results, 

the ACS associated with the HS technique is capable of 

producing solutions superior to other techniques. In 

addition, the ACS is an alternative potential algorithm 

to solve other optimization problems. 

 

Index Terms—  Metaheuristics, Adaptive Current Search, 

Tabu Search, Assembly Line Balancing, Energy Resource 

Management 

 

I. Introduction 

Conventionally, effective energy resource 

management consists of energy management program, 

organization structure, energy policy, planning, auditing 

and reporting [1]. Moreover, classical method for 

energy resource management uses the various principles 

such as energy management system (EMS), excess 

energy management (EEM), energy driven force (EDF), 

energy knowledge management (EKM), energy 

innovation creation (EIC), energy system control (ESC)  

and energy organization culture (EOC) [2]. The 

conventional orientation focuses on operations and 

activities done by human. However, due to human 

uncertainty in operation, those approaches seem 

inefficient and non-sustainable. Generally, energy 

resource management conducted recommendations of 

consultants usually based on their experience and 

feeling. The mot ivation of this research is init iated from 

needs to find the general algorithm to solve the energy 

resource management in industries  efficiently. 

Regarding to optimizat ion context, many of 

challenging applications in science, engineering and 

technology can be formulated and performed as 

optimization problems [3,4]. Energy management can 

be considered as a class of non-polynomial time hard 

(NP-hard) combinatorial optimization problem. Such 

the problem usually possesses nonlinear and 

unsymmetrical terms as well as multip le local solutions. 

These cause the problem complex and difficult to solve 

by an exact method within a reasonable amount of t ime. 

Moreover, inefficient algorithms are easily trapped due 

to its local solutions. To solve the problem, 

metaheuristic optimization methods are alternatives [4].  

Over five decades, many efficient metaheuristics 

such as genetic algorithm (GA), tabu search (TS), 

particle swarm optimizat ion (PSO), harmony search 

(HS) and current search (CS) have been developed for 

combinatorial, continuous and mult iobjective 

optimization problems [5]. These algorithms can be 

classified into two  groups: population-based and single-

solution based algorithms. Two important properties of 

any metaheuristics are explorat ion and explo itation [6-

8]. Explorat ion property simply means the generation of 

diverse solutions to explore the search space on the 

global scale, while explo itation focuses on the search in 

a local region by exp loit ing information that a currently 

good solution is found in a local region. It was found by 

literatures that the population-based has strong 

exploration property, while the single-solution based 

has strong exp loitation property. Metaheuristics has 
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been widely applied to various real-world  engineering 

problems [5,7]. One of the latest metahueristic search 

algorithms is the current search (CS) [9]. By literatures, 

the CS has been successfully applied to control 

engineering [10] and signal processing [11]. The CS 

performed satisfactory results. However, the CS may be 

trapped by local optima. Therefore, the CS algorithms 

need to be modified to improve its effectiveness.  

This paper proposes the adaptive current search 

(ACS), which is the modified version of the CS method 

as a new tool for solving the resource management 

optimization problems. It consists of five sections. The 

ACS algorithms are elaborately exp lained in section II. 

The performance evaluation of the ACS over f ive 

benchmark unconstrained and three constrained 

optimization problems compared with GA, TS and CS 

is provided in  section III. The application of the ACS to 

energy resource management of the assembly line 

balancing (ALB) problems is illustrated in section IV, 

while conclusions are given in section V.  

 

II. Adaptive Current Search Algorithms 

The current search (CS) has been developed based on 

the principle of current divider in electric circu it theory 

[9,10,11]. The behavior of electric current is like a t ide 

that always flow to  lower places. The less the resistance 

of branch, the more the current flows. The CS algorithm 

is described by the flow diagram represented in Figure 1. 

The advantages are that the CS can find any local 

solution in each search direct ion efficiently. Moreover, 

it can provide unlimited search directions defined by 

users. However, the CS algorithm is based on an 

electric current behavior considered as the natural 

movement. The disadvantages of the CS are that its 

search process may be trapped or locked by any local 

solution. In addition, the search time consumed by the 

CS is depended on the numbers of search directions. 

The modified version of the CS algorithm is called 

the adaptive current search (ACS) metahueristics. The 

memory list (ML) and the adaptive radius (AR) 

mechanis m are proposed for inserting into the CS 

algorithms. The ML is used to escape from local 

entrapment caused by any local solution, while the AR 

is conducted to speed up the search process. The 

proposed ML consists of three levels: low, medium and 

high. The low-level ML is used to store the ranked 

init ial solutions at the beginning of search process, the 

medium-level ML is conducted to store the solution 

found along each search direction, and the high-level 

ML is used to store all local solutions found at the end 

of each search direction. 

Once the search process is started, the set of init ial 

solutions is generated randomly. They will be ranked by 

the objective function of the problem of interest from 

most to least significant. The ranked in itial solutions 

will be stored in  the low-level ML. This scheme helps 

the ACS algorithms to be stronger in exp loration 

strategy. 

Start

Initialize:

- search space W

- k = j = 1, jmax = 10

- N = n = 10, r = 0.1W

- Y =  Ø

Uniformly Random set of initial 

solutions Xi, i=1,…,N within W

Evaluate f(Xi) and rank Xi leading 

f(X1)<f(X2)<…<f(XN), the store 

ranked Xi  into Y

Let x0 = Xk be initial solution

Uniformly Random set of 

neighborhood member xi, i=1,…,n 

around x0 within radius r

Evaluate f(xi) and let x’ be an elite 

solution among xi making f 

minimum

f(x’)<f(x0)
Store x0 = x’ and 

set j = 1 

yes

no

Update j = j+1 

j<jmax

no

yes

Update k = k+1

TC met ?
no

yes

Report the optimal 

solution x0

End
 

Fig. 1: Flow Diagram Of CS Algorithm [9] 

 

The ranked in itial solution with most significant will 

be selected as the current solution for the first search 

direction. The neighborhood members will be generated 

randomly around the current solution within the certain 

radius. All neighborhood members will be evaluated by 
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the objective function of the problem. The best 

neighborhood giving the minimum objective function 

value is used to compare with the current solution. If the 

best neighborhood is better than the current solution, the 

current solution will be replaced by the best 

neighborhood, while the previous current solution will 

be keep into the medium-level ML. Once the search 

process moves close to the local solution (which can be 

observed by the objective function value), the AR 

mechanis m is activated to speed up the process. The 

search radius is thus reduced according to the objective 

function value found so far. The less the objective 

function value found, the s maller the search radius is 

adapted. This implies that the refined solutions will be 

considered. Then, the local solution of this search 

direction will be found within  faster time and will be 

keep into the high-level ML. This scheme helps the 

ACS algorithms to be stronger in exploitation strategy. 

After the local solution of the first search direction is 

found, the search process look backward to the low-

level ML. The second most in itial solution ranked in the 

low-level ML will be selected as the current solution for 

the second search direction so far. Th is scheme will be 

repeated until the global solution will be found or the 

termination criteria are met. 

With ML and AR mechanism, a sequence of 

solutions obtained by the ACS rapid ly converges to the 

global min imum. The developed ACS algorithms can 

be described step-by-step as follows: 

Step 1  In itialize the search space W , iteration counter  

k  = j = 1, maximum allowance of solution cycling jmax, 

number of init ial solutions N, number of neighborhood 

members n, search radius R, and low-level ML Y = , 

medium-level ML  = , and high-level ML  = . 

Step 2 Uniformly random init ial solution Xi, i = 

1,…,N  within W . 

Step 3 Evaluate the objective function  f(Xi) for X . 

Rank Xi that g ives f(X1) << f(XN), then store ranked 

Xi  into the low-level ML Y. 

Step 4 Let x0 = xk as selected initial solution. 

Step 5 Uniformly random neighborhood xi, i = 1,…,n   

around x0 within radius R. 

Step 6 Evaluate the objective function f(xi) for x . A 

solution giving the minimum object ive function is set as 

x*. 

Step 7 If f(x*)<f(x0), keep x0 into medium-level ML 

k and set x0 = x*, set j = 1 and return to Step 5. 

Otherwise keep x* into medium-level ML k and update 

j = j+1. 

Step 8 If the search process moves close to the local 

solution, activate the AR mechanism by adjusting R = 

rR, 0<r<1.   

Step 9 If j< jmax, return to Step 5. Otherwise keep x0 

into high-level ML   and update k  = k+1. 

Step 10 Terminate the search process when the 

termination criteria (TC) are satisfied. The optimum 

solution found is x0. Otherwise return to Step 4. 

ACS algorithms mentioned above can be represented 

by the pseudocode as shown in Figure 2, and some 

movements of the ACS search process can be depicted 

in Figure 3. 

procedure 

Initialize the search space = W, 

the memory lists (ML) Y =  =  = , 

the iteration counter i = j = k = l = 1, 

the maximum search iteration in each direction Imax,

the maximum allowance of solution 

       cycling jmax, the number of initial solutions

       (feasible directions of currents in network) N,

       number of neighborhood members n, 

       the maximum objective function value e for AR,

       and the search radius R.

while (i < N) do // generate search directions

Generate initial solutions Xi randomly

within W; Evaluate f(Xi) via the objective 

function; Rank Xi giving f(Xi) from min

to max values (X1 gives the min, while

XN gives the max objective function values); 

Store ranked Xi into Y;

end_while

while (k ≤ N) or the TC are not satisfied do

Set x0 = Xk;

while (i ≤ Imax) do

         Generate neighborhood xk,l (l =1,2,…,n) 

         randomly around x0 within R;

         for l ¬  1 to n do

               Evaluate f(xk,l) via the objective 

               function; Set x* as a solution giving 

               the minimum objective value; 

         end_for

         if f(x*) < f(x0) do  

               Keep x0 into k;

               Set x0 = x*;

               Set j = 1;

         else do

               Keep x* into k;

               Update j = j+1;

         end_if

         if f(x0) < e do // activate the AR

               Adapt R = rR, r Î [0, 1];             

         end_if   

         if j == jmax do // activate other directions 

               Keep x0 into ;

               Update k = k+1;

               Go out-loop while;

         end_if   

         Update i = i+1;

end_while

Keep x0 into ;

Update k = k+1;

end_while

end_procedure

Pseudo-code of ACS

Fig. 2: Pseudocode Of ACS Algorithm 
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Fig. 3: Some Movements Of ACS Algorithm 

 

III. Performance Evaluation 

This section presents the performance evaluation of 

the ACS against unconstraint and constraint benchmark 

optimization problems compared with GA, TS and CS. 

The efficiency of those algorithms can be measured by 

the success rate of finding the global optima. In this 

paper, algorithms of GA and TS are omitted. Readers 

may refer to [12,13] for GA and [14,15] for TS, 

respectively. Those algorithms were  coded by 

MATLAB running on Intel Core2 Duo  2.0 GHz 3 

Gbytes DDR-RAM computer, while GA is used from 

the MATLAB-GA Toolbox [13]. Each algorithm 

performs search on each test function for 100 trials 

beginning with different initial solutions while search 

parameters are kept the same. Search  parameter settings 

for the GA follow MATLAB-GA Toolbox [13] and for 

the TS follow [15]. 

 

3.1 Unconstrainted Optimization 

For unconstraint optimization test, GA, TS, CS and 

ACS are tested against five well-known unconstrained 

optimization problems [16] including Bohachevsky 

function (BF), the fifth function of De Jong (DJF), 

Griewank function (GF), Michaelwicz function (MF) 

and Shekel’s fox-holes function (SF). These problems 

are summarized in Tab le 1, in which Jmin is the 

minimum values of objective functions required to 

terminate the search. The search parameters of the CS 

and the ACS for this test are set as summarized in Tab le 

2, where n = number of neighborhood members, R =  

search radius, N = search (current) paths and Imax = 

maximum search iterations. 

Table 1: Summary Of Unconstrained Optimization Problems 
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Table 2: CS and ACS Parameter Setting 

                             R – adjustment 

   Stage I                                Stage II

Test

functions
n                 R                 N                 Imax                                                                   

BF                           

DJF                         

GF                          

MF                          

50               0.1               50              1,000            

50               5.0              100             1,000            

100              0.5              100             1,000           

50               2.0               50              1,000            

SF                        100             1.5               50              1,000           

J < 1 ´ 10-2 ®  R = 0.01        J < 1 ´ 10-4 ®  R = 0.001

J < 1 ´ 102  ®  R = 1.00        J <  10  ®  R = 0.50 

J < 1 ´ 10-2 ®  R = 0.01        J < 1 ´ 10-4 ®  R = 0.001 

 J < 1 ®  R = 0.01                   J < 0 ®  R = 0.001 

J < -2 ®  R = 1.00                  J < -5 ®  R = 0.50 

CS Parameter Settings

Test

functions
n                 R                 N                 Imax                                                                   

BF                           

DJF                         

GF                          

MF                          

50               0.1               50              1,000            

50               5.0              100             1,000            

100              0.5              100             1,000           

50               2.0               50              1,000            

SF                        100             1.5               50              1,000           

ACS Parameter Settings

 

 

Table 3: Results of Unconstrained Optimization Problems 

Test

functions
       GA                                          TS                                        CS                                       ACS   

BF                           

DJF                         

GF                          

MF                          

SF                        

480,100 ± 34,612(86%)        465,100 ± 19,745(96%)        241,310 ± 9,867(100%)      200,250 ± 7,572(100%)     

385,400 ± 26,748(77%)        352,520 ± 21,632(94%)        124,212 ± 8,410(98%)        112,028 ± 7,046(100%)

902,150 ± 67,223(82%)        780,464 ± 41,947(92%)        514,575 ± 31,108(96%)      501,020 ± 21,663(100%)    

200,375 ± 22,591(88%)        145,680 ± 10,866(95%)        67,260 ± 3,103(99%)          49,640 ± 2,458(100%)          

685,450 ± 45,411(90%)        545,120 ± 33,012(97%)        325,850 ± 14,102(100%)    302,210 ± 9,815(100%)      

 
 

Results obtained are summarized in Tab le 3, where 

the global optima are reached. The numbers are in the 

format: average number o f evaluations (success rate). 

For example, 200,250±7,572(100%) means that the 

average number (mean) of function evaluations is 

200,250 with a standard deviation of 7,572. The success 

rate of finding the global optima for th is algorithm is 

100%. Referring to Table 3, it can be observed that the 

ACS is much more efficient in finding the global 

optima with higher success rates. For all test functions, 

the proposed ACS outperforms GA, TS and CS. 

 

3.2 Constrainted Optimization 

For constraint optimizat ion test, GA, TS, CS and 

ACS are tested against three constrained optimization 

problems consisting of Fcon01, Fcon02 and Fcon03, 

detailed as follows. 

The function Fcon01 [17] is stated in equation (1). 

This function is a minimizat ion problem with two 

design variables and two inequality constraints. The 

unconstrained objective function f(x) has a minimum 

solution at (3, 2) with a corresponding function value 

equal to zero. The constrained minimum solution is 

located at x* = (2.246826, 2.381865) with an objective 

function value equal to f*(x) = 13.59085.  
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For this function, parameter settings for the GA 

follow MATLAB-GA Toolbox [13] and fo r the TS 

follow [15]. The common search parameters of the CS 

are: n  = 1,000, R = 0.1, N = 500 and Imax = 1,000. Jmin  

13.60 is the minimum values of objective functions 

required to terminate the search. For the ACS, R-
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adjustment is set as J < 25.00 ®  R =  0.01 and J < 15.00 

® R = 0.001. Results are summarized in Tab le 4 and 

Figure 4. 
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Fig. 4: Movements Of ACS Algorithm Over Fcon01 

 

From Figure 4, it was found that the ACS spent only 

three search directions to reach  the global optimum.  

Table 4 shows the best solutions found by the GA, TS, 

CS and ACS as well as their corresponding objective 

function values. It was noted that the ACS result is very 

close to the optimal solution and outperforms other 

three results not only in the aspect of the objective 

function values but also in that of constraint accuracy. 

The function Fcon02 [18] with two design variables 

and two constraints is stated in equation (2). The 

minimum solution is located at x* = (0.82288, 0.91144) 

with an objective function value equal to f*(x) = 1.3935. 

Once GA fo llows MATLAB-GA Toolbox [13] and 

TS fo llows [15]. The common parameters of the CS are: 

n = 1,000, R = 0.1, N = 500 and Imax = 1,000. Jmin  

1.3936 is the minimum values of objective functions 

required to terminate the search. For the ACS, R-

adjustment is set as J < 5.00 ®  R = 0.01 and J < 2.00 

® R =  0.001. Results are summarized in Table 5. It was 

found that the ACS outperforms other three results in 

both the objective function values and the constraint 

accuracy. 

 

Table 4: Results Of Fcon01 Constrained Optimization Problem  

Algorithms 
Optimal solutions x* Constraints 

Objective function f*(x) 
x1 x2 g1 g2 

GA 2.246840 2.382136 0.00002 0.22218 13.590845 

TS 2.2468258 2.381863 0.00002 0.22218 13.590841 

CS 2.2468262121 2.3818704379 2.2100310
-15

 0.2221826212 13.5908416934 

ACS 2.246828512562 2.381813302772 1.833200210
-18

 0.2221828329242 13.590841501204030 

 

Table 5: Results of Fcon02 Constrained Optimization Problem  

Algorithms 
Optimal solutions x* Constraints 

Objective function f*(x) 
x1 x2 g1 g2 

GA 0.8350 0.9125 1.010
-2
 -7.010

-2
 1.3772 

TS 0.8343 0.9121 5.010
-3
 5.410

-3
 1.3370 

CS 0.82283310 0.91144165 1.010
-6
 4.910

-6
 1.3935867 

ACS 0.82283256086 0.91142060358 -8.646303010
-6

 4.912756210
-5
 1.39356948924 
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The function Fcon03 [17] stated in equation (3) has 

seven design variables and four nonlinear constraint 

functions. The best known optimum solution is located 

at x* = (2.330499, 1.951372, -0.4775414, 4.365726, -

0.6244870, 1.038131, 1.594227) with the corresponding 

objective function equal to f*(x) = 680.6300573.  
),,(,

,)(

,)(

,)(

,)(

)(

)()()(min

711010

0115234

08623196

01037282

05432127

8104

710113

12510

76
2
321

2
2

2
14

7
2
6

2
213

54
2
3212

5
2
43

4
2

2
11

7676

4
7

2
6

6
5

2
4

4
3

2
2

2
1

=

=

=

=

=





=

ix

xxxxxxxxg

xxxxxg

xxxxxxg

xxxxxxg

xxxx

xxxx

xxxxf

i

x

to,subject

   (3) 



 Energy Resource Management of Assembly Line Balancing Problem using Modified Current Search Method 7 

Copyright © 2014 MECS                                                             I.J. Intelligent Systems and Applications, 2014, 03, 1-11 

Like Fcon01 and Fcon02, parameter settings for the 

GA follow MATLAB-GA Toolbox [13] and for the TS 

follow [15]. The common search parameters of the CS 

are: n = 2,000, R = 0.1, N = 1,000 and Imax = 1,000. Jmin 

 680.63 is the minimum values of object ive functions 

required to terminate the search. For the ACS, R-

adjustment is set as J < 1,000 ® R = 0.01 and J < 750 

® R =  0.001. Results are summarized in Table 6. It was 

found also that the ACS outperforms other three 

algorithms and provides superior results. 

 

Table 6: Results Of Fcon03 Constrained Optimization Problem  

Optimal solutions x* and Objective function f*(x) GS TS CS ACS 

x1 2.32345617 2.33047 2.33087488 2.324971068354062 

x2 1.951242 1.95137 1.95136990 1.950016515825672 

x3 -0.448467 -0.47772 -0.47459349 -0.491430343898877 

x4 4.3619199 4.36574 4.36555341 4.370929879461707 

x5 -0.630075 -0.62448 -0.62452549 -0.623883321164803 

x6 1.03866 1.03794 1.03793634 1.040859835982587 

x7 1.605384 1.59414 1.59406525 1.593387864833378 

f*(x) 680.6413574 680.6380577 680.6350771 680.6304164174447 

 

IV. ACS Application to ALB Problems 

The application of the ACS to energy resource 

management of the assembly line balancing (ALB) 

problems is proposed. The ALB problem is considered 

as one of the classical industrial engineering problems 

[19]. An assembly line is a sequence of workstations 

connected together by a material handling system. It  is 

used to assemble components or tasks into a final 

product. The fundamental of the line balancing 

problems is to assign the tasks to an ordered sequence 

of workstations that min imize the amount of the idle 

time of the line, whereas satisfying two particular 

constraints. The first constraint is that the total 

processing time assigned to each workstation should be 

less than or equal to the cycle time. The second is that 

the task assignments should follow the sequential 

processing order of the tasks or the precedence 

constraints.  

The ALB can be considered as the class of 

combinatorial optimizat ion problems known as NP-hard 

[20,21]. In this work, the single-model assembly line 

balancing problem is considered. Balancing of the lines 

can be measured by the idle time (Tid), the workload 

variance (wv) and the line efficiency (E) [22]. Therefore, 

the goals of balancing assembly lines are to min imize 

the idle time and the workload variance. Analytical 

formulat ions for the ALB problems are stated in 

equations (4) - (7), where m is the number of 

workstations, W is the total processing time, c is the 

cycle time and Ti is the processing time of the i
th

 

workstation. 
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The ALB problem can be formulated as the 

multiobjective constrained optimization problem. The 

multiobjective function (J) consisting of the workload 

variance (wv) and the id le time (Tid) is performed as 

stated in equation (8), where γ1 and γ2 are weighted 

factors (γ1 + γ2 = 1.0). J in equation (8) will be 

minimized by the ACS metaheuristics as express ed in 

equation (9).  

idv TwJ ´´= 21                                            (8) 

constrainsprecedent

cTtosubject

J

i ,

minimize


                    (9) 

By this approach, the workload variance will be 

minimized  in sense of the resource management 

optimization. This implies that, if all machines (once 

one machine, one workstation is assumed) of the 

assembly line are equally operated, resource 

management is optimal. This means that the assembly 

line of interest is balanced and all machines possess the 

same workload. Again by this approach, the idle time 

will be min imized in sense of the energy management 

optimization. This implies that, if all machines of the 

assembly line are operated with full-time production 

(without or with the least idle t ime), energy 

management is optimal. In contrast, running some 

machines without production is the energy loss of the 

line. In  this application, the proposed ACS associated 

with the heuristic sequencing (HS) technique is 
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conducted to solve the ALB problems. The proposed 

ACS is used to address the number of tasks assigned for 

each workstation, while the HS technique is conducted 

to assign the sequence of tasks for each workstation 

according to precedence constraints as represented by 

Figure 5.  

The HS is based on the heuristic logics of practicing 

engineers to arrange the sequence of tasks assigned for 

each workstation. In practice, assigning task will be 

considered from its processing time, number of 

succeeding tasks and number of precedent tasks. The 

proposed PH algorithm is thus described as follows. 

Step 1  Let number of tasks be n. 

Step 2  Initialize sequence of tasks Δ =  and i = 1. 

Step 3  If a current task, δi, possesses properties: 

(3.1) no precedent tasks, 

(3.2) maximum succeeding tasks, and 

(3.3) maximum processing time, put δi into Δ 

respectively, delete δi, n = n – 1, then go to Step 4, 

otherwise, update i = i + 1, then go back to Step 3. 

Step 4  If n = 0, terminate the sequencing process. The 

sequence of tasks stored in Δ is successfully 

arranged, otherwise set i = 1, go back to Step (3). 
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Fig. 5: ACS-Based ALB Problem Solving 

 

The proposed approach is tested against four 

benchmark single -model ALB problems collected by 

Scholl [23] as summarized in Table 7. In this work, the 

number of workstations, m, can be calculate by equation 

(4). For all tests, the parameter settings for the GA 

follow MATLAB-GA Toolbox [13] and fo r the TS 

follow [15]. The common search parameters of the CS 

are: n = 1,000, R =  0.2 and Imax = 1,000. N = 500 is 

required to terminate the search. For the ACS, R-

adjustment is set as Imax = 500 ® R =  0.1 and Imax = 750 

® R =  0.01. The CS and ACS algorithms were  coded 

by MATLAB running on Intel Core2 Duo 2.0 GHz 3 

Gbytes DDR-RAM computer. The γ1 = γ2 = 0.5 are set 

to compromise the wv and Tid in equation (8). Table 8 

provides the boundaries of number of tasks for each 

workstation set for the corresponding search spaces. 

Once the search process stopped, results obtained are 

summarized in Table 9. 

 
Table 7: Details of Benchmark ALB Problems   

Entry Name n W(min.) c(min.) m 

1 Buxey 29 324 50 7 

2 Sawyer 30 324 40 9 

3 Warnecke 58 1,548 160 10 

4 Tonge 70 3,510 325 11 

 

Table 8: Lists of Search Spaces  

Entry Search spaces 

1 
S1Î[2, 7]; S2Î[3, 8]; S3Î[2, 6]; S4Î[3, 7]; 

S5Î[2, 7]; S6Î[2, 5]; S7Î[2, 5] 

2 

S1Î[2, 5]; S2Î[2, 6]; S3Î[3, 6]; S4Î[3, 6]; 

S5Î[2, 5]; S6Î[1, 4]; S7Î[1, 5]; S8Î[1, 4]; 

S9Î[2, 5] 

3 
S1Î[3, 6]; S2Î[3, 6]; S3Î[4, 8]; S4Î[6, 9]; 

S5Î[5, 9]; S6Î[3, 6]; S7Î[4, 7]; S8Î[5, 8]; 

S9Î[5, 8]; S10Î[4, 8] 

4 
S1Î[6, 9]; S2Î[5, 8]; S3Î[2, 6]; S4Î[3, 6]; 

S5Î[5, 7]; S6Î[3, 6]; S7Î[5, 10]; S8Î[6, 12];  

S9Î[6, 12]; S10Î[5, 8]; S11Î[5, 8]; 

Note: Si stands for the ith
 workstation. 

 

Table 9: Results of ALB Problems   

Entry 1: Buxey 

Apps. wv Tid(min.) E(%) 

GA 11.06 26.00 94.46 

TS 8.77 26.00 95.02 

CS 2.64 26.00 95.38 

ACS 1.35 26.00 96.42 

Entry 2: Sawyer 

Apps. wv Tid(min.) E(%) 

GA 6.00 36.00 90.00 

TS 5.84 36.00 91.85 

CS 3.22 36.00 95.47 

ACS 1.56 36.00 97.30 

Entry 3: Warnecke 

Apps. wv Tid(min.) E(%) 

GA 18.56 52.00 95.66 

TS 10.11 52.00 95.91 

CS 8.86 52.00 96.04 

ACS 6.56 52.00 97.35 

Entry 4: Tonge 

Apps. wv Tid(min.) E(%) 

GA 11.54 65.00 98.18 

TS 8.74 65.00 98.85 

CS 3.98 65.00 99.01 

ACS 1.17 65.00 99.40 

 Note: Apps. stands for approaches. 
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Table 10: Results of Tonge-ALB Problems by ACS   

Work- 
Station 

(m) 

Tasks assigned 
for each 

workstation 

Station 
T ime 

(min.) 

Idle T ime 
(min.) 

1 1,2,3,5,9,15,24 317 8 

2 4,6,7,10,41,68 319 6 

3 11,16,18 318 7 

4 8,12,14,30,69 318 7 

5 13,17,19,20,22,57 319 6 

6 21,23,25,27 320 5 

7 26,29,31,32,33,34,58,59 320 5 

8 28,35,36,37,38,44,45,48,51,70 319 6 

9 39,40,56,61,62,63,64 320 5 

10 42,43,46,47,49,52,67 321 4 

11 50,53,54,55,60,65,66 319 6 

The total idle time (Tid) = 65.00 min., 
The workload variance (wv) = 1.17, 

The line efficiency (E) = 99.40%. 

 

Referring to Table 9, it was found that the proposed 

ACS associated with the HS technique is capable of 

producing solutions superior to other techniques for all 

ALB problems. The workload variance, wv, can be 

successfully minimized in sense of the resource 

management optimization, while the idle time, Tid, can 

be satisfactory min imized in sense of the energy 

management optimizat ion. For example, Table 10 

contains the results of the Tonge-ALB problem 

obtained by the ACS with HS association in details. 

 

V. Conclusions 

The application of the adaptive current search (ACS) 

to energy resource management optimizat ion has been 

proposed in this paper. The ACS is the modified version 

of the current search (CS) developed from the behavior 

of an electric current flowing through electric networks. 

With the memory list (ML) and the adaptive radius (AR) 

mechanis m, the ACS effect iveness can be improved to 

escaping from any local entrapment and to speed up the 

search process. For its performance evaluation against 

five benchmark unconstrained and three constrained 

optimization problems compared with genetic algorithm 

(GA), tabu search (TS) and CS, it was found that the 

ACS outperforms other algorithms and provides 

superior results which are very close to the optimal 

solutions for all testes functions. The proposed ACS has 

been applied to energy resource management of the 

assembly line balancing (ALB) problems associated 

with the heuristic sequencing (HS) technique. By this 

approach, the ACS is applied to address the number of 

tasks for each station, while the HS technique is used to 

assign the sequence of tasks according to precedence 

constraints. The workload variance (wv) and the id le 

time (Tid) are formed as the multipleobjective function 

for this application. As results from four benchmark 

ALB problems compared with the GA, TS and CS, it 

was found that the ACS associated with the HS 

technique is capable of producing solutions superior to 

other techniques for all ALB problems. The workload 

variance can be successfully minimized in sense of the 

resource management optimizat ion, while the idle time 

can be satisfactory minimized in sense of the energy 

management optimizat ion. This can be concluded that 

the proposed ACS is an alternative powerful algorithm 

to solve the ALB problems in sense of energy resource 

management and other optimization problems. 
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