
I.J. Intelligent Systems and Applications, 2014, 04, 40-48

Published Online March 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2014.04.04

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 04, 40-48

Redundancy Level Optimization in Modular

Software System Models using ABC

Tarun Kumar Sharma

Amity Institute of Information Technology, Amity University Rajasthan, Jaipur, India

E-mail: taruniitr1@gmail.com

Millie Pant

Department of Applied Science and Engineering, IIT Roorkee, Roorkee, India

E-mail: millidma@gmail.com

Abstract— The performance of optimization algorithms

is problem dependent and as per no free lunch theorem,

there exists no such algorithm which can be efficiently

applied to every type of problem(s). However, we can

modify the algorithm/ technique in a manner such that it

is able to deal with a maximum type of problems. In

this study we have modified the structure of basic

Artificial Bee Colony (ABC), a recently proposed

metaheuristic algorithm based on the concept of swarm

intelligence to optimize the models of software

reliability. The modified variant of ABC is termed as

balanced ABC (B-ABC). The simulated results show

the efficiency and capability of the variant to solve such

type of the problems.

Index Terms— Artificial Bee Colony, Software

reliability, Opt imization, Metaheuristics, Swarm

Intelligence

I. Introduction

Metaheuristic search techniques are gaining

significant attention and interest of researchers,

academicians and scientists to find optimal solutions to

optimization problems at a reasonable computational

cost in various domains of Science and Engineering.

The focus of the present study is on the optimization

problems arising in the field of Software Engineering,

an emerg ing area of research where metaheuristics are

applied. Software is a strong foundation of Information

Technology and Society and developing the strategic

competence among nationalit ies [1 - 2]. Drastic

working and life style change can be experienced

thoroughly after the emergence of Software. However

developing the quality software is a very careful

practice. The development posses many issues and

goals like reliability, overrun of costs, user requirements

etc. The improvement of software process has important

practical significance to defuse software crisis, as it is

influencing the development and management of

software [3].

A lot of research has been done and is still continuing

to overcome the various issues in software development

process. A brief discussion is given in the literature

review section of the present study.

The present study focuses on the optimizat ion

reliability issues of software development process,

which is also one of the important user requirements. In

terms of software system, reliability can be defined as

the probability that software operates without failure in

a specified environment, during a specified exposure

period [4]. A d iscrepancy between expected and actual

output is called failure. Failure is a consequence of fault,

also called a defect in the program that, when executed

results a failure. The reliability of the software can be

improved by carefully implementing the application of

redundancy, but it requires additional resources. A

number of reliab ility models have been proposed and

developed for the pred iction and the assessment of the

reliability of fau lt-tolerant software systems[5].

However, the problem of reliab ility optimizat ion for

fault-tolerant software has not been addressed by many

researchers else in [5] which contribute this lack of

interest partly.

To optimize the redundancy level of the modules [6]

we have modified the searching behavior and have used

a recently p roposed metaheuristic, Art ificial Bee

Colony (ABC) algorithm.

ABC is a swarm based intelligent algorithm,

proposed by Karaboga in 2005 [6]. It uses the

intelligent and social movement of three kind of bees

(scout, employed and onlooker) to simulate the

optimization problems. The algorithm is detailed with

pseudocode in section2. The flexibility, effic iency and

ease of implementation of ABC attract many researches

to utilize its functionality to solve many real life

applications/problems.

Here we would like to mention that a preliminary

version of this paper has been presented in Seventh

International Confe rence, Bio-Inspired Computations,

Theory and Applications (BIC-TA 2012), where the

proposed variant is tested on a set of five benchmark

functions [7]. Th is paper is an extended version of the

 Redundancy Level Optimizat ion in Modular Software System Models using ABC 41

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 04, 40-48

presented paper in terms of both the algorithm as well

as its implementation on real life problems. In this

paper the scout bee phase of the variant is further

modified to increase the diversity of the food sources.

The paper is structured as follows: Sect ion 3

describes applications of Artificial Bee Colony

algorithm in the software engineering discipline; the

proposed enhanced variant, B-ABC, of basic ABC is

discussed in Section 4. In Section 5 software system

structure with models are d iscussed. Parameter settings

and simulated results are presented Section 6 and finally

the conclusions are drawn in Section 7.

II. Delineation of Artificial Bee Colony

Artificial bee colony (ABC) is a recently proposed

population based metaheuristic algorithm which takes

its inspiration from the intelligent foraging behavior of

swarm of real honey bees. It was init ially proposed by

Karaboga in 2005 [6] for solving unconstrained

optimization problems, where it showed a better

performance in comparison to genetic algorithm (GA),

particle swarm optimization (PSO) and differential

evolution (DE) when applied to various function

optimization problems [9][10]. Later in 2007 [11], ABC,

modified with s mall changes was used to solve

unconstrained optimizat ion problems. Constrained and

unconstrained ABC versions are discussed below in

detail.

2.1 Unconstrained ABC

In ABC the colony of honey bees is comprised of

three types of bees namely scouts, employed and

onlooker bees. The bees in the colony perform tasks

like searching fo r the nector and sharing the information

about the food source intelligently by divid ing the labor

themselves. The main d ifference between ABC and

other intelligent swarm based algorithms is that in ABC

food sources (the population generated) represents the

solutions of the problem, not the bees.

The scout bee initiates the food sources randomly

which is later explo ited by employed bees. The

employed bees pass the information about the food

source based on their nectar quality to the onlooker bees

wait ing in the hive. This sharing of information is done

by performing a special dance called waggle dance. In

ABC the number of employed bees is equal to the

number o f food sources and each employed bee is

assigned to one of the food sources. Employed bees

upon reaching to the food source, calculate a new

location or fly to the nearby position from the o ld and

preserve the best position. This is a greedy selection

process. The number of onlooker bees is also the same

as that of employed bees and are allocated to the food

sources based on their profitability. Similarly as the

employed bees, onlooker bees also calculate the new

position from the old one. If the food source does not

improve after predetermined number of iterations, then

employed bees abandons that food source and becomes

scouts and searches the new food source randomly.

Mathematical exp lanation of the complete process is

described below.

Mathematical Outline of Artificial Bee Colony:

Define SN as the total number of bees, Ne as the

colony size of the employed bees and No as the size of

onlooker bees, which satisfy the equation SN = Ne + No.

The number of food sources is equal to the number of

employed bees because each food source is exploited by

only one employed bee around the hive. The standard

ABC algorithm can be expressed as follows:

1. Randomly in itialize a set of feasible food sources

(x1; . . . ; xSN), and the specific solution xi can be

generated by:

))(1,0(LjUjLjij xxrandxx  (1)

where j  {1,2,…,D} is the jth d imension of the

solution vector. Calculate the fitness value of each

solution vector respectively.

2. For an employed bee in the nth iteration xi(n), search

new solutions in the neighborhood of the current

position vector according to the following equation:

)(kjijijijij xxxv  (2)

where xijSN, j{1,2,…,D}, k{1,2,…,Ne}, k ≠ i.

is a random number between -1 and 1.

3. Apply the greedy selection operator to choose the

better solution between searched new vector vij and

the original vector xij into the next generation. The

greedy selection operator ensures that the population

is able to retain the elite individual, and accordingly

the evolution will not retreat.

4. Each onlooker bee selects an employed bee from the

colony according to their fitness values. The

probability distribution (pi) of the selection operator

can be described as follows:







eN

i

j

i

fit

fit
p

1

 (3)

where fiti is the fitness value of the solution i which is

proportional to the nectar amount of the food source in

the position i.

5. The onlooker bee searches in the neighborhood of the

selected employed bee‘s position to find new

solutions using Eq. (2). The updated best fitness

value can be denoted with fbest, and the best solution

parameters.

42 Redundancy Level Optimizat ion in Modular Software System Models using ABC

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 04, 40-48

6. If the searching times surrounding an employed bee

exceeds a certain threshold limit , but still could not

find better solutions, then the location vector can be

re-initialized randomly according to the Eq. (1).

7. If the iteration value is larger than the maximum

number of the iteration then stop, else, go to 2.

2.2 Constrained ABC

In the present study, we have followed ‗three

feasibility rules‘ method given in [12] to decide which

solution vector (food source) will be beneficial for

handling constraints. An advantage of this method is

that unlike penalty method we need not have a penalty

constant, which itself is a tedious work to decide.

Moreover, here we consider feasible as well as

infeasible solutions and prioritize these solutions as per

the following rules:

 If we have two feasible food sources, the one giving

the best objective function value is selected.

 If one food source is feasible and the other one is

infeasible, the feasible one is selected;

 If both food sources turn out to be infeasible, then we

selected the food source giving the min imum

constraint violation.

It can be observed that these rules bias feasible food

sources over infeasible food sources and a pairwise

comparison (tournament selection) is done to select the

best option.

In this method a control parameter called

modification rate (MR), pre defined by the user is

introduced. With the help of MR, it is decided

stochastically whether a food source xi should be

retained or not. It given by the equation:





 


otherwisex

MRRifxxx
v

ij

jkjijijij

ij
,

),(
 (4)

where k {1, 2,..., SN} – randomly chosen such that

k ≠ i ; j {1, 2,...,N}.Rj is generated randomly between 0

and 1in each iteration.

III. Applications of Artificial Bee Colony in

Software Engineering: An Overview

Since its development, Artificial Bee Colony

algorithm is widely applied to solve/optimize various

real life applications in different disciplines of science

and engineering. The detail can be consulted in [13]. In

the field of software engineering Artificial Bee Colony

has been widely applied to software tes ting, cost

estimation, and software reliability. Brief descriptions

of the applications of ABC in software engineering are

listed below:

 In [14] and [15] Mala et al. applied ABCA to very

promising research area in software engineering i.e.

optimization of software test suite.

 Bacanin et al. in [16] p roposed modified variant of

basic ABCA to describe an object-oriented software

system for continuous optimization.

 Dahiya et al. [17] introduced automatic structural

software tests generation using a novel search

technique based on Artificial Bee Colony.

 Kilic et al. [18] p resented a solution for solving hard

combinatorial automated software refactoring

problem which is the lies in the domain of search-

based software engineering.

 AdiSrikanth et al. [19] introduced optimal software

test case generation to attain better path coverage

using ABCA algorithm.

 Liang and Ming in [20] d iscussed and studied the use

of ABCA optimization technique with two-tier

bitwise interest oriented QRP to reduce message

flooding and improve recall rate for a s mall world

peer-to-peer system.

 Suri and Kalkal in [21] presented a review of

software testing applications of ABCA and its

variants.

 Li and Ma in [22] a solution method for logic

reasoning using ABCA was proposed.

 Bacanin et al. in [23] improved ABCA optimizat ion

was studied on the performance of object-o riented

software system.

 Sharma et.al. in [24] applied modified version of

ABCA to parameter estimation of software reliability

growth models.

 Koc et al. in [25] proposed a solution for automated

maintenance of object-oriented software system

designs via refactoring using ABCA.

 Sharma and Pant in [26] estimated the software cost

parameters using halton based ABCA optimization.

 Tajinder Singh and Mandeep Kaur Sandhu in [27]

presented a survey of ABCA on software testing

environment and its advantages over the Genetic

Algorithm

 Suri, B., and Mangal, I.in [28] introduced a hybrid

algorithm using ABCA to reduce the test suite.

IV. Proposed Enhanced Variant: B-ABC

Explorat ion and exp loitation are the two antagonist

upon which the success of any evolutionary algorithm

relies. Artificial Bee Colony, like other evolutionary

algorithms has some downside which impedes its

performance. Art ificial Bee Colony algorithm performs

well at explorat ion while poor at explo itation. This issue

 Redundancy Level Optimizat ion in Modular Software System Models using ABC 43

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 04, 40-48

motivates to make an attempt to balance exp loration

and explo itation. In this study it is done by enhancing

the search mechanism of the onlooker bees in the

solution search space. In the proposal the probability of

each parent to generate a better food source is increased

by allowing each location of food source (solution) to

generate more than one food source. Th is is done by

using different mutat ion operator that incorporate

informat ion of the best food source in the current

population and as well as the information of the current

parent to define the new search directions. This

mutation operator allows each parent to generate more

than one food sources in the same generation. The

pseudocode of the proposed variant to generate multip le

food sources is given below.

Pseudocode of B-ABC

For k =1 to q

 Select randomly r1≠r2≠r3≠i
 For j = 1 to D

 If (U(0, 1))>0.5 Then

)()(1,2,,3 jrijjrjbestjrij xxxxxv 

 Else

 vij = xij

 End If

 End For

 If K > 1 Then

 If (f(vij)< f(xij)) Then

 xij = vij
 End If

 Else

 xij = vij

 End If

End For

The pseudocode describes the generation of mult iple

food sources, where q is user defined parameter to keep

the best food source generated. r1, r2 & r3 are randomly

chosen random numbers such that r1≠r2≠r3≠i.
j

Gix , and

j

Gbestx , is the current parent and best individual in the

current population G of the food sources respectively.

The influence of the best and parent food sources

(solutions) is indicated by α and β factors, respectively,

in the search direction of the food sources.

Further, to increase the diversity of the food sources

(population), the scout bee generates a new food source

xij by using the food source subject to be replaced xij as

a base to generate a new search direction biased by the

best food source so far xbest, j and a randomly chosen

food source xjk. The modified scout bee phase is given

in equation (5):












otherwisexxxxx

Uifxxrandx
x

jbestijijkjijij

iiij

ij
),)(1()(

)1,0(,()(

,

min,max,
 (5)

V. Software Redundancy Models

Notations:

K: is the number of functions that the software

 system is required to perform.

n: Number of modules within the system.

Fk: Frequency of the use of function k, k = 1, 2,. . . ,

 K.

mi: is the number of available versions for module

 i,i = 1,. . . , n.

Rij: Reliability estimation of version j of module i.

Xij: Binary variable i.e. 1 if version j is selected for

 module i, else 0.

Ri: Estimated reliability of module i.

R: Estimated reliability of the software system.

Cij: Development cost for version j for module i.

B: Available budget.

In this study four different software models are taken

from literature [6] to optimize the redundancy level of

the modules for each software structure so as to

maximize reliability at a limited given cost. The models

are developed using modular techniques and are

required to perform one or more, user specified

functions discussed. A program when executed

performs some function(s) and each program is further

divided into several modules. Each module may be

called or referred by more than one program. Four

models for d ifferent software structures are discussed

below:

5.1 Model 1

In this model an optimal set of modules are selected

to perform one function without redundancy. In

software system that comprises of a single program,

when executed performs one major function. And in

turn a program is comprised of modules that executes

sequentially. Budget constraint and the critical nature of

software limits keeping more than one versions of each

module, though there are more than one versions of

each module are available. The model that describes the

44 Redundancy Level Optimizat ion in Modular Software System Models using ABC

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 04, 40-48

situation of optimal selection of modules for a single

program in order to optimize (maximize) reliab ility with

respect to the development budgetary constraints is

given below:





n

i
iRRMaximize

1

 (6)

w.r.t. ,1
1




im

j
ijX

  
 


n

i
ij

m

j
ij BCX

i

1 1

 iij mjniX ,...,1;,...,1;1,0 

where 



im

j
ijiji RXR

1

 (6a)

5.2 Model 2

Here in this model an optimal set of modules are

selected to perform one function with redundancy. A

software system that performs crit ical function and

whose failure results to be very stern. In such condition

software are designed to be fault-tolerant. For this

purpose mult iple redundant versions for each module

are kept. In such condition it can be reasonably

understood that the allocation of budget is large enough

to support and allow redundancy of modules. The key

objective that arises in this situation is to determine the

optimal set of modules, allowing redundancy, and to

maximize the reliab ility of the software system with the

budgetary constraint. The model is presented below:





n

i
iRRMaximize

1
 (7)

w.r.t. iij mjniX ,...,1;,...,1;1,0 

where ,1
1




im

j
ijX

  
 


n

i
ij

m

j
ij BCX

i

1 1

 



i

ij
m

j

X

iji RR
1

)1(1 (7a)

The probability that at least one of the mi, versions is

performing correctly defines the reliability of the

module i (given as one minus the probability that none

of the mi, versions is performing correctly).Constraint

set mentioned for the model assures that for each

module i at least one version is selected.

5.3 Model 3

In the model 3 the set of modules without having

redundancy, are selected for a system with K

functionality. This model comprises of several

programs and each program performs a specific

function. In turn, each program comprises of a series of

modules. Programs can be called by their corresponding

functions and program may call any modules. The

objective of this model is again just like d iscussed

above in two models i.e. to determine the optimal set of

modules for the programs, without allowing redundancy,

and in such a way that the reliability of the software

system is maximized within the budgetary constraints.

Model 3 is presented below:

Let Sk symbolize the set of modules corresponding to

program k . For each module iSk there are mi, versions

available. Here different programs can call the same

module. All the modules to be called by all programs

are numbered from 1 to n. The problem can be

formulated as follows:





kSi

i

K

k
k RFRMaximize

1

 (8)

w.r.t. niX
im

j
ij ,....,1,1

1




 
 


n

i
ij

m

j
ij BCX

i

1 1

iij mjniX ,...,1;,...,1;1,0 

where Ri is referred from Model 1.

5.4 Model 4

This model is similar to the model 3 above. In this

case models are selected with redundancy i.e., the

choice of more than one version for each one of the

modules are allo wed. The problem is presented as

follows:





kSi

i

K

k
k RFRMaximize

1
 (9)

w.r.t. niX
im

j
ij ,....,1,1

1




  
 


n

i
ij

m

j
ij BCX

i

1 1

 iij mjniX ,...,1;,...,1;1,0 

where Ri is referred from Model 2.

VI. Parameter Settings, Results and Discussions

6.1 Experimental Settings

For the best performance of B-ABC following

parameters are taken. The colony size (SN) or the

number o f solutions in the colony is 40, the value of

modification rate (MR) is 0.4, and the maximum cycle

number (MCN) is 1000. The total objective function

 Redundancy Level Optimizat ion in Modular Software System Models using ABC 45

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 04, 40-48

evaluation number is SN × MCN i.e. 40,000 and the

value of limit is equal to SN × N where N is the

dimension of the problem. In this paper, 30 independent

runs are performed for each test function in C++. The

integer and binary variables are handled by rounding of

the decision variables to nearest integer [29]. In this

study we have generalize the maximizat ion problems as

minimizat ion ones. The process is represented

graphically in Fig. 2, where the optimal value of the

minimizat ion problem *)(x is both is both, the

minimum of the function)(xf and the maximum of

the function)(xf .

x*

f(x)

-f(x)

x

x*, minimum of f(x)

x*, maximum of -f(x)

f(x)

Fig. 1: Minimum of f(x)

6.2 Result Analysis

To solve the above discussed software system

structure models, numerical examples have been taken.

1) Numerical example for the Model 1 is as: Let there

are 3 modules in the software i.e . n = 3 (m1=3, m2=3,

m3=3). The cost and the reliability of the modules are

taken as R11=0.90, R12=0.80, R13=0.85; C11=$3,

C12=$1, C13=$2; R21=0.95, R22=0.80, R23=0.70;

C21=$3, C22=$2, C23=$1; R31=0.98, R32=0.94; C31=$3,

C32=$2 and given budget i.e. B = 6, the Model 1 can

be formulated as follows (equation (10)):

Maximize (0.9X11 + 0.8X12 + 0.85X13)* (0.95X21 +

0.8X22 + 0.7X23)*(0.98X31 + 0.94X32) (10)

w.r.t. X11 + X12 + X13 = 1

 X21 + X22 + X23 = 1

 X31 + X32 = 1

3X11 + X12 + 2X13 + 3X21 + 2X22 + X23 + 3X31 + 2X32

≤ 6

where

X11, X12, X13, X21, X22, X23, X31, X32 = 0, 1.

The optimal solution found by ABC and the proposed

variant called B-ABC is presented in the Table 1. The

objective function value obtained using basic B-ABC is

better than that of basic ABC. Also B-ABC took only

27913 function evaluations to solve model 1 which is

about 30% faster than ABC.

Table 1: Optimal Solution of Model 1

Algorithm Decision Variables O bj. Func. Value Cost ($) Func. Eval. Number

ABC X31, X22, X12 0.6272 6 36176

B-ABC X12, X21, X32 0.714 6 27913

2) The same problem discussed above is considered for

solving Model 2, with a d ifference of budget only.

Here the budget is taken as $10. The optimal solution

of the model using ABC and modified variant is

given in Tab le 2. In this case B-ABC performs 34%

faster than basic ABC in achieving object ive function

value.

Table 2: Optimal Solution of Model 2

Algorithm Decision Variables O bj. Func. Value Cost ($) Func. Eval. Number

ABC X11, X12, X22, X23, X31 2.499 10 36219

B-ABC X31, X21, X23, X12, X13 2.6680 10 26984

3) To solve Model 3, the numerical example considered

is as follows: K = 2, F1 = 0.70, F2 = 0.30, n = 3, s1 =

(1, 2}, s2 = (2, 3}; m1 = 2, m2 = 2, m3 = 2; R11 = 0.80,

Rl2 = 0.85; R2l = 0.70, R22 = 0.90; R31 = 0.95 R32 =

0.90; C11 = $2, C12 = $3; C21 = $1, C22 = $3; C31 = $4,

C32 = $3 and the available budget is taken as $8.

Mathematically, Model can be formulated as:

Maximize (0.392X11X12 + 0.504X11X22 +

0.4165X12X21 + 0.5355X12X22 + 0.1995X21X31 +

0.189X21X32 + 0.2565X22X31 + 0.243X22X32) (11)

46 Redundancy Level Optimizat ion in Modular Software System Models using ABC

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 04, 40-48

w.r.t. X11 + X12 = 1

 X21 + X22 = 1

 X31 + X32 = 1

 2X11 + 3X12 + X21 + 3X22 + 4X31 + 3X32 ≤ 8

where

 Xij = 0,1; i = 1, 2, 3 j = 1, ..., mi.

In this model both the algorithms achieved the same

optimal solution and is presented in Table 3.But B-ABC

as above again performed better in terms of function

evaluation i.e. 20% faster than basic ABC.

Table 3: Optimal Solution of Model 3

Algorithm Decision Variables O bj. Func. Value Cost ($) Func. Eval. Number

ABC X11, X22, X32 0.747 8 39134

B-ABC X11, X22, X32 0.747 8 32546

4) For the Model 4 the same problem d iscussed above is

again considered with the budget of $9 and the

optimal result for this model is presented in Table 4.

Here again the proposed variant performed better in

achieving better objective function value as well as

better convergence of 19% when compared with

basic ABC.

Table 4: Optimal Solution of Model

Algorithm Decision Variables O bj. Func. Value Cost ($) Func. Eval. Number

ABC X11, X21, X22 , X32 0.8052 9 39034

B-ABC X11, X12, X21, X32 0.9975 9 32612

The number of function evaluation taken to execute

the considered Models 1 - 4 using ABC and B-ABC are

shown graphically in Fig. 2.

0

5000

10000

15000

20000

25000

30000

35000

40000

Model 1 Model 2 Model 3 Model 4

ABC B-ABC

Fig. 1: Function Evaluation Number taken to solve Model 1 - Model 4
using ABC & B-ABC

VII. Conclusion

In this study we have modified the structure of basic

ABC by improving the foraging mechanisms of

onlooker bee and later the scout bee phase for

improving diversity. The modified variant is termed B-

ABC. B-ABC is applied to optimize (maximize) the

reliability of four modular software system models

while ensuring budget remain within limit (availab le

resources). The four different software system models

considered to optimize using ABC and B-ABC are (a)

Single program without redundancy (b) Single program

with redundancy (c) Mult iple programs without

redundancy and (d) Mult iple programs with redundancy.

The simulated results explain the efficiency of the

proposed variant in terms of accuracy and convergence

to solve such type of problems.

Acknowledgments

The authors would like to thank the anonymous

reviewers for their careful reading of this paper and for

their helpful comments.

References

[1] Popp R L, Pattipati K R, Bar-Shalom Y. m-Best S-

D assignment algorithm with application to

multitarget tracking[J]. IEEE Trans. on AC, 2001,

37 (1):22 - 38.

[2] Carbone, P., Buglione, L., and Mari, L., ―A

comparison between foundations of metro logy and

software measurement‖, IEEE T. Instrum. Meas.,

Vol. 57, No. 2, (2008), pp. 235-241.

[3] Wang, YX. and Patel, S., ―Exploring the cognitive

foundations of software engineering‖, Int. J. Soft.

Sci. Comp. Intel., Vol. 1, No. 2, (2009), pp. 1-19.

[4] OHagan, P., Hanna, E. and Territt, R., ―Addressing

the corrections crisis with software technology‖,

Comp., Vol. 43, No. 2, (2010), pp. 90-93.

 Redundancy Level Optimizat ion in Modular Software System Models using ABC 47

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 04, 40-48

[5] Musa, JD., ―A theory of software reliab ility and its

application‖, IEEE Transactions on Software

Engineering, Vol. 1, No. 3, (2010), pp.312-327.

[6] Belli, F. and Jedrzejowicz, P., ―An approach to

reliability optimizat ion of software with

redundancy‖, IEEE Transactions on Software

Engineering, Vol. 17, No. 3, (1991), pp. 310-312.

[7] Berman, O., and Ashrafi, N., ―Optimization

Models for Reliability of Modular Software

Systems‖, IEEE Transactions on Software

Engineering, Vol. 19, No. 11, (1993), pp. 1119-

1123.

[8] Karaboga, D., ―An idea based on honey bee swarm

for numerical optimization‖, Technical Report

TR06, Erciyes University, Engineering Faculty,

Computer Engineering Department, Turkey (2005).

[9] Sharma, TK. and Pant, M., ―Modified Foraging

Process of Onlooker Bees in Art ificial Bee

Colony‖, Bio Inspired Computation Theory and

Applications (BIC-TA 2012), Gwalior, India (Dec.

14-16, 2012), 479-487, 2012.

[10] Karaboga, D. and Basturk, B., ―A powerful and

efficient algorithm for numerical function

optimization: art ificial bee co lony (ABC)

algorithm‖, J. Global Optimiz., Vol. 39, No. 3,

(2007), pp. 459–471.

[11] Karaboga, D. and Basturk, B., ―On the

performance of artificial bee colony (ABC)

algorithm‖, Appl. Soft Comput., Vol. 8, No. 1,

(2008), pp. 687–697.

[12] Karaboga, D. and Basturk, B., ―Artificial Bee

Colony (ABC) Optimization A lgorithm for

Solving Constrained Optimization Problems‖,

International Fuzzy Systems Association World

Congress (IFSA), Cancun, Mexico, (June 18-21,

2007), 789–798, 2007.

[13] Deb, K., ―An efficient constraint handling method

for genetic algorithms‖, Computer Methods in

Applied Mechanics and Engineering, Vol. 186, No.

2/4, (2000) , pp. 311–338.

[14] Karaboga, D., Gorkemli, B., Ozturk, C. and

Karaboga, N., ―A comprehensive survey: artificial

bee colony (ABC) algorithm and applications‖,

Artif Intell Rev, DOI 10.1007/s10462-012-9328-0.

[15] Mala, DJ., Mohan, V. and Kamalapriya, M.,

―Automated software test optimisation

framework—an artificial bee colony optimisation-

based approach‖, IET Softw, Vol. 4, No. 5, (2010),

pp. 334–348.

[16] Mala, DJ., Kamalapriya, M., Shobana, R. and

Mohan, V. ―A non-pheromone based intelligent

swarm optimizat ion technique in software test

suite optimization‖, IAMA: 2009 international

conference on intelligent agent and multi-agent

systems, Madras, India, (July 22-24, 2009), 188–

192, 2009.

[17] Bacanin, N., Tuba, M. and Brajevic, I., ―An object-

oriented software implementation of a modified

artificial bee colony (abc) algorithm‖, 11th

WSEAS neural networks, fuzzy systems and

evolutionary computing, Iasi, Romania, (June 13-

15, 2010), 179–184, 2010.

[18] Dahiya, SS., Chhabra, JK. and Kumar, S.,

―Application of art ificial bee co lony algorithm to

software testing‖, 21st Australian software

engineering conference (ASW EC), Auckland, New

Zealand, (April 6-9, 2010),149–154, 2010.

[19] Kilic, H., Koc, E. and Cereci, I., ―Search-based

parallel refactoring using population-based direct

approaches‖, Third International Symposium,

SSBSE 2011, Szeged, Hungary, (September 10-12,

2011), 271–272, 2011.

[20] Adi Srikanth, Kulkarn i, NJ., Naveen, KV., Singh,

P. and Srivastava, PR., ―Test case optimization

using artificial bee colony algorithm‖, First

International Conference, ACC 2011, Kochi, Ind ia,

(July 22-24, 2011), 570–579, 2011.

[21] Liang, CY. and Ming, LT., ―Using two-tier b itwise

interest oriented qrp with art ificial bee colony

optimization to reduce message flooding and

improve recall rate for a small world peer-to-peer

system‖, 7th international conference on

informat ion technology in Asia (CITA 11),

Kuching, Sarawak, (July 12-13, 2011) 1–7, 2011.

[22] Suri, B. and Kalkal, S., ―Review of artificial bee

colony algorithm to software testing‖, Int J Res

Rev Comput Sci., Vol. 2, No. 3, (2011), pp. 706–

711.

[23] Li, LF. and Ma, M., ―Artificial bee colony

algorithm based solution method for logic

reasoning‖, Comput Technol Dev,

doi:CNKI:SUN:WJFZ.0.2011-06-035.

[24] Bacanin, N., Tuba, M. and Brajevic, I.,

―Performance of object-oriented software system

for improved artificial bee colony optimization‖,

Int J Math Comput Simul., Vol. 5, No. 2, (2011),

pp. 154–162.

[25] Sharma, TK., Pant, M. and Abraham, A.,

―Dichotomous search in ABC and its application in

parameter estimation of software reliability growth

models‖, IEEE NaBIC 2011, Salamica, Spain, (Oct.

20-22, 2011), 207-212, 2011.

[26] Koc, E., Ersoy, N., Andac, A. and Camlidere, ZS.,

Cereci, I. and Kilic, H., ―An empirical study about

search-based refactoring using alternative multip le

and population-based search techniques‖, 26th

International Symposium on Computer and

Information Sciences, London, UK, (September

26-28, 2011), 59–66, 2011.

48 Redundancy Level Optimizat ion in Modular Software System Models using ABC

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 04, 40-48

[27] Sharma, TK. and Pant, M., ―Halton Based Initial

Distribution in Art ificial Bee Colony Algorithm

and its Application in Software Effort Estimation‖,

International Journal of Natural Computing

Research (IJNCR), Vol. 3, No. 2, (2012), pp. 86 -

106, 2012.

[28] Singh, T. and Sandhu, MK., ―An Approach in the

Software Testing Environment using Artificial Bee

Colony (ABC)‖, Optimization. International

Journal of Computer Applications, Vol. 58, No. 21,

(2012), pp. 5-7.

[29] Suri, B. and Mangal, I., ―Analyzing Test Case

Selection using Proposed Hybrid Technique based

on BCO and Genetic Algorithm and a Comparison

with ACO‖, International Journal o f Advanced

Research in Computer Science and Software

Engineering, Vol. 2, No. 4, (2012), pp. 206-211.

[30] Srinivas, M. and Rangaiah, GP., ―Differential

Evolution with Tabu List for Solving Nonlinear

and Mixed-Integer Nonlinear Programming

Problems‖, Ind

Authors’ Profiles

Tarun Kumar Sharma: Assistant

Professor in Amity Institute of

Information Technology, Amity

University Rajasthan, India. His

research areas are evolutionary and

Swarm intelligence algorithms and

their applications in Software

Engineering. He is in Editorial Board

and reviewer of many refereed Journals. He has

published about 40 research papers in Journal of repute

and in refereed international Journals.

Millie Pant: Associate Professor,

Indian Institute of Technology,

Roorkee, India. She has published

above 200 research publications in

referred journals and international

conferences. She has been keynote

speakers to various seminars,

conferences and development

programs. Her key research areas are Evolutionary

Computing, Swarm Intelligence and their application in

various areas of Engineering.

How to cite this paper: Tarun Kumar Sharma, Millie

Pant,"Redundancy Level Optimization in Modular Software

System Models using ABC", International Journal of

Intelligent Systems and Applications(IJISA), vol.6, no.4,

pp.40-48, 2014. DOI: 10.5815/ijisa.2014.04.04

