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Abstract—Acoustic domain contains signals related to 

sound. Speech and music though are included in this 

domain, both the signals differ with various features. 

Features used for speech separation does not provide 

sufficient cue for music separation. This paper covers 

musical sound separation for monaural recordings. A 

system is proposed to classify singing voice and music 

from monaural recordings. For classification, time and 

frequency domain features along with Mel Frequency 

Cepstral Coefficients (MFCC) applied to input signal. 

Information carried by these signals permit to establish 

results Quantitative experimental results shows that the 

system performs the separation task successfully in 

monaural environment.  

 

Index Terms— Speech/Music Signals, Speech/Music 

Classification Model, Segmentation 

 

I. Introduction 

Human auditory system has a remarkable capability 

in separating sounds originating from different sources. 

One important aspect of this capability is hearing out 

singing voice (also called vocal line) accompanied by 

musical instruments. Although this task seems effortless 

to humans, it turns out to be difficult for machines. 

Compared to speech, musical sounds have a wider 

range of spectral and temporal variations due to 

different production mechanisms of instruments. This 

requires a separation system to be more robust. A 

musical sound is almost always accompanied by some 

other sounds. Concurrent musical sounds also tend to 

have harmonic relationships in pitch. This tendency 

increases the likelihood of sound sources overlapping in 

the time-frequency domain and creates some unique 

problems for musical sound separation. One such 

problem is overlapping harmonics. In co-channel 

speech, harmonics from different speakers rarely have 

similar frequencies. However, in music, the collision of 

harmonics from different instruments in the frequency 

domain is common. As a result, separating musical 

sounds could be more difficult. 

In the present contribution, we propose a model for 

speech/music classification from monaural recordings 

based on Hu, Wang system [1]. The paper is organized 

as: Section II covers related work with emerging 

approaches towards the problem definition and related 

terms such as speech and music generation, their 

properties, representations etc. The proposed system 

and most commonly used set of features for 

speech/music discrimination are presented in Section III. 

Section IV contains an analysis of the feature’s 

discrimination ability with evaluation and results. 

Conclusions and findings are stated in Section V. 

 

II. Related Work 

Among numerous separation systems that have been 

developed, a few of them [2, 3] utilize source-specific 

prior knowledge for separation. Although all sound 

separation systems require some level of prior 

knowledge to make the separation problem solvable 

when the number of mixtures is less than the number of 

sources [4], these systems rely on prior knowledge that 

completely characterize sources to be separated. For 

example, [2] uses Gaussian scaled mixtures to capture 

all possible variations of each audio source. However, 

since instrument sounds can vary to a great extent, it is 

highly unlikely that these can be fully characterized, 

either in a parametric or non-parametric form. As a 

result, most musical sound separation systems try to 

avoid the use of source-specific prior knowledge. Such 

systems are either based on traditional signal processing 

techniques (mainly sinusoidal modeling), statistical 

techniques (such as independent subspace analysis, 

sparse coding, and non negative matrix factorization), 

or psychoacoustic studies (computational auditory scene 

analysis).  Sinusoidal modeling treats sound as a linear 

combination of sinusoids with time-varying frequencies, 

amplitudes, and phases [5]. Consequently, the task of 

sound separation advances by estimating these 

parameters for each sound source [6, 7, 8]. Sinusoidal 

models provide a particularly compact representation 

for harmonic sources. As a result, sinusoidal modeling 

has often been used for separating harmonic sounds, 

especially when the pitch contours of each sound source 

are known priorior can be estimated accurately. 

Statistical techniques to musical sound separation 

generally assume certain statistical properties of sound 

sources. Independent subspace analysis (ISA) [9, 10] 

extends independent component analysis, which 

assumes statistical independence among sources, to 

single-channel source separation. Sparse coding 

assumes that a source is a weighted sum of bases from 
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an over complete set. The weights are assumed to be 

zero with high probability, i.e., most of the bases are 

inactive most of the time [11]. Non negative matrix 

factorization (NMF) [12] attempts to find a mixing 

matrix and a source matrix with non-negative elements, 

such that the reconstruction error is minimized. It 

implicitly requires the mixing weights to be sparse. 

These techniques have a common mathematical 

foundation but different constraints [7]. They all aim at 

recovering components, the linear combination of 

which approximates the observation. However, it is not 

trivial to determine which components are from the 

same source. As a result, an additional spectral 

clustering step is usually required for these techniques. 

 

2.1 Speech/Music Properties 

Speech is produced by the airflows from the lungs 

through the vocal folds and moves the larynx tube and 

vocal cords. Everyone have unique sound according to 

organelle physical dimensions. Using our human ear, 

we can distinguish between two speakers talking 

simultaneously and may recognize them. Speech signals 

can be characterized by rapid rate of change of speech 

sounds. In other way, it can be considered as a noise 

like signal containing consonants [6, 13, 14-18]. As per 

[19], the speech signal can be filter as a continuous 

random signal. Usually, 95% of the speech power is 

concentrated in frequencies below 4 kHz, and then it 

falls very fast through low-frequency values, and any 

components higher than 8 kHz. Music is an art whose 

medium is sound, which comprises of different tones. 

An important class of music is singing. Acoustically 

speech and music are similar. Both use sound and are 

analyzed by the same organs. Music spectrum has twice 

the bandwidth of speech spectrum. In general, most of 

the signal power in audio waveform (speech or music) 

is concentrated at lower frequencies Music 

specifications depend on the kind of played musical 

instruments and its physical dimensions. 

Overlap in speech and music signals are, in general, 

very strong such that there is no ordinary filter that can 

separate them from each other. Speech covers the 

spectrum from near zero to 3.5 kHz with an average 

dominant frequency of 1.8747 kHz. However, from the 

classical theorem of music, the lowest fundamental 

frequency (A1) is about 27.5 Hz and the highest tone 

C8 is around the frequency of 4186 Hz. Therefore, a 

musical instrument manufacture tries to bound music 

frequency to the human’s sound limits to achieve strong 

consonant and also strong frequency overlap. Moreover, 

music propagates over all the audible spectrum and 

covers more than audible band (20 kHz), with an 

average dominant frequency of 1.9271 kHz. Speech 

signals are slowly time varying and short time spectrum 

signals. Based on signal excitation, human speech 

signals are of two types of signal; Voiced and Unvoiced. 

 

2.2 Voiced, Unvoiced Sounds 

The difference between the two signals is the use of 

the vocal cords and vocal tract (mouth and lips). When 

voiced sounds are pronounced from the vocal cords and 

the vocal tract. Because of the vocal cords, it is possible 

to find the fundamental frequency of the speech. In 

contrast to this, the vocal cords are not used when 

pronouncing unvoiced sounds. Because the vocal cords 

are not used, is it not possible to find a fundamental 

frequency in unvoiced speech. In general, all vowels are 

voiced sounds. Examples of unvoiced sounds are /sh/ /s/ 

and /p/. 

 

III. Speech/Music Classification Model 

The block scheme of the defined speech/music 

separation is shown in Fig. 1.The input audio signal is 

mixture of singing voice and instrument voice. This 

signal is sampled at 16 KHz with a 16 bit resolution. 

Hamming window is used for windowing, with a length 

of 512 samples. Window shift is 10 milliseconds (160 

samples). Over each window 512-order discrete Fourier 

transformation is applied followed by feature 

calculation. The main idea for the feature construction 

is that energy in a narrow frequency sub-band varies 

more rapidly, and to a greater extent for speech than for 

music. The energy variance in such a sub-band is, 

therefore, greater for speech than for music. 

 

Fig. 1: Block Diagram of Speech/Music Classification System 

 

3.1 Audio Segmentation Flowchart  

Fig.2 depicts the flowchart for classification stage of 

input signal. Input signal once recorded in monaural 

environment will be provided further for feature 

calculation. 

 

3.2 Feature Calculation  

To partition the input into vocal and non vocal links 

this stage plays main role. Different features have been 

explored for singing voice detection. These features 

include Mel-Frequency Cepstrum Coefficients (MFCC), 

Linear Prediction Coefficients (LPC) [21, 22], 

Perceptual Linear Prediction Coefficients (PLP) [23], 

and the 4-Hz harmonic coefficient. MFCC, LPC and 

PLP are also widely used for general sound 
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classification tasks and they are the so-called short-term 

features because they are calculated in short-time 

windows. 

As our system contains voice and instrumental 

signals, we have used the MFCC feature which gives 

the best results for speech detection. As only MFCC 

does not suffice for the music or instrument signal we 

have calculated six more features for each sampled 

signal. These features include ZCR, energy entropy, 

spectral energy, spectral roll off, spectral centroid and 

spectral flux. Following section describes these features. 

 

Fig. 2: Audio Segmentation Flowchart 

 

(i) Zero-crossing rate (ZCR) is a member of the 

time domain features, and is the number of zero-

crossings of a signal within a predefined window. Zero 

crossing occurs when successive samples have different 

algebraic signs [24]. ZCR is computed as per equation 

[1]. 
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Where, N is the number of samples in one window, 

x(n) represents the samples of the input window, and 

sgn[x(n)] is ±1 as x(n) is positive or negative, 

respectively. ZCR is a strong measure for discerning 

fricatives from voiced speech. The sampling rate of a 

signal should be high enough to detect any crossing 

through zero. It is also very important that the signal is 

normalized, so that the amplitude average of the signal 

is equal to zero [25]. The ZCR of music is usually 

higher than that of speech; because ZCR is proportional 

to the dominant frequency (music has higher average 

dominant frequency) [26]. 

(ii) Energy Entropy provides good results for 

discrimination of speech and music signals. Spectral 

representations of speech and music can be different 

despite the fact that there is a human voice present in 

both cases. If we divide the signal’s spectrum into 

several sub-bands, narrow enough to catch the variation 

of pitch and higher harmonics, we can expect the 

energy of an individual sub-band to go through more 

drastic and rapid changes during speech than music. 

(iii) Spectral roll-off (SR) is the measure of 

skewness of the signal’s frequency spectrum. It is the 

value of the frequency under which usually 95% of the 

signal’s power resides. It is a good measure for 

distinguishing between voiced and unvoiced speech. It 

is expected that speech has a lower value of spectral 

roll-off, because it has most of the energy in the lower 

part of the frequency spectrum. The mathematical 

expression is as per equation [2]. 
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Where, k is the frequency bin index, M is the total 

number of frequency bins, X(k) is the amplitude of the 

corresponding frequency bin, and R is the spectral roll-

off number. 

(iv) Spectral Centroid (SC) is defined as the centre 

of a signal’s spectrum power distribution. Like spectral 

roll off, spectral centroid is also a measure of spectral 

shape. 

Music signals have high spectral centroid values 

because of the high frequency noise and percussive 

sounds. On the other hand, speech signals have a 

narrower range, where pitch stays at fairly low values. It 

has different values for voiced and unvoiced speech, 

and can be calculated as per equation [3] 
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Higher values mean ―brighter‖ sound with higher 

frequencies. 
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(v) Spectral Energy captures the sub band energy 

distribution which is indicative for specific types of 

sound signals. The sum of subband energy distribution 

is the total energy of signal. 

(vi) Spectral Flux is a measure which characterizes 

the change in the shape of the signal’s spectrum [27]. 

The rate of change in spectral shape is higher for music, 

and therefore, this value is higher for music than for 

speech. Spectral flux can be calculated as the ordinary 

Euclidean norm of the delta spectrum magnitude as per 

equation [4]. 
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3.3 Speech/Music Segmentation 

After the feature calculation step, feature 

classification i.e. pitch detection algorithm which is 

extended from the one by Wu et al. [20], and 

speech/music separation procedures are performed. 

Pitch detection algorithm performs pitch tracking by 

Euclidian distance, which finds most likely sequence of 

pitch hypotheses. If a pitch hypothesis in the optimal 

sequence contains two pitches, the first pitch is 

considered as the pitch of singing voice. This is because; 

the first pitch is the dominant one in our formulation. 

After the classification procedure, frames are grouped 

into segments according to the classification tag 

(whether a frame was classified as a speech frame or as 

a music frame). The classification result is smoothed 

out using mean filter, which filters out any glitches 

during the classification step. The segments are created 

according to the minimum speech and music segments’ 

duration rules. After the feature calculation step, feature 

classifications i.e. pitch detection and speech/music 

separation procedures are performed. The result of 

separation and classification is written into the output 

file (wav). The output separation file is used later 

during the evaluation process. 

 

IV. Evaluation and Results  

4.1 Evaluation  

In this work, the percentage of frame-level accuracy 

is a measure for the evaluation metric. For this the six 

features afore mentioned along with MFCC are used 

and the values are decided on the basis of mean, median, 

max and standard deviation of these features. With this 

reference, four different frame-level accuracies are 

calculated as: speech, music, unclassified and others. 

Speech frame-level accuracy is defined as a percentage 

of the true speech frames classified as speech, the music 

frame-level accuracy is defined as a percentage of the 

true music frames classified as music, unclassified 

frame level defined as the mixture of speech and music 

with no dominant frequency to recognize and the other 

frame level accuracy is defined as a percentage of high 

low mixture of dominant instrument and speech signals. 

An example of .wav file is shown in Fig.3. 

 

Fig. 3: Audio spectrum and classification of frame 

 

4.2 Results  

We have applied the Hu–Wang system [1] to the 

vocal portions obtained from the first stage. 

Speech/Music separation performance was tested on 

trained data. Fig.4 & Fig.5 depict the spectrogram of 

only speech and music signals. 

 

Fig: 4: Power Spectrum of Speech Signal 

 

 

Fig: 5: Power Spectrum of music signal 
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Speech consists of vibrations produced in the vocal 

tract. The vibrations themselves can be represented by 

speech waveforms. It is not possible to read the 

phonemes in a waveform, but if we analyze the 

waveform into its frequency components, we obtain a 

spectrogram as shown in Fig.4 & Fig.5, which can be 

deciphered further on a logarithmic scale. A spectrum 

as shown in Fig.4 & Fig.5 is obtained by Fourier 

analysis in order to discover what frequencies are 

present at specific moment of time. In spectrogram of 

speech and music signals the vertical axis represents 

frequencies up to 10000, 5000 Hz respectively, the 

horizontal axis shows positive time towards the right, 

and the colors represent the most important acoustic 

peaks for a given time frame, with red representing the 

highest energies, then in decreasing order of importance, 

orange, yellow, green, cyan, blue, and magenta, with 

gray areas having even less energy and white areas 

below a threshold decibel level. It is observed that 

compared to speech signals, music signals show more 

energy or amplitude. 

Fig.6. depicts results of wav file before and after 

classification. Fig. [6-a] shows a waveform of the input 

wav file which is chosen from database. The file 

contains not only speech but music and noisy data also. 

From this original wav file the only speech signals are 

identified and the wav file after classification is as 

shown in Fig. [6-b]. Similarly the classified part as a 

music and mixture which could not be classified further 

is mentioned as unclassified is shown in Fig. [6-c] and 

Fig[6-d] respectively. 

 

 

(a) Original wav file 

 

 

(b) Speech Signal 

 

 

(c) Music Signal 

 

(d) Unclassified 

Fig. 6: Results of Audio wav file [a-d] 

(a) Original input wav file before separation 

(b) wav file after  classification as speech 

(c) wav file after classification as music 

(d) wav file after classification as unclassified 

 

4.3 Test Analysis and Graphical representation 

A singing voice database of total 250 files has been 

prepared. To test the experiment performance three 

different databases are used i.e. speech, music and 

mixed signals of 8 K, 16 K, 24 K and 44 K respectively. 

The algorithm is capable of differentiating the speech 

music and mixed signals. Table 1 represents few of the 

sample file features and comparison graph shows the 

performance of various features for sample test database. 

 
Table 1: Observed Features of Input Signal 

File Name Energy Entropy ZCR Spectral Energy Spectral Roll off Spectral Centroid Spectral Flux 

Neeti Speech 0.597 0.1198 0.0062 0.0648 21.1565 0.5011 

Pr Song 1.0557 0.1097 0.0023 0.0192 14.4074 1.4628 

Audio 0.4078 0.035 0.0029 0.0099 9.5496 0.2936 

Song 0.4163 0.1658 0.0015 0.0556 18.6105 1.3228 

So Hello 1.0155 0.0559 0.0024 0.0341 11.8848 8.3267 

Are Song 0.0614 0.0912 0.0014 0.0289 28.3186 0.1732 

Dil Mix 0.0293 0.3163 0.0012 0.0148 11.0084 0.3746 

Sathiya 0.0293 0.3163 0.0016 0.0222 12.987 0.4104 

 



 Acoustic Signal Classification from Monaural Recordings 67 

Copyright © 2014 MECS                                                           I.J. Intelligent Systems and Applications, 2014, 03, 62-68 

Fig 7. shows the observation of features Energy 

Entropy and ZCR. Fig.7 indicates energy of the few 

samples files more as compared to ZCR. Whereas in 

Fig 8 all the feature values are included and it shows 

significant change for spectral flux and energy entropy 

feature wherein  ZCR feature is almost lying to the 

horizontal axis.  

 

 

Fig. 7: Energy Entropy and ZCR observation 
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Fig. 8: Input Signal analysis for six features 

 

 

Fig. 9: Time vs. Sampling Rate 

 

Table 2: Average Time Complexity 

Sampling Rate (K) Time(ms) 

8 6 

16 6 

24 7 

48 9 

 

Table [2] shows the average time required for input 

wav signals to produce the result according to different 

sampling frequencies. From the training database each 

file’s average time is calculated .Files are sampled with 

various sampling rate parameters such as 8, 16, 24, and 

48K respectively, and the time required right from input 

of the wav file till the output classification is calculated 

which is again reflected in Fig 9. As the sampling rate 

goes on increasing the time taken to get output will be 

more.  

 

V. Conclusion 

As mentioned in section II, few systems have been 

proposed for singing voice separation from music. This 

paper represents the general framework for singing 

voice separation and the system implemented is also 

extensible. Currently, we used pitch and another six 

features (Energy entropy, ZCR, Spectral energy, 

Spectral rolloff, Spectral centroid) as the organizational 

cue. Other ASA cues, such as onset/offset and common 

frequency modulation, can also be incorporated into our 

system, which would be able to separate not only 

voiced singing but also unvoiced singing. Our 

classification stage is based on MFCC features and 

pitch detection system uses an auditory front-end for 

frequency decomposition and an autocorrelation 

function for pitch detection. As a result, the observed 

accuracy of the system is 93%. Most types of singing, 

such as in pop, country music, have a smaller pitch 

range and therefore this system can potentially be 

applied to a wide range of problems. The principle can 

be further applied for applications such as automatic 

lyrics recognition and alignment, singer identification, 

and music information retrieval. 
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