
I.J. Intelligent Systems and Applications, 2014, 04, 11-25
Published Online March 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2014.04.02

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 04, 11-25

The Conception of the New Agent-Based

Platform for Modeling and Implementation of

Parallel Evolutionary Algorithms

Sara Sabba, Salim Chikhi

Department of Fundamental Computing and its Applications, Faculty of New Technologies of Information and

Communication, MISC Laboratory, Constantine 2 University, Algeria

E-mail: sara.sabba,chikhi@umc.edu.dz

Abstract— Evolutionary algorithms (EAs) are a range

of problem-solving techniques based on mechanisms

inspired by biological evolution. Nowadays, EAs have

proven their ability and effectiveness to solve

combinatorial problems. However, these methods

require a considerable time of calculation. To overcome

this problem, several parallelization strategies have

been proposed in the literature. In this paper, we present

a new parallel agent-based EC framework for solving

numerical optimization problems in order to optimize

computation time and solutions quality.

Index Terms— Evolutionary Algorithm, Combinatorial

Problems, Agent-Based Software, Ontology,

Parallelization Strategies, JADE Framework

I. Introduction

Combinatorial optimization holds a substantial place

in the field of computer sciences and many other

engineering sciences. This field of study results from

the intersection between operational research,

theoretical computing and mathematical programming.

Combinatorial optimization aims at finding the best

solution among a finite number of choices by

minimizing or maximizing an optimization function

with or without constraints. Thus, combinatorial

optimization problems are often complex and NP-hard,

they are characterized by the exponential number of

combinations to be explored, which requires relatively

considerable time to find a good solution, especially

when the number of entries is large.

The necessity to quickly find reasonable solutions to

many of these problems has led to the development of

several approximation algorithms which include

Evolutionary Computing (EC) algorithms. An

Evolutionary Algorithms (EAs) are a stochastic

population-based search techniques inspired from the

evolutionary process and natural selection of the

biological populations. These algorithms combine

Genetic Algorithms (GA) [18], Evolutionary Strategies

(ES) [32, 35], Evolutionary Programming (EP) [27] and

Genetic Programming (GP) [22, 23]. They all share the

same conceptual based natural evolution simulation, but

differ in the breeding strategy and representation on

which EA operate [21].

The EC algorithms cannot significantly reduce the

exploration time of the search space. Since, they are

often expensive in calculation time, specially for large

problems. Consequently, the parallelism concept is an

indispensable for executing algorithms in parallel

machines. In fact, the parallelism aims to address both

issues. The first is to reduce the search processing time

of large problem instances. The second is to improve

the solutions quality by exploiting more promising

search regions in reasonable time. Several

parallelization strategies of the EAs have been proposed

in [9, 8]. Whose idea is to launch concurrent execution

of the inner loops of the algorithms, to decompose the

problem domain (research space) into sub-spaces where

each one is executed in different processors, or to

launch several search process simultaneously (Multi-

threads search) with different degrees of

synchronization and cooperation.

For the last few years, a larger number of

optimization frameworks have been developed such as:

DREAM [29], MALLBA [2], ECJ [36], BEAGEL [6,

12], J-DEAL [19], EASY LOCAL + + [15], MAFRA

[25], ParadisEO [5]. According to certain criteria these

frameworks can support the class of evolutionary

algorithms (EA) [36, 6, 19, 29, 25, 2, 5], and/or the

class of Single-Solution based Algorithms (SSL) [15,

29, 25, 2, 5]. Actually, each software tool uses its own

strategy to run its various methods, starting with the

choice of programming language (most are object-

oriented JAVA or C++) then specifying the cooperation

and hybridization strategy between the resolution

methods (EA/EA) [36, 6, 19, 29, 25, 2, 5], (EA/SSL) [2,

5], (SSL/SSL) [15, 2, 5], and finally, the choice of

execution mode: sequential execution [15, 25, 2, 5] and

/ or parallel execution [36, 6, 19, 29, 2, 5].

In fact, most frameworks implement the parallelism

as communicating objects using the following

parallelism supports: threads [36, 29, 5], sockets

TCP/IP [6, 19, 29], PVM/MPI [5], Netstream [2] and

Condor /MW [5]. Up to our knowledge, there has been

12 The Conception of the New Agent-Based Platform for

Modeling and Implementation of Parallel Evolutionary Algorithms

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 04, 11-25

no literature applications works concerning the field of

EC frameworks and agent-based approach.

In our proposition, we adopt the multi-agent

paradigm to develop a framework of parallel

evolutionary algorithms. In this context, we introduce a

new agents-based framework architecture for modeling

and implementing the parallel evolutionary algorithms.

The proposed idea is developed under JADE

middleware at aiming to facilitate the implementation of

any agent components.

The paper is structured as follows: we analyze at first

some considerations about the Evolutionary Computing

framework design. Thus, we provide the technical

background used for the development. Then, we explain

our idea showing the basic motivations and goals.

Therefore, we detail the agent-based framework

architecture. Afterwards, we describe system operation

in serial and parallel executions. After this presentation,

we illustrate some functionality used in the

implementation then we finalize with a conclusion.

II. Evolutionary Computing Framework

2.1. EC framework Design

From a software engineering point of view, an EC

can seen as an abstract class of algorithms, and its

different variants like GP, GA, and ES can be seen as

concrete instantiations [11]. In fact, the best way of

modeling EC algorithms it is in the form of a

framework. A framework is a set of cooperating classes

that make up a reusable design for a specific software

domain [14]. The development of such generic software

is very complex. Since, it requires too much effort to

developers which must be taken multiples aspects into

account. Gristan Gagné and Marc Pariscan [11] are

mentioned six criteria to qualify the genericity of the

EC frameworks. They cite: generic representation,

generic fitness, generic operations, generic evolutionary

model, parameters management and configuration

output. In the same paper, the authors compare some

existing frameworks according to the previous criteria

where they are judged ECJ 1.3 [36] and Open Beagle

2.2.0 [12] as real generic EC tools compared to EO [20],

GAlib [42], lil-gp [31] and GPLAB[37, 38] software.

Actually, each EC framework developer groups use

their own strategy to design and implement their

generic software. However, most of them agree that

their tools must meet the following criteria:

1) The representation of all EC variants: The

framework must define all EA individual structures

(vector, tree) of all possible types (bit, string,

double, integer).

2) The genericity of the solution methods: The generic

EC software must provide the full control structure of

the invariant part of the algorithms. The design and

the implementation of the solution methods should be

completely independent to the problems they are

dedicated to solve. As consequence, the user will

only develop a minimal code of the specific problem

(fitness function). The framework may also

implement some specific problem operators such as

the crossover and the mutation operators of the

traveling salesmen problem (TSP).

3) The flexibility and adaptability of the software

components design: The framework architecture must

be easily extended to define new components and add

new paradigms without modifying the base

framework structure.

2.2. Related Works

For the last few years, several EC software tools have

been developed to solve the complex problems. Some

proposed frameworks are specialized in one EC variant

like: GAPS [24], lil-gp [31] and GPLAB [38] for

genetic programming, GAlib [42] for genetic algorithm,

JGAP [28] for both genetic algorithms and genetic

programming, MOEA [17] for multi-objective

evolutionary algorithm. Some other are the generic

tools, that is, they ensure most genericity criteria

mentioned in the previous section. This category

includes : JCLEC [41], ECJ [36], Open Beagle [6, 12],

ParadisEO [5], MALLBA [2], ect. We present below

the characteristics of some successful open source

frameworks:

ECJ: is an open source EC software tools written in

Java, it is one of the most popular EC frameworks. ECJ

is highly flexible, it is created to simplify and facilitate

the implementation of any kind of EC algorithms using

the configuration file state (i.e., the algorithm

parameters can be dynamically modifying at runtime).

Furthermore, ECJ implements several interesting

features including multi-objective optimization, particle

swarm optimization and several parallel strategies

executions like asynchronous island models over

TCP/IP, Master/Slave evaluation over multiple

processors, with support for generational, asynchronous

steady-state, and co-evaluation distribution.

Open Beagle: is a C++ framework for developing

any variant of EC. Open Beagle follows the same

mechanism utilized in ECJ. Since, it bases on XML

configuration files to configure dynamically the

algorithm parameters. Moreover, Open Beagle has a

strong flexible structure based on object-oriented

extension of C++ and the standard library (STL) to

build different modules of EC flavors. Indeed, its

extension Distributed Beagle offers an environment for

parallel and distributed ECs using a new Master/Slave

architecture [13] target toward powerful clusters over

TCP/IP sockets.

ParadisEO: is a successful metaheuistics tools

developed in C++ to support a broad range of algorithm

including: EAs, local search (LS) algorithms, exact

methods (EM) and Particle Swarm Optimization (PSO).

 The Conception of the New Agent-Based Platform for 13

Modeling and Implementation of Parallel Evolutionary Algorithms

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 04, 11-25

ParadisEO offers a high level of flexibility and

adaptability and openness, it was designed to support

several execution models namely serial, parallel, multi-

objectives and hybrid applications. Furthermore, these

models are portable on distributed memory machine as

well as shared memory through the Posix threads

multiprogramming or PVM/MPI communication

libraries.

MALLBA: as ParadisEO tools MALLBA is a generic

framework for serial, parallel and hybrid metaheuristics

(EA, LS and EM). This library was developed as

software skeletons implemented as a set of C++ classes

to represent object abstractions of the resolution

techniques. The main feature of this framework is the

integration of all skeletons under the same design

principal in order to facilitate the switch from sequential

to parallel optimization engines, and also to provide

more powerful hybrid between skeletons. MALLBA

has a specific middleware called Netstream. It is a C++

library implemented on MPI to facilitate the

communication of parallel applications in LAN and

WAN environments. The different parallel

implementation strategies of exact, heuristic and hybrid

algorithms are clearly explained in [1].

JCLEC: is a recent EC framework developed in Java

language. It is characterized by a strong architecture

that was designed of a high-level of reusability and

adaptability using several design patterns. In fact,

JCLEC gives more intention to the graphical user

interface (GUI). Accordingly, it offers to the user two

ways to execute its applications. The first is by using

XML configuration files. The second is by using

GenLab which is a graphical user interface allowing

inexperienced users to configure and develop easily its

algorithms. In addition, JCLEC contains also several

implementations of evolutionary algorithms namely:

classic EAs, multi-objective algorithms, memetic

algorithms and niching algorithms.

As we can see, each existing framework adds new

interesting features compared to the other software in

order to facility and simplify the development of EC

algorithms (namely XML configuration file, GUI,

middleware, ect.). Moreover, when we focus our

attention on a frameworks structure design, we can see

that all frameworks use probably the same classes to

modeling and implement the basic EC software

components. First, they define individual type and

structure «Genotype». Secondly, they define EA

operators using «abstract classes» (i.e., selection,

replacement and Recombination). Finally, they define

evaluator class which must be an «interface»

implementable by the user to specify the objective

function of the problem dedicated to solve.

III. Technical Backgrounds

3.1. Agent-Based Software Engineering

The agent-based software engineering (ABSE)

technology has become a new programming paradigm

based on”a social view of computing” [44]. It is

naturally more suitable to develop certain types of

applications namely distributed, dynamic, mobile and

autonomous computing systems. ABSE focuses on the

collective behaviours of multiple autonomous and

flexible entities which have the ability to cooperate,

negotiate and communicate with each other by sending

and receiving messages in order to achieve a common

goal. Furthermore, agent technology is certainly

offering any advance in software development [43],

which can help to enhance the modularity, reusability

flexibility of applications. Therefore, several platforms

have been invented to facilitate the development of

agent-oriented system, these environments are usually

used a specific protocols, language and technology

conforming to FIPA specification [10].

3.2. JADE Framework

One of the important decision before the

implementation of an agent software is to find the most

suitable development environment for the construction

and the deployment of the application. Actually, there

are three successful agent platforms: ZEUS [26],

AGENT BUILDER [40] and JADE [33]. In our

proposition we have oriented towards JADE framework.

In fact, JADE (Java Agent Development Framework)

[10] is an open-source software framework developed

in Java language and distributed by TILAB (Telecom

Italian Laboratory). It is devoted to simplify the

implementation of multi-agent applications conforming

to FIPA (Foundation for Intelligent Physical Agents)

specifications. The agent platform keeps a high

performance for development of distributed system. It

provides effective and light-weight communication

between agents inherently distributed through Java

runtime environment.

Fig. 1: Reference architecture of FIPA agent Platform [11]

JADE platform is composed of agent containers that

can be distributed over the network. There is a special

container, called the main container, which represents

the bootstrap point of a platform. When the main

container is launched, three special agents are

automatically started (1) Agent Management System

14 The Conception of the New Agent-Based Platform for

Modeling and Implementation of Parallel Evolutionary Algorithms

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 04, 11-25

(AMS) that manages the operation of an Agent Platform

(AP) such as: the creation deletion of agents, the

registration (obtain an AID) of agents and the migration

of agents to and from the AP, (2) Directory Facilitator

(DF) that provides a yellow pages service to other

agents and, (3) Agent Communication Channel (ACC)

that provides Message Transport Service (MTS)

between agents using Message Transport Protocol

(MTP), i.e., supports inter-agent communication and

inter-operability within and across different platforms.

In addition, each agent developed under JADE

framework performs a task that is called “Behaviour”

[3], where it is implemented as an object of a class that

extends jade.core.behaviours.Behaviour. According to

the task to be achieved, each agent can run several

behaviours of different types. Indeed, there are several

types of behaviours [3], in our approach we are

interested to define:

1) One-shot Behaviour: where agent executes its task

only once then it is destroyed.

2) Cyclic Behaviour: where agent runs its task in a

repetitive way until the satisfaction of a stopping

criterion specified by the programmer.

3) Sequential Behaviour: where agent has the ability to

execute several behaviours of different types one by

one.

4) Parallel Behaviour: where agent allows executing

several behaviours in parallel.

IV. AFPEA: Agent Framework for Parallel

Evolutionary Algorithms

AFPEA is an architecture of a new agent-based EC

framework (implemented in JAVA under JADE

middleware). The proposed system is devoted for the

design and the implementation of parallel evolutionary

algorithms. Actually, it aims to benefit from the

advantages of some interesting features of the agents’

paradigm missing in the classical approaches in order to

facilitate and accelerate the development of parallel

algorithms.

4.1. Motivations

Our motivations are based on interesting services

provided by JADE:

1) Portability: AFPEA is developed under JADE

framework which implements agents as one Java

thread and Java events. Therefore, it can be supported

by the different material architectures and any

operating systems where a Java Virtual Machine

exists.

2) Directory Facilitator DF: The DF is a centralized

registry of entries, it is allows saving the ID name

and the service provided by each agent connected to

the system (in the host and in the distributed

machines). In fact, it helps agents to exploit required

services.

3) Persistent-Delivery: This service allows buffering

and persistent storage of undelivered messages [4].

4) Fault tolerance: This is activated on each node host it

allows replicating the Main Container for fault

tolerance purposes [4].

5) Ease of programming: Depending on

programmatically view, the development of parallel

applications is very easy using agent technology then

object-oriented technology. Actually, agent

networking in JADE is implemented at high

abstraction. The main information needed by agent to

accomplish its service or its communication (as the

address of the destination agent) can be easily

recovered by DF or AMS. On the other hand, JADE

packages facilitate the development of the main

parallel strategies using a few lines of code. For

instance, the agent responsible for asynchronous

distribution can be simply used blockingReceive()

instruction in order to block its future behaviour (the

next distribution) until receives the responses.

However, if the agent did not use the instruction, the

distribution will be synchronous, whenever a

machine completes its work it reassigns directly

another one.

6) Performance execution in minimum time: This

characteristic is the results of the previous one, it is

proved in [7] where the authors compare the Round

Trip Time of the testbed implemented using RMI

mechanism (without the facilities offered by the

JADE middleware) with the other implemented under

JADE, the obtained results showed good JADE

message system performance for developing

distributed applications.

4.2. Goals

This section contains a synthesis of the main

proprieties of AFPEA which are related to the design

objectives scheduled for its development.

1) Modular: The EC library was designed in a generic

way using several design patterns. The objective is to

maintain the maximum separation between the

solution methods and the problem to be solved in

order to secure the flexibility of the system.

2) Flexibility: This feature is the results of the previous

one. It allows the user to reuse or change existing

operator methods or add other ones in order to

implement the new algorithms.

3) Scalable parallelization strategies supported:

AFPEA is not restricted to implement the different

parallelization evolutionary algorithms strategies

existing in the literature but also to implement other

strategies proposed in the academic researches.

 The Conception of the New Agent-Based Platform for 15

Modeling and Implementation of Parallel Evolutionary Algorithms

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 04, 11-25

4) Dynamic execution and Performance calculation:

Our first aim in this proposal is to ensure the

intelligent and the dynamic execution of parallel

evolutionary algorithms. Indeed, several agents have

been proposed in order to insure a high quality of the

final results in minimum run time (the role of these

agents is explained in the next section).

V. System Architecture

The framework structure can be divided in four parts:

5.1. Framework Agents

AFPEA is composed of a set of heterogeneous agents

which allow cooperating with each other to achieve the

main goal which is minimizing the computation time of

the evolutionary algorithms. These agents are regrouped

as follows:

Fig. 2: AFPEA multi-layers architecture

Fig. 3: Agent resolution in parallel mode

16 The Conception of the New Agent-Based Platform for

Modeling and Implementation of Parallel Evolutionary Algorithms

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 04, 11-25

Layer 1: is responsible for all communication

performed in the system, i.e., between the user and the

system and between the distributed agents. This layer is

composed of two agents: Interface Agent and Agent

Communication Channel ACC (provided by JADE).

Layer 2: is composed of four agents: Archive Agent,

supervisor Agent, State Agent and Planning Agent

which cooperate to ensure and keep the performance,

the reliability and the rapidity of the performed

calculations.

Layer 3: is loaded to execute evolutionary operators

through the six agents namely: Initialization Agent,

Population Agent, Select Agent, Reproduction Agent,

Replacement Agent and Evaluation Agent.

Layer 4: is responsible for monitoring parallel

execution via its two agents: Parallelization Strategy

Agent and Topology Agent.

The proposed agents are distributed in two levels.

The first tranche is located in the “Master” and it is

responsible for monitoring. The second tranche is

located in “Slavers” (Work/stations) and it is

responsible for executing algorithm operators. Figure 3

illustrates the global architecture design of the AFPEA

under JADE multi-agent platform.

We describe below the role of each agent:

1) Interface Agent

Generally, to exploit any EC framework the

inexperienced user utilizes directly the graphical user

interface, or the XML configuration file to specify the

parameters of the EC algorithm. Except the experienced

programmer, that may access to the framework code

source for implementing new operators to create new

algorithms.

2) Initialization / Selection / Reproduction /

Replacement Agents

They are reactive agents, responsible to execute the

different operators of the evolutionary algorithms using

its local memories (that contain the implementation of

the most operator methods).

3) Evaluation Agent

It is a reactive agent, which uses an objective

function (implemented by the user) to calculate the

fitness of individuals (solutions).

4) Population Agent

It is a reactive agent that allows to:

 Represent the population that will be reproduced in

every generation.

 Save the best solution in every generation.

 Monitor the evolution of the population, if the

population has not changed (the algorithm is stuck in

a local minimum) after K generations, it sends a

report to the supervisor agent to change the current

parameters.

 Control the stopping criterion of execution.

5) State Agent

It is a reactive agent which is activated only at slave

stations. This agent allows following the change of the

machine’s state in order to send its report to the

Planning Agent.

6) Planning Agent

Planning Agent is an autonomous agent that reacts

only when the user (or the system) chooses parallel

execution mode, its main purpose is to select the least

loaded machines to participate in the calculation in

order to avoid falling on the wrong distribution.

Consequently, this agent:

Fig. 4: The Planning Agent that ensures the dynamic system

 Uses the DF agent to know the list of the state agent

connected to the network.

 Sends to each state agent a request to get machine’s

state (load rate, failure).

 Focus on a threshold loading rate to construct a list of

the most adequate work stations to participate in the

calculation.

 During execution, it can add more machines when

they are unoccupied (or loaded is less than threshold),

it can also delete stations in case of problems.

 It sends the list and the number of the participant

machines to Topology Agent and Strategy Agent.

7) Supervisor Agent

It is an intelligent agent that ensures the performance

of the final results; it is responsible for:

 Changing the execution mode from the sequential

mode to the parallel mode if it is necessary (the

problem size is very large).

 Changing the parameters of the running algorithm if

it is receive a message from Population Agent. In fact,

to ensure this task it can be based on special methods

(heuristic) [30] or the parameters stored by archive

agent.

 The Conception of the New Agent-Based Platform for 17

Modeling and Implementation of Parallel Evolutionary Algorithms

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 04, 11-25

8) Archive Agent

It is a reactive agent which allows to:

 Save at the end of each execution the parameters used

in the resolution of the combinatorial problem

(instance problem name, resolution algorithm,

population size, crossover rate, crossover method,

etc.).

 If the system finds other parameters which are led to

the best solutions the agent will change the old

settings. If the system finds other parameters which

are led to the best solutions the agent will change the

old settings.

 The recorded information can be used by Supervisor

Agent to change the current parameters.

9) The Agents Responsible of

Parallelization/Distribution Strategies

There are several strategies can be used for

parallelizing/distributing the evolutionary algorithms.

We cite: the cooperative island model (synchronous or

asynchronous, parallel or distributed), the

parallelization of the evaluation phase (synchronous or

asynchronous), the parallelization of the objective

function, etc. In our system, each strategy is represented

by an agent, which will be the administrator of the

parallelization/distribution processes.

Example 1: Parallelization strategy of evaluation

phase

In this strategy the master manages the whole

evolutionary sequential process and the slaves evaluate

only the new individuals. We explain below the

principle tasks of the agent responsible of this strategy.

 Recovers the ID list of Evaluator Agents through DF

Agent.

 Divides the population into subPop. The subPop size

is an important parameter, since if the individuals are

large then a large job size won t́ have any efficiency

benefit, however, if they ŕe very small the job size

will have a huge benefit. Consequently, we can

define the Max value of this parameter to ensure the

performance execution.

 Sends the subPops to the Evaluator Agents.

 Receives the results

 Sends the evaluated population to the Replacement

Agent.

Example 2: Island cooperative strategy

In this strategy the same or the different AEs are

executed concurrently to cooperate (exchange the

individuals) in order to identify the best solution (each

island execute the all EA process).Therefore, the agent

responsible of this strategy should send to each island

the important parameters including:

Fig. 5: The island model of EAs

 The population size that will emigrate.

 The select method to choose the emigrate individuals.

 The replacement method to include the immigrant

individuals in the current population.

 The migration time of solutions [8]:

– If the communication between agents is

synchronous, the solutions migration is

periodically performed according to a specific

time interval (a constant number of iteration).

– If the communication is asynchronous, it

associates to each island algorithm a decision

criterion for immigration this latter can be re-

evaluated in each iteration according to the state

of the current population.

 The interconnection ID list to define the agents that

will be connected with them to send and receive the

solutions (this parameter is defined by topology

agent).

The other detail of this strategy is explained in the

next section.

10) Topology Agent

It is a reactive agent which is activated only in the

cooperative execution mode in the host machine.

 This agent is responsible for the construction of the

interconnection lists (between the agents located in

different islands) according to the type of network

topology (ring, hypercube topology, etc.). These lists

contain the addresses of the agents with which must

communicate (send and receive the individuals)

during the exchange process.

 During execution process the interconnection lists

can be changed if the Planning Agent has modified

the list of participant work stations.

5.2. Libraries

Each agent existing in the framework uses its local

memory to execute its behaviour. Indeed, the local

memory is a set of class that defines agent methods.

18 The Conception of the New Agent-Based Platform for

Modeling and Implementation of Parallel Evolutionary Algorithms

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 04, 11-25

These classes are designed and implemented in a

generic and flexible way in order to create new methods

in the future. The main library existing in AFPEA is

Java Evolutionary Object Library (JEOL) it contains the

generic classes of EA operators including initialization,

selection, reproduction and replacement. In fact, each

operator is represented by an «abstract class» that

implements the most existing operations. As an

example, the «abstract selection class» implements rank,

elitist, roulette-wheel and tournament selection methods.

Moreover, the reproduction class is defined by two

abstract classes. The first, for representing crossover

methods and the second for representing mutation

methods. Notice that, the Reproduction Agent may use

one or the both classes to execute its behaviour (this

choice depends on the category of evolutionary

algorithm executed).

5.3. The Problem Representation and Ontology

1) The problem representation

As all existing frameworks the representation of the

problem to be solved is structured as follows:

Fig. 6: The problem representation

In the evolutionary algorithm strategy, the research

space is defined by the population. This latter is

composed of a set of individuals which represent the

possible solutions to the optimization problem. The

individual structure is completely dependent to the

problem type; it can be represented by array (bit, integer

or double), tree (syntax or expression) or other type

defining by the user by implementing individual

«interface» (figure 6). In addition, to calculate the

fitness associated to each solution, the user must

implement the Evaluator «interface» to specify the

objective function to the optimization problem.

2) Ontology

In agent-based software engineering, the only method

for communication between agents is by sending and

receiving messages which contain a small amount of

information. Thus, this conversation is assured by

Agent

Communication Language (ACL) that uses a string

and byte sequence to represent the exchanged messages.

It can be clearly seen that this representation is not

appropriate to handle all type of information (where

data is usually stored as object form) and it cannot be

considered convenient for internal purpose of an agent.

To overcome this problem and facilitate the

comprehension and the communication between the

different agents, JADE framework uses the notion of

ontology [16] in order to represent the content of the

complex messages inside an agent.

In our agent framework the pivotal information

exchanged between agents is the population, for

initializing, selecting, reproducing, evolving, replacing,

migrating, and/or distributing. Therefore, this complex

information (individual list) must be considered as

ontology to be shared between the agents framework.

5.4. Parameters Configuration

Before the agent framework is ready to run it is

necessary to define all operation parameters to ensure

that each agent is aware of its future behaviour. In our

system, the user parameters (choose through the

interface) will be stored an object and get-at-able

through accessor methods (getter and setter). However,

in the future we intend to use XML file configuration to

avail the advantage offered by this technique which is

the dynamic reconfiguration, i.e., the user can change

the parameters during execution without recompiling.

 The Conception of the New Agent-Based Platform for 19

Modeling and Implementation of Parallel Evolutionary Algorithms

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 04, 11-25

VI. The Implementation of the Serial Execution

In the serial execution the agents are situated in one

container of the local machine. Only the initialization

Agent, the population Agent, the Reproduction Agent

and the Replacement Agent will be activated to achieve

their mission which is to find the best solution of the

optimization problem. The order of the exchanged

messages between agents and the type of their

behaviours is schematized in figure 7:

Fig. 7: The sequence of the exchanged messages between agents

By analyzing the behaviour of each agent:

 The Interface Agent has two simple behaviours, the

first sends the user's choice of parameters (and

methods) to the different agents and the second

displays the system state which is currently running

(best local/global solution, calculation time,

notifications, etc.).

 The Initialization Agent has a simple behaviour

which allows initializing the first population using

the method and the parameters selected, in order to

send the result to the population agent.

 The Population Agent has three simple behaviours:

the first receives at each generation the new

population produced by a set of genetic agent

operators, the second sends the current population to

the Selection Agent and Replacement Agent, and the

third saves the best global solution at each generation.

Finally, the three behaviours are executed cyclically

until the satisfaction of the stopping criterion of the

evolutionary process.

 The Selection Agent has two simple behaviours that

are activated when it receives a message from the

Population Agent (current population). The first

behaviour performs a simple communication with the

Evaluation Agent in order to evaluate the individuals

of the current population, and the second uses the

results of the previous behaviour to select a sub-

population to be sent to the Reproduction Agent.

 The Reproduction Agent has also two behaviours, the

first is a cyclic which allows reproducing a new

population (through agent operators) until the number

of new individuals equals to the desired size. The

second is a simple that allows sending the new

population to the Replacement Agent.

 The Replacement Agent starts its first behaviour

when it receives the current population and the new

population. It is allows performing a simple

communication with the Evaluation Agent to

evaluate the new individuals. The second behaviour

of this agent uses the replacement method to find the

new population of the next generation.

It is can be clear that, the serial implementation does

not add any significant advantage to the EA execution

compared with object oriented implementation.

However, the run time is same in the both

implementations (this is what we will prove in the

experimental part).

Fig.8: The dynamic system modeling

VII. The Implementation of the Parallel Execution

The parallel implementation was designed to be

supported by Master/Slave model. Only one machine

must be declared as «Host» (see figure 3) so the others

as «Slave» machines.

Actually, the execution of the framework in parallel

mode is completely dynamic (figure 8). The selection of

the participate work stations will be specified during

execution through the collaboration between AMS

Agent, DF Agent, Planning Agent and State Agents. So,

the number of containers (of course agents) may change

while the system is operating.

20 The Conception of the New Agent-Based Platform for

Modeling and Implementation of Parallel Evolutionary Algorithms

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 04, 11-25

We present below the scenario established between

the distributed agents in parallel/distributed population

evaluation strategy and synchronous Island model.

7.1. The Implementation of Parallel/Distributed

Population Evaluation

At the beginning of execution, the Planning Agent

selects the less loaded stations to participate of the

calculation where it recovers the addresses of the

Evaluator Agents (from the DF and AMS) in order to

establish the communication flow with DistPopEval

Agent. At the same time, the Initialization Agent

initializes the population and sends it to the Selection

Agent to choose some individuals for recombining by

the Reproduction Agent. This latters, sends the new

population to the DistPopEval Agent to distribute the

evaluation phase (figure 9).

The DistPopEval Agent will run when it receives the

addresses of the Evaluator Agents and the new

individuals. It has three beahviours. The first is simple

which allows dividing the population into subPops

according to the load charge of each machine. The

second is cyclic that allows sending the subPops to the

Evaluator agents until the completion of the evaluation

phase, and the third is simple which allows sending the

results to the Replacement Agent in order to replace the

current population. Notice that, each Evaluator Agent

executes the objective function implemented by the user.

Fig. 9: The sequence diagram for modeling the distribution strategy of evaluation phase

7.2. The Implementation of Island Model

In this strategy, the Planning Agent searches the most

adequate machines for the calculation in order to

recover the addresses of the Population and

Replacement Agents (from DF and AMS). The

addresses of the Population Agents are used by

DistSynIsland Agent to send the subPops to the islands.

The addresses of the Replacement Agents are used by

Topology Agent to define the interconnection list (with

which must exchange the solutions) of each island.

When the DistSynIsland Agent receives the

initialized population, the addresses of the Population

Agents and the interconnection lists, it begins by

dividing the population into subPops. Then, it sends to

 The Conception of the New Agent-Based Platform for 21

Modeling and Implementation of Parallel Evolutionary Algorithms

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 04, 11-25

each island the necessary parameters namely: the

subPop, the stopping criteria, the ID of the selection,

recombination and replacement methods used to

execute the evolutionary process, the ID of the selection

and replacement methods used to select the emigrant

solutions and replace the immigrant solutions, the

interconnection list, and the time for exchanging the

individuals (that is generally measured by a predefined

number of iterations).

Fig. 10: The serial Evolutionary Algorithm executing in each island

At each island, the agents execute the sequential

evolutionary process explained in section 6 (figure 10).

After N iterations, the execution is suspended to

exchange some individuals between the different

islands. At the end of execution (the satisfaction of the

stopping criteria) each island sends its best founded

solution to the DistSynIsland Agent this latter transfers

all results to the Evaluator Agent (located in the host

machine) to define the best global solution.

VIII. The Experimentation Phase

After the explication of the implementation phase,

this step is devoted to show some important

functionalities used by agents' framework to ensure the

dynamic system and to facilitate the distribution task.

Fig. 11: The registration of selection agent

8.1. The Registration of Agents

Each agent connects in the system must register its

services (e.g., agent ID, service name, service type, etc.)

with the DF using the following code (figure 11):

Fig. 12: Searching the DF to find the agents that provide selection

service

Accordingly, the system agents may query the DF to

find out what services are offered by other agents in

order to provide the services they desire. The search

operation returns an array which contains the ID of

suitable agents. Each ID is used to extract the name and

the transport address of the agent to be communicated.

In fact, in our proposal this search strategy is usually

used in distribution strategy by Planning Agent to find

the State Agents, the Evaluator Agents, the Population

Agents and the Replacement Agents.

22 The Conception of the New Agent-Based Platform for

Modeling and Implementation of Parallel Evolutionary Algorithms

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 04, 11-25

8.2. Asynchronous Communication

The main characteristic of multi-agent systems is that

the ability of agents to communicate and to interact

through the exchange of messages. The sent messages

are routed to the destination agent and are placed in its

message queue (this latter will notified when the

message arrives). The receiving agent has the ability to

control its behaviours according to the type of messages

(or semantic) or to the identity of senders. For example,

the receiving agent may suspend all its behaviours until

the arrival of the desired messages. This feature can be

easily performed by using a simple instructions

(blockingReceive() or block()). This strategy facilitates

the implementation of asynchronous applications. It is

exactly used in our framework to implement the

behaviour of the agents responsible for asynchronous

distribution and asynchronous replacement. Otherwise,

if the agent did not use this instruction then it executes

its behaviour in synchronous way, i.e. when it receives

a new message it executes directly its behaviour(s).

Figure 13 shows the code used by Replacement

Agent to replace the current population. In this example,

the agent receives two new sub-pops evaluated by two

distributed processors:

Fig. 13: Asynchronous communication control

Table 1: The run time comparison between GOBA and GABA

TSP Instances
Best Time Average Time Worst Time

Best TSPLIB
GOBA GABA GOBA GABA GOBA GABA

Wi29 0.01 0.01 0.015 0.02 0.13 0.12 27604

Eil51 1.4 1.19 1.71 1.69 2.66 2.80 426

Berlin52 0.21 0.14 0.31 0.24 0.49 0.4 7542

St70 1.26 1.36 1.92 2.02 2.74 2.73 675

Eil76 5.1 4.77 5.09 5.88 7.04 7.68 538

Pr76 1.61 1.45 3.08 3.26 4.8 4.56 108159

KroA100 3.38 2.96 5.25 4.52 7.04 5.8 21282

Lin105 3.6 3.83 5.2 5.14 7.03 5.44 14379

Pr107 5.31 3.75 6.43 5.41 8.82 6.66 44303

Bier127 11.34 8.72 18 14.53 22.52 21.22 118282

Pr144 5.01 4.76 8.81 7.22 12.51 9.44 58537

U159 15.02 15.74 22.56 22.21 30.5 28.25 42080

Ts225 65.62 58.66 78.90 70.29 95.69 80.83 126643

Pr226 27.26 26.67 48.87 46.28 66.84 69.03 80369

Pr264 39.29 35.55 60.82 51.33 79.20 64.84 49135

 The Conception of the New Agent-Based Platform for 23

Modeling and Implementation of Parallel Evolutionary Algorithms

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 04, 11-25

8.3. Performance Comparisons

Based in the above discussion (section 6), this section

is devoted to compare the serial execution time of EA in

agent and object implementations. For this purpose, we

have implemented the genetic algorithm to solve

traveling salesman problem (TSP) (proposed in [35])

using the both techniques. The two algorithms Genetic

Object-Based Algorithm (GOBA) and Genetic Agent-

Based Algorithm (GABA) were tested on instances of

symmetric TSP from 29 to 264 cities. The execution

results are displayed in table 1. The first column shows

the different instances of TSP used in the tests; the

second and the third and the fourth columns display the

best, the average and the worst communication time

(measured by seconds) estimated by GOBA and GABA

to find the best solutions, these letters are obtained after

20 runs of algorithm. The last column shows the best

results published in the TSPLIB [40] library.

According to the displayed results we can see that the

run time obtained by GOBA and GABA is in the some

cases is almost same but in the most cases is better in

GABA.

In order to show agents communication under JADE

framework we have implemented the parallel version

GABA using a distribution strategy of reproduced and

evaluation phases. Parallel GABA (PGABA) was

implemented as a set of agents communicated through

remote method with an ACL message. The

communication between agents is shown in figure 14.

Fig. 14: Jade sniffer agent. This screenshot shows a communication between PGABA agents'

The order of the exchanged messages between the

agents is the same explained in section (VII-7.1).

IX. Conclusion

Combinatorial optimization methods are in the most

cases the stochastic algorithms that take a considerable

time to find a reasonable solution to the NP-hard

problems. Consequently, the necessity to quickly find

optimal solutions in minimum runtime has led to the

development of several parallelization strategies of the

EC algorithms.

In the past few decades, Agent paradigm became one

of the most attractive approaches that represent an

exciting new means of analyzing, designing and

building software systems. It is included in several areas

as the artificial intelligence, the distributed computer

systems and the software engineering. The agent

approach has added many aspects that do not exist in

the classical paradigms (Object-oriented, component-

oriented) namely the autonomy, the adaptation, the

semantic and the intelligent decision. In fact, to benefit

from these advantages we presented in this paper a new

agents-based framework architecture for developing and

modeling parallel evolutionary algorithms.

For this purpose, we have begun by analyzing the

principal concepts of EC framework design. Thus, we

have presented some technical backgrounds used in the

development. Then, we have described the overall

architecture of the proposed system where we have

detailed the role of each agent. Afterword, we have

explained the order of the agent behaviours in serial and

parallel executions.

In the illustration phase, we have demonstrated that

the running time of the serial evolutionary algorithms is

same in the agent and object approaches, we have also

showing how each agent system inscribes in the system

in order to publish its services which are requisite for

other agents and finally, we have explained how the

agent can easily control asynchronous and synchronous

executions.

24 The Conception of the New Agent-Based Platform for

Modeling and Implementation of Parallel Evolutionary Algorithms

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 04, 11-25

In order to accomplish the implementation of our

proposal, we have divided our future work in three parts.

The first one is dedicated to the implementation of the

basic evolutionary operators. The second part is devoted

to enhance the behaviour of each agent in order to

create an intelligent and dynamic system, and the third

is dedicated to evaluate the overall architecture in the

computing cluster.

References

[1] Enrique Alba, Francisco Almeida, Maria J. Blesa,

Carlos Cotta, M. Díaz, Isabel Dorta, Joaquim

Gabarró, Coromoto León, Gabriel Luque, Jordi

Petit. Efficient parallel LAN/WAN algorithms for

optimization. The mallba project. Parallel Comput.

Elsevier Science Publishers B. V, v32, n(5-6),

2006, pp. 415-440.

[2] Enrique Alba, Francisco Almeida, Maria J. Blesa, J.

Cabeza, Carlos Cotta, M. Díaz, Isabel Dorta,

Joaquim Gabarró, Coromoto León, J. Luna, Luz

Marina Moreno, C. Pablos, Jordi Petit, Angélica

Rojas, Fatos Xhafa. MALLBA: A Library of

Skeletons for Combinatorial Optimisation

(Research Note). Proceedings of the 8th

International Euro-Par Conference on Parallel

Processing. Springer, 2002, pp. 927–932.

[3] Bellifemine Fabio Luigi, Caire, Giovanni,

Greenwood, Dominic. Developing Multi-Agent

Systems with JADE (Wiley Series in Agent

Technology). ISBN 0470057475, John Wiley \

Sons, 2007.

[4] Bellifemine Fabio, Caire Giovanni, Trucco Tiziana,

Rimassa Giovanni, Mungenast Roland. Jade

administrator’s guide, 2010.

[5] Sébastien Cahon, Nordine Melab, El-Ghazali Talbi

ParadisEO: A Framework for the Reusable Design

of Parallel and Distributed Metaheuristics. Journal

of Heuristics. Kluwer Academic Publishers, v10,

n3, 2004, pp. 357-380.

[6] Christian Gagné, Marc Parizeau, Marc

Dubreuili.Distributed JDEAL: An Environment for

Parallel and Distributed Evolutionary

Computations. In Proc. of the 17th Annual

International Symposium on High Performance

Computing Systems and Applications (HPCS),

2003, pp. 11-14.

[7] Elisabetta Cortese, Filippo Quarta, Giosue

Vitaglione. Scalability and Performance of JADE

Message Transport System. 2002.

[8] Gabriel Crainic, Michel Toulouse. Parallel

Metaheuristics. Fleet Management and Logistics. T.

G. C. a. G. Laporte. Kluwer Academic. 1998, pp.

205-251.

[9] Van-dat Cung, Simone L. Martins, Celso C.

Ribeiro, Catherine Roucairol. Strategies for the

parallel implementation of metaheuristics. Essays

and Surveys in Metaheuristics. Kluwer, 2001, pp.

263-308.

[10] Fabio Bellifemine, Giovanni Caire, Agostino

Poggi, Giovanni Rimassa. JADE: A software

framework for developing multi-agent applications.

Lessons learned. v50, n1-2, 2008, pp.10-21.

[11] Christian Gagné, Marc Parizeau. Genericity in

Evolutionary Computation Software Tools:

Principles and Case Study. International Journal on

Artificial Intelligence Tools. v15, n(2), 2006, pp.

173-194.

[12] Christian Gagné, Marc Parizeau. Open BEAGLE:

An evolutionary computation framework in C++.

http://beagle.gel.ulaval.ca, 2006.

[13] Christian Gagne, Marc Parizeau, Marc Dubreuil.

Distributed Beagle: An Environment for Parallel

and Distributed Evolutionary Computations.

Proceedings of the 17th Annual International

Symposium on High Performance Computing

Systems and Applications (HPCS). 2003, pp. 201-

208.

[14] Gamma Erich, Helm Richard, Johnson Ralph,

Vlissides John. Design patterns: elements of

reusable object-oriented software. Addison-Wesley

Longman Publishing Co., Inc, 1995.

[15] Di Gaspero L, A. Schaerf. Easylocal++: An

Object-Oriented Framework for the Design of

Local Search Algorithms and Metaheuristics. In

MIC'2001 4th Metaheuristics International

Conference, Porto, Portugal, 2001, pp. 287-292

[16] Giovanni Caire, David Cabanillas. Application-

Defined Content Languages and Ontologies, JADE

documentation. 2010.

[17] David Hadka. MOEA Framework, a Java library

for multiobjective evolutionary algorithm.

http://www.moeaframework.org/index.html. 2009.

[18] John H. Holland. Adaptation in natural and

artificial systems. , Ph.D. thesis. The University of

Michigan Press. Ann Arbor, MI, USA, 1975.

[19] J. Costa, N. Lopes, P. Silva. JDEAL: The Java

Distributed Evolutionary Algorithms Library.

http://laseeb.isr.istutl.pt/sw/jdeal/home.html. 2000.

[20] Keijzer Maarten, Guervos, Juan J. Merelo, Romero,

Gustavo, Schoenauer Marc. Evolving Objects: A

General Purpose Evolutionary Computation

Library. Selected Papers from the 5th European

Conference on Artificial Evolution. Springer-

Verlag. 2002, pp. 231–244.

[21] Kicinger Rafal, Arciszewski Tomasz, Jong

Kenneth De. Evolutionary computation and

structural design: A survey of the state-of-the-art.

http://www.researchgate.net/researcher/69977133_Enrique_Alba/
http://www.researchgate.net/researcher/70271826_Francisco_Almeida/
http://www.researchgate.net/researcher/8857649_Maria_J_Blesa/
http://www.researchgate.net/researcher/10500821_Carlos_Cotta/
http://www.researchgate.net/researcher/65317050_M_Diaz/
http://www.researchgate.net/researcher/69894782_Isabel_Dorta/
http://www.researchgate.net/researcher/70880233_Joaquim_Gabarro/
http://www.researchgate.net/researcher/70880233_Joaquim_Gabarro/
http://www.researchgate.net/researcher/20864308_Coromoto_Leon/
http://www.researchgate.net/researcher/10501542_Gabriel_Luque/
http://www.researchgate.net/researcher/70910712_Jordi_Petit/
http://www.researchgate.net/researcher/70910712_Jordi_Petit/
http://researchr.org/alias/enrique-alba
http://researchr.org/alias/francisco-almeida
http://researchr.org/alias/maria-j.-blesa
http://researchr.org/alias/j.-cabeza
http://researchr.org/alias/j.-cabeza
http://researchr.org/alias/carlos-cotta
http://researchr.org/alias/m.-d%C3%ADaz
http://researchr.org/alias/isabel-dorta
http://researchr.org/alias/joaquim-gabarr%C3%B3
http://researchr.org/alias/coromoto-le%C3%B3n
http://researchr.org/alias/j.-luna
http://researchr.org/alias/luz-marina-moreno
http://researchr.org/alias/luz-marina-moreno
http://researchr.org/alias/c.-pablos
http://researchr.org/alias/jordi-petit
http://researchr.org/alias/ang%C3%A9lica-rojas
http://researchr.org/alias/ang%C3%A9lica-rojas
http://researchr.org/alias/fatos-xhafa
http://www.bibsonomy.org/author/Cahon
http://www.bibsonomy.org/author/Melab
http://www.bibsonomy.org/author/Talbi
http://www.moeaframework.org/index.html.%202009
http://laseeb.isr.istutl.pt/sw/jdeal/home.html.%202000

 The Conception of the New Agent-Based Platform for 25

Modeling and Implementation of Parallel Evolutionary Algorithms

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 04, 11-25

Comput. Struct. Pergamon Press, Inc. v83, n(23-

24), 2005, pp. 1943-1978.

[22] John Koza. Genetic programming. Bradford / MIT

Press, 1992.

[23] John Koza. Genetic programming. Bradford / MIT

Press, 1994.

[24] Kramer Michael D, Zhang Du. GAPS: A Genetic

Programming System. International Journal on

Artificial Intelligence Tools. v12, 2003, pp. 187-

206.

[25] Natalio Krasnogor, Jim Smithr. MAFRA}: A Java

Memetic Algorithms Framework. IIn Alex A.

Freitas, William Hart, Natalio Krasnogor, and Jim

Smith, editors, Data Mining with Evolutionary

Algorithms. v8, 2000, pp. 125-131.

[26] Hyacinth S. Nwana, Divine T. Ndumu, Lyndon C.

Lee. ZEUS: An Advanced Tool-Kit for

Engineering Distributed Multi-Agent Systems. In

Proceedings of the 3rd International Conference on

Practical Applications of Intelligent Agents and

Multi-Agent Technology. 1998, pp. 377-391.

[27] L.J. Fogel, A.J. Owens, M.J. Walsh, Artificial

Intelligence Through Simulated Adaptation. Wiley,

New-York. 1966.

[28] Meffert Klaus et al. JGAP- Java Genetic

Algorithms and Genetic Programming Package.

http://jgap.sf.net. 2002.

[29] M.G. Arenas, P. Collet, A.E. Eiben, M. Jelasity, J.J.

Merelo, B. Paechter, M. Preuß, and M. Schoenaue.

A framework for distributed evolutionary

algorithms. In Proceedings of PPSN VII. 2002.

[30] Pilat Marcin L, White Tony. Using Genetic

Algorithms to Optimize ACS-TSP. ANTS'02:

Proceedings of the Third International Workshop

on Ant Algorithms. Springer-Verlag, 2002, pp.

282-287.

[31] Bill Punch, Douglas Zongker. lil-gp 1.1 beta.

http://garage.cse.msu.edu/software/lil-gp. 1998.

[32] Rechenberg, I. Evolutions strategie: Optimierung

technischer Systeme nach Prinzipien der

biologischen Evolution. TU Berlin, 1971.

[33] Rimassa G, Bellifemine F, Poggi A. JADE -A

FIPA Compliant Agent Framework. Proceedings of

the Practical Applications of Intelligent Agent,

1999, pp. 97-108.

[34] Sara Sabba, Salim Chikhi. Integrating the Best 2-

Opt method to enhance the genetic algorithm

execution time in solving the traveler salesman

problem. Complex System and Dependability.

Advances in Intelligent and Soft Computing.

Springer-Verlag, v170, 2011, pp. 195-208.

[35] Schwefel Hans-Paul. Numerical Optimization of

Computer Models. John Wiley \ Sons, Inc. 1981.

[36] Sean Luke, Liviu Panait, Gabriel Balan, Sean Paus,

Zbigniew Skolicki, Jeff Bassett, obert Hubley,

Alexander Chircop. ECJ: A java-based

evolutionary computation and genetic

programming research system,

http://cs.gmu.edu/˜eclab/projects/ecj, 2005.

[37] Sara Silva. GPLAB: A genetic programming

toolbox for MATLAB. http://gplab.sourceforge.net.

2005.

[38] Sara Silva, Jonas Almeida. GPLAB: A genetic

programming toolbox for MATLAB. In Proc. of

the Nordic MATLAB Conference, 2003, pp. 273–

278.

[39] TSPLIB(1995).Http://www.iwr.uni-heidelberg.de/

groups/ comopt/software/TSPLIB95/STSP.html.

[40] AgentBuilder U.G. An Integrated Toolkit for

Constructing Intelligent Software Agents, 2000.

[41] Ventura Sebastian, Romero Cristobal, Zafra

Amelia, Delgado Jose A, Hervas Cesar. JCLEC: a

Java framework for evolutionary computation. Soft

Comput.Springer, 2007, v11, n4, pp. 381–392.

[42] Matthew Wall. GAlib: A C++ library of genetic

algorithm components, http://lancet.mit.edu/ga,

2000.

[43] Michael J. Wooldridge, Nicholas R. Jennings.

Software engineering with agents: pitfalls and

pratfalls. IEEE Internet Computing, v3, n3, 1999,

pp. 20-27.

[44] Yoav Shoham, Artificial Intelligence, v60, n1,

1993, pp. 51-92.

Authors’ Profiles

Sara Sabba received her Master's

degree from Mentouri University of

Constantine, Algeria in 2009 and she

is a PhD student from the year 2010

in Mentouri University of

Constantine, Algeria. Her current

research interests include

optimization methods and their applications to solve

several combinatorial optimization problems.

Salim Chikhi has done his PhD in

Computer Science from the

University of Constantine, in 2005.

He is currently a Professor at the

Mentouri University, Constantine,

Algeria. He is the Leader of the

SCAL team of MISC Laboratory.

His research areas include soft

computing and artificial life techniques and their

application in several domains.

http://jgap.sf.net/
http://garage.cse.msu.edu/software/lil-gp
http://lancet.mit.edu/ga

