
I.J. Intelligent Systems and Applications, 2014, 05, 25-36

Published Online April 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2014.05.02

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 05, 25-36

Cloud Task Scheduling for Load Balancing based

on Intelligent Strategy

Arabi E. keshk, Ashraf B. El-Sisi, Medhat A. Tawfeek

Dept. of Computer Science, Faculty of Computers and Information, Menoufia University, Egypt

E-mail: arabikeshk@yahoo.com; ashrafelsisim@yahoo.com; medhattaw@yahoo.com

Abstract— Cloud computing is a type of parallel and

distributed system consisting of a co llect ion of

interconnected and virtual computers. With the

increasing demand and benefits of cloud computing

infrastructure, different computing can be performed on

cloud environment. One of the fundamental issues in

this environment is related to task scheduling. Cloud

task scheduling is an NP-hard optimization problem, and

many meta-heuristic algorithms have been proposed to

solve it. A good task scheduler should adapt its

scheduling strategy to the changing environment and the

types of tasks. In this paper a cloud task scheduling

policy based on ant colony optimizat ion algorithm for

load balancing compared with different scheduling

algorithms has been proposed. Ant Colony Optimization

(ACO) is random optimization search approach that will

be used for allocating the incoming jobs to the virtual

machines. The main contribution of our work is to

balance the system load while t rying to min imizing the

make span of a given tasks set. The load balancing

factor, related to the job fin ishing rate, is proposed to

make the job fin ishing rate at different resource being

similar and the ability of the load balancing will be

improved. The proposed scheduling strategy was

simulated using Cloudsim toolkit package. Experimental

results showed that, the proposed algorithm

outperformed scheduling algorithms that are based on

the basic ACO or Modified Ant Colony Optimization

(MACO).

Index Terms— Cloud Computing, Task Scheduling,

Make Span, Ant Colony Optimization, Load Balancing

I. Introduction

Cloud computing has gained a lot of attention to be

used as a computing model for a variety of application

domains. Cloud computing services allow users to lease

computing resources in the form of Virtual Machines

(VMs) from large scale data centers operated by service

providers [1]. Using cloud services, cloud users can

deploy a wide variety of applications dynamically and

on-demand usually addressed from three fundamental

aspects: Infrastructure as a Service (IaaS), Platform as a

Service (PaaS) and Software as a Service (SaaS) [2].

Most cloud service providers use machine virtualization

to provide flexible and cost effective resource sharing. It

is the responsibility of the cloud service providers to

manage its resources in an efficient way to make the

needed resources available on demand to the cloud users.

Consumers will be able to access applications and data

from cloud anywhere in the world on demand [3]. In

other words, the cloud appears to be a single point of

access for all the computing needs of consumers. It is

difficult to manually assign tasks to computing resources

in clouds because hundreds of thousands of virtual

machines (VMs) are used [4]. So, efficient algorithms

are needed for task scheduling in the cloud environment

with the goal of putting unused resource (virtual

machines) cycles to work, distributing the load about

them. A good task scheduler should adapt its scheduling

strategy to the changing environment and the types of

tasks [5, 6]. Therefore, a dynamic task scheduling

algorithm, such as ant colony optimization (ACO), is

appropriate for clouds. ACO algorithm is a random

search algorithm [7]. This algorithm uses a positive

feedback mechanis m and imitates the behavior of real

ant colonies in nature to search for food and to connect

to each other by pheromone laid on paths travelled.

Many researchers used ACO to solve NP-hard problems

such as travelling salesman problem, graph co loring

problem, vehicle routing problem, and scheduling

problem [2, 8]. In this paper, cloud task scheduling

based on Modified Ant Colony Optimization for Load

Balancing (MACOLB) for cloud task scheduling is

proposed. We use MACOLB algorithm to find the

optimal resource allocation for tasks in the dynamic

cloud system to min imize the makes pan of tasks on the

entire system and increase the performance by balancing

the load of the system. Then, this scheduling strategy

was simulated using the Cloudsim toolkit package.

Experimental results compared to ACO and MACO

satisfy expectation and show that, MACOLB algorithm

decrease the degree of imbalancing between available

virtual machines and increase the overall performance.

The rest of the paper is organized as fo llows. Section 2

introduces background and scans the related work.

Cloudsim toolkit is presented in section 3. Section 4

covers the details of cloud task scheduling based on

ACO, MACO and MACOLB algorithm. The

implementation and simulation results are seen in

section 5. Finally, some conclusion is put forward in

section 6.

mailto:arabikeshk@yahoo.com
mailto:ashrafelsisim@yahoo.com
mailto:medhattaw@yahoo.com

26 Cloud Task Scheduling for Load Balancing based on Intelligent Strategy

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 05, 25-36

II. Background and Related Work

2.1 Cloud Computing Environment

Due to fast growth of cloud computing in the

informat ion technology landscape, several definitions

have emerged. The cloud computing can be defined as a

type of parallel and d istributed system consisting of a

collection of inter-connected and virtualized computers

that are dynamically provisioned and presented as one or

more unified computing resource(s) based on service-

level agreements established through negotiation

between the service provider and consumers [9]. Cloud

computing is a virtual pool of resources which are

provided to users. It gives users virtually unlimited pay-

per-use computing resources without the burden of

managing the underlying infrastructure. The goal of

cloud computing service providers is to use the

resources efficiently and gain maximum profit [10]. Th is

leads to task scheduling as a core and challenging issue

in cloud computing. Cloud has an extra layer called

virtualizat ion layer. This layer acts as a creation,

execution, management, and hosting environment for

application services. The modeled VMs in the above

virtual environment are contextually isolated but still

they need to share computing resources - processing

cores, system bus etc. Hence, the amount of hardware

resources available to each VM is constrained by the

total processing powers such CPU, the memory and

system bandwidth available within the host [11].

The layered design of Cloud computing architecture is

shown in Fig. 1. The top layer SaaS allows users to run

applications remotely from the cloud by making use of

services provided by the lower-layer services. PaaS

includes operating systems and required services for a

particular applicat ion. IaaS includes virtualized

computers with guaranteed processing power and

reserved bandwidth for storage and Internet access. The

data-Storage-as-a-Service (dSaaS) provides storage that

the consumer is used including bandwidth requirements

for the storage.

Fig. 1: Layered Design of Cloud Computing Architecture

2.2 Combinatorial Optimization Problem

In combinatorial optimization problems, we are

looking for an object from a finite or possibly countably

infinite set. This object is typically an integer number, a

subset, a permutation, or a graph structure [12]. A

combinatorial optimization problem P=(S,f) can be

defined by:

 a set of variables X ={x1 ,x2,…,xn};

 variable domains D1,…,Dn;

 constraints among variables ;

 an objective function f to be minimized where f :

D1*…* Dn R
+

The set of all possible feasible assignments is: S={s=

{(x1,v1),…(xn,vn)} | vi Di s satisfies all the constraints}

S is usually called a search (or solution) space, as each

element of the set can be seen as a candidate solution.

To solve a combinatorial optimization problem one has

to find a solution s*S with minimum objective

function value [12]. Examp les for combinatorial

optimization problems are the Travelling Salesman

Problem (TSP), the Quadratic Assignment Problem

(QAP), timetabling and scheduling problems. Due to the

practical importance of combinatorial optimization

problems, many algorithms to tackle them have been

developed. These algorithms can be classified as either

complete or approximate algorithms. Complete

algorithms are guaranteed to find for every finite size

instance of a combinatorial optimization problem an

optimal solution in bounded time. In approximate

methods we sacrifice the guarantee of finding optimal

solutions for the sake of getting good solutions in a

significantly reduced amount of time especially for

combinatorial optimizat ion problems that are NP-hard

[13]. Among the basic approximate methods we usually

distinguish between constructive methods and local

search methods. Constructive algorithms generate

solutions from scratch by adding components to an

initially empty partial solution until a solution is

complete. Local search algorithms start from some

initial solution and iteratively try to replace the current

solution by a better solution in an appropriately defined

neighborhood of the current solution [13].

In past four decades, a new kind of approximate

algorithm has emerged which basically tries to combine

basic heuristic methods in higher level frameworks

aimed at efficiently and effectively exp loring a search

space. This class of algorithms includes ACO, simulated

annealing, tabu search and others [12]. A metaheuristic

is formally defined as an iterat ive generation process

which guides a subordinate heuristic by combining

intelligently different concepts for exploring and

exploit ing the search space, learning strategies are used

to structure informat ion in order to find efficiently near-

optimal solutions [13].

 Cloud Task Scheduling for Load Balancing based on Intelligent Strategy 27

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 05, 25-36

2.3 Ant algorithms

Ant algorithms are one of the most popular examples

of swarm intelligence systems, in which a number of ant

inspired agents which are specialized in particular

sophisticated functionality follow simple rules with no

centralized control. The complex global behavior

emerges from their local interactions using pheromone.

There are many different kinds of ACO algorithm, i.e.,

Ant Colony System (ACS) [14], Max-Min Ant System

(MMAS) [15], Rank-based Ant System (RAS) [16], Fast

Ant System (FANT) [17] and Elitist Ant System (EAS)

[18]. ACO uses the pseudo-random-proportional ru le to

replace state transition rule fo r decreasing computation

time of selecting paths and update the pheromone on the

optimal path only. It is proved that it helps ants search

the optimal path. In this paper, MACOLB approach has

been proposed. The tasks/requests (application services)

are assigned or allocated to these VMs of different

processing powers (to the most powerful VM and then

to the lowest) with balancing the load of the virtual

machines. Hence, the performance parameter such as

overall makespan time is optimized.

2.4 Related Work

Millions of user share cloud resources by submitting

their computing task to the cloud system. Scheduling

these millions of task is a challenge to cloud computing

environment. Optimal resource allocation or task

scheduling in the cloud should decide optimal number of

systems required in the cloud so that the total cost is

minimized. Task scheduling is well studied within the

computer operating systems [19]. Most of them can be

applied to cloud environment with suitable

modifications. In the following we introduce several

methods for Cloud. The Round Robin (RR) algorithm

focuses on the fairness problem. RR uses the ring as its

queue to store jobs. Each job in queue has the same

execution time and it will be executed in turn. If a job

can’t be completed during its turn, it will store back to

the queue waiting for the next turn. The advantage of

RR algorithm is that each job will be executed in turn

and they don’t have to wait for the previous one to

complete. But if the load is heavy, RR will take long

time to complete all jobs. Priority scheduling algorithm

gives each job a priority value and uses it to dispatch

jobs. The prio rity value of each job depends on the job

status such as the requirement of memory sizes, CPU

time and so on. The main problem of this algorithm is

that it may cause indefin ite blocking or starvation if the

requirement of a job is never being satisfied. The First

Come First Serve (FCFS) algorithm is a simple job

scheduling algorithm. A job which makes the first

requirement will be executed first. The main problem of

FCFS is its convoy effect. If all jobs are wait ing for a

big job to finish, the convoy effect occurs. The convoy

effect may lead to longer average waiting t ime and

lower resource utilizat ion [19]. The Fastest Processor to

Largest Task First (FPLTF) algorithm schedules tasks to

resources according to the workload of tasks in the grid

system. The algorithm needs two main parameters such

as the CPU speed of resources and workload of tasks.

The scheduler sorts the tasks and resources by their

workload and CPU speed then assigns the largest task to

the fastest available resource. If there are many tasks

with heavy workload, its performance may be very bad

[20]. Cloud scheduling is categorized at user level and

system level [3]. At user level scheduling deals with

problems raised by service provision between

providers and customers [4, 11]. The system level

scheduling handles resource management within

datacenters [2, 9, 10]. A novel approach of heuristic-

based request scheduling at each server, in each of the

geographically distributed datacenters, to globally

minimize the penalty charged to the cloud

computing system is proposed in [21]. A new fault

tolerant scheduling algorithm MaxRe is proposed in [22].

This algorithm incorporates the reliability analysis into

the active replication schema, and explo its a dynamic

number of replicas for different tasks. Scheduling based

genetic algorithm is proposed in [23-25]. Th is

algorithms optimizes the energy consumption, carbon

dioxide emissions and the generated profit of a

geographically distributed cloud computing

infrastructure. The QoS Min-Min scheduling algorithm

is proposed in [26]. Min-min is heuristic used for batch

mode scheduling (In batch mode, tasks are scheduled

only at some predefined time). This enables batch

heuristics to know about the actual execution times

of a larger number o f tasks. An optimized algorithm

for virtual machine p lacement in cloud computing

scheduling based on multi-ob jective ant colony system

algorithm in cloud computing is proposed in [2].

Scheduling in grid environment based ACO algorithms

are proposed in [27-29]. The existing scheduling

techniques in clouds, consider parameter or various

parameters like performance, makespan, cost, scalability,

throughput, resource utilization, load balancing, fault

tolerance, migrat ion time or associated overhead. In this

paper, cloud task scheduling based ACO approach has

been proposed for allocation of incoming jobs to virtual

machines (VMs) considering in our account only

makespan and load balancing to help in ut ilizing the

available resources optimally, minimize the resource

consumption and achieve a high user satisfaction.

III. Cloudsim

Simulation is a technique where a program models the

behavior of the system (CPU, network etc.) by

calculating the interaction between its different entities

using mathematical formulas, or actually capturing and

playing back observations from a production system

[30]. Cloudsim is a framework developed by the GRIDS

laboratory of university of Melbourne which enables

seamless modeling, simulation and experimenting on

designing cloud computing infrastructures [30].

28 Cloud Task Scheduling for Load Balancing based on Intelligent Strategy

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 05, 25-36

3.1 Cloudsim Characteristics

Cloudsim can be used to model datacenters, host,

service brokers, scheduling and allocation policies of a

large scaled cloud platform. Hence, the researcher has

used Cloudsim to model datacenters, hosts, VMs for

experimenting in simulated cloud environment [31].

Cloud supports VM provisioning at two levels:-

1. At the host level – It is possible to specify how much

of the overall processing power of each core will be

assigned to each VM. Known as VM policy

Allocation.

2. At the VM level – the VM assigns a fixed amount of

the available processing power to the individual

application services (task units) that are hosted within

its execution engine (Known as VM Scheduling) [31].

In this paper, the ACO algorithm will be used for

allocation of incoming batch jobs to virtual machines

(VMs) at the VM level (VM Scheduling). A ll the VMs

in a datacenter not necessary have a fixed amount of

processing power but it can vary with different

computing nodes. And then to these VMs of different

processing powers, the tasks/requests (application

services) are assigned or allocated to the most powerful

VM and then to the lowest and so on. Hence, the

performance parameter such as overall makespan time is

optimized (increasing resource utilization ratio.) and the

cost will be decreased.

3.2 Cloudsim Data Flow

Each datacenter entity registers with the Cloud

Information Service reg istry (CIS). CIS provides

database level match-making services; it maps user

requests to suitable cloud providers. The

DataCenterBroker consults the CIS service to obtain the

list of cloud providers who can offer infrastructure

services that match application’s quality of service,

hardware, and software requirements. In the case match

occurs the broker deploys the application with the cloud

that was suggested by the CIS [30].

3.3 The Cloudsim Platform

The main parts of Cloudsim that are related to our

experiments in this paper and the relationship between

them are shown in Fig. 2.

 CloudInformationService: It is an entity that registers

datacenter entity and discovers the resource.

 Datacenter: It models the core infrastructure-level

services (hardware), which is offered by cloud

providers. It encapsulates a set of compute hosts that

can either be homogeneous or heterogeneous.

 DatacenterBroker: It models a broker, which is

responsible for mediat ing negotiations between SaaS

and cloud providers.

 VmAllocation: A provisioning policy which is run in

datacenter level helps to allocate VMs to hosts.

 VmScheduler: This is an abstract class implemented

by a host component that models the policies (space-

shared, time-shared) required for allocating processor

cores to VMs. It is run on every host in datacenter.

 Host: It models a physical server.

 Vm: It models a virtual machine which is run on

cloud host to deal with the cloudlet.

 Cloudlet: It models the cloud-based application

services.

 CloudletScheduler: This abstract class is extended by

the implementation of different policies that

determine the share (space-shared, time-shared) of

processing power among cloudlets in a VM [31].

Fig. 2: Main Parts of Cloudsim Related To Our Experiments

IV. Cloud Scheduling Based ACO, MACO and

MACOLB

4.1 Cloud Scheduling Based ACO

The basic idea of ACO is to simulate the foraging

behavior of ant colonies. When an ants group tries to

search for the food, they use a special kind of chemical

to communicate with each other. That chemical is

referred to as pheromone. Init ially ants start search their

foods randomly. Once the ants find a path to food

source, they leave pheromone on the path. An ant can

follow the trails of the other ants to the food source by

sensing pheromone on the ground. As this process

continues, most of the ants attract to choose the shortest

path as there have been a huge amount of pheromones

accumulated on this path [8]. The advantages of the

algorithm are the use of the positive feedback

mechanis m, inner parallelism and extensible. The

disadvantages are overhead and the stagnation

 Cloud Task Scheduling for Load Balancing based on Intelligent Strategy 29

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 05, 25-36

phenomenon, or searching for to a certain extent, all

individuals found the same solution exactly, can’t

further search for the solution space, making the

algorithm converge to local optimal solution [7]. It is

clear that an ACO algorithm can be applied to any

combinatorial problem as far as it is possible to define:

1. Problem representation which allows ants to

incrementally build/modify solutions.

2. The heuristic desirability η of edges.

3. A constraint satisfaction method which forces the

construction of feasible solutions.

4. A pheromone updating rule which specifies how to

modify pheromone trail τ on the edges of the graph.

5. A probabilistic transition rule of the heuristic

desirability and of pheromone trail [32].

In this section, cloud task scheduling based ACO

algorithm will be presented. Decreasing the makespan of

tasks is the basic ideas from the Proposed Method.

1. Problem representation: The problem is represented as

a graph G = (N, E) where the set of nodes N

represents the VMs and tasks and the set of edges E

the connections between the task and VM as shown in

Fig. 3. A ll ants are p laced at the starting VMs

randomly. During an iteration ants build solutions to

the cloud scheduling problem by moving from one

VM to another for next task until they complete a tour

(all tasks have been allocated). Iterations are indexed

by t, 1 < t < tmax, where t max is the maximum number

of iterations allowed.

Fig. 3: Problem Representation of Task Scheduling Based ACO

2. Heuristic desirability: A very simple heuristic is used:

the inverse of expected execution time of the task i on

VM j.

3. Constraint satisfaction: The constraint satisfaction

method is implemented as a simple, short-term

memory, of the visited VM, in order to avoid visiting

a VM more than once in one ACO procedure and

minimize t ime of the assigned couplings (task and

VM).

4. Pheromone updating rule: It is the one typical of Ant

System (see (3) to (7)): pheromone evaporates on all

edges and new pheromone is deposited by all ants on

visited edges; its value is proportional to the quality of

the solution built by the ants.

5. Probabilistic transition ru le: The probabilistic

transition rule, called random proportional, is the one

typical of Ant System as in (1).

The pseudo code of the proposed ACO procedure and

scheduling based ACO are shown in Fig. 4 and Fig. 5

respectively [32]. The main operations of the ACO

procedure are init ializing pheromone, choosing VM for

next task and pheromone updating as following:

Input: List of Cloudlet (Tasks) and List of VMs

Output: the best solution for tasks allocation on VMs

Steps:

 1. Initialize:

 Set Current_iteration_t=1.

 Set Current_optimal_solution=null.

 Set Initial value τij(t)=c for each path between

tasks and VMs.
2. Place m ants on the starting VMs randomly.

3. For k :=1 to m do

 Place the starting VM of the k -th ant in tabuk.

 Do ants_trip while all ants don't end their trips

 Every ant chooses the VM for the next task

according to (1).
 Insert the selected VM to tabuk.

 End Do

4. For k :=1 to m do

 Compute the length Lk of the tour described by the

k-th ant according to (4).
 Update the current_optimal_solution with the best

founded solution.

 5. For every edge (i,j), apply the local pheromone

according to (5).
 6. Apply global pheromone update according to (7).

7. Increment Current_iteration_t by one.

8. If (Current_iteration_t < tmax)

 Empty all tabu lists.

 Goto step 2

 Else

 Print current_optimal_solution.

 End If

9. Return

Fig. 4: Pseudo Code of ACO Procedure

A. Initializing Pheromone

The amount of virtual pheromone trail τij(t) on the

edge connects task i to VM j. The init ial amount of

pheromone on edges is assumed to be a small positive

constant τ0 (homogeneous distribution of pheromone at

time t = 0).

30 Cloud Task Scheduling for Load Balancing based on Intelligent Strategy

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 05, 25-36

B. VM Choosing Rule for Next Task

During an iteration of the ACO algorithm each ant k,

k = 1, ..., m (m is the number of the ants), builds a tour

executing n (n is number of tasks) steps in which a

probabilistic transition rule is applied. The k-ant chooses

VM j for next task i with a probability that is computed

by (1).

Input: incoming Cloudlets and VMs List

Output: print "scheduling completed and waiting for

more Cloudlets”

Steps:

 1. Set Cloudlet List =null and

temp_List_of_Cloudlet=null

 2. Put any incoming Cloudlets in Cloudlet List in order

of their arriving time
 3. Do ACO_P while Cloudlet List not empty or there

are more incoming Cloudlets
 Set n= size of VMs list

 If (size of Cloudlet List greater than n)

 Transfer the first arrived n Cloudlets from

Cloudlet List and put them on temp_List_of_Cloudlet
 Else

 Transfer all Cloudlets.from Cloudlet List and put

them on temp_List_of_Cloudlet
 End If

 Execute ACO procedure with input

temp_List_of_Cloudlet and n
 End Do

 4. Print “scheduling completed and waiting for more

Cloudlets”
5. Stop

Fig. 5: Pseudo Code of Scheduling Based ACO

 (1)

Where τij(t) shows the pheromone concentration at the

t time on the path between task i and VM j, allowedk

={0,1,…,n-1}-tabuk express the allowed VMs for ant k

in next step and tabuk records the traversed VM by ant

k, and ηij=1/dij is the visibility for the t moment,

calculated with heuristic algorithm and d ij which

expresses the expected execution time and transfer t ime

of the task i on VM j can be computed with (2).

 (2)

Where TL_Taski is the total length of the task that has

been submitted to VM j, Pe_numj is the number of VM j

processors, Pe_mips j is the MIPS of each processor of

VMj, InputFileSize is the length of the task before

execution and VM_bwj is the communication bandwidth

ability of the VMj. Finally, the two parameters α and β in

(1) are used to control the relative weight of the

pheromone trail and the visib ility information

respectively.

C. Pheromone Updating

After the completion of a tour, each ant k lays a

quantity of pheromone computed by (3) on

each edge (i,j) that it has used.

 (3)

Where T
k
(t) is the tour done by ant k at iterat ion t, L

k
(t)

is its length (the expected makespan of this tour) that is

computed by (4), and Q is a adaptive parameter. It is

very helpful in the cloud environment to depend on the

result in the past task scheduling.

 (4)

Where, IJ is the set of tasks that assigned to the VM j.

After each iteration pheromone updating which is

applied to all edges is refreshed by (5).

 (5)

Where is the trail decay, 0 < < 1 and ij(t) is

computed by (6).

 (6)

When all ants complete a traverse, an elitis t is an ant

which reinforces pheromone on the edges belonging to

the best tour found from the beginning of the trial (T
+
),

by a quantity Q/L
+
, where L

+
 is the length of the best

tour (T
+
). Th is rein forcement is called global pheromone

update and computed by (7).

 (7)

4.2 Cloud Scheduling Based MACO

The MACO algorithm inherits the basic ideas from

ACO algorithm to decrease the computation time of

tasks executing [33]. It is similar to ACO but has four

major differences as following:

A. VM Choosing Rule for Next Task

The Rule o f choosing VM for next task is modified to

(8).

 (8)

 Cloud Task Scheduling for Load Balancing based on Intelligent Strategy 31

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 05, 25-36

Where α is a parameter that allow a user to control the

relative importance of pheromone trail and q is a random

number uniformly distributed in [0, 1]. If q is greater

than q0, this process is called exp loration; otherwise it is

called explo itation [34]. Our princip le to progressively

adapt the system by tuning q0 goes from 0 to 1, in order

to favor explorat ion in the in itial part of the algorithm

and then favor explo itation. J is a random variable

selected according to the following random-proportional

rule probability d istribution (9) which is the probability

that ant k chooses to assign VM j to task i.

 (9)

There are two reasons for adopting the above method

to calculate the selection p robability. The first is the

simplicity as only one control parameter, i.e. α, is used

to map the relative importance of quantity of pheromone

and the desirability of each movement [35]. The second

reason is the computational efficiency of this method as

multip licat ion operations are used instead of

exponentiations.

B. Local Pheromone Updating

The local pheromone update rule, which is applied to

all edges, is replaced by (10).

 (10)

Where l is the trail decay, 0 < l < 1, the following

adaptive formula (11) is proposed to compute l:

 (11)

This formula removes pheromone from edges that

belong to the worst tours. This has the effect of making

the visited edges of worst tours less and less attractive.

So, giving negative reinforcement to bad tours increases

the convergence speed toward good solutions.

C. Global Pheromone Updating

The global pheromone update rule, which is applied

to all edges belonging to the best tour (T
+
), is modified

by (12). The modification of global pheromone update

is applied but in different shape in [2].

 (12)

Where is an adaptive coefficient and ρg (0 < ρg < 1)

is the pheromone evaporation parameter of g lobal

updating, they computed by (13) and (14) respectively:

 (13)

and

 (14)

The coefficient used to control how a solution s

contributes to pheromone informat ion over time, m is

the number of ants , nis represents the number of

iterations that the best solution not changed. This global

updating rule tries to increasing the learning of ants.

D. The Control Parameter α

The Parameter α controls the relative weight of the

pheromone trail and the visibility informat ion, and

computed by the following adaptive formulas:

 (15)

This adaptive rule tries to enhance the selection of

weight pheromone trail and the visibility information.

When the variation of pheromone concentration is high

we give the visibility informat ion high weight over

pheromone trail and vice versa

4.3 Cloud Scheduling Based MACOLB

The MACOLB algorithm inherits the basic ideas from

ACO and MACO algorithm to improve the execution of

cloud tasks. In this section we introduce MACOLB

algorithm to improve the performance of the scheduling

problems in cloud computing. It is similar to MACO but

has an added load balancing factor. The Rule of

choosing VM for next task is modified to (16).

 (16)

Where, LBs is the load balancing factor of VM s to

minimize the degree of imbalance which is defined by

(17). The LBs here learn from the result in the past task

scheduling.

 (17)

Where LTavg is the average execution time of the

virtual machines in the last calling of ACO procedure

and Tots is the expected execution time of the tasks that

have been submitted to VM s which is defined by (18).

 (18)

32 Cloud Task Scheduling for Load Balancing based on Intelligent Strategy

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 05, 25-36

Equation (9) that computes the value J also modified

to (19).

 (19)

V. Implementation and Experimental Results

We assume that tasks are mutually independent i.e.

there is no precedence constraint between tasks and

tasks are not preemptive and they cannot be interrupted

or moved to another processor during their execution.

5.1 Parameters Setting of Cloudsim

The experiments are implemented with 10

Datacenters with 50 VMs and 100-1000 tasks under the

simulation platform. The length of the task is from 1000

MI (Million Instructions) to 20000 MI. The parameters

setting of cloud simulator are shown in Table 1.

Table 1: Parameters setting of Cloudsim

Entity Type Parameters Value

Task
(cloudlet)

Length of task 1000-20000

Total number of task 100-1000

Virtual
Machine

Total number of VMs 50

MIPS 500-2000

VM memory(RAM) 256-2048

Bandwidth 500-1000

cloudlet Scheduler
Space_shared and

T ime_shared

Number of PEs

requirement
1-4

Datacenter

Number of Datacenter 10

Number of Host 2-6

VmScheduler
Space_shared and

T ime_shared

5.2 ACO Parameters Evaluation and Setting

We implemented the ACO algorithm and investigated

their relative strengths and weaknesses by

experimentation. The parameters (α, β, p, t max, m the

number of ants and Q) considered here are those that

affect directly or indirectly the computation of the

algorithm. We tested several values for each parameter

while all the others were held constant on 100 tasks.

The default value of the parameters was α=1, β=1, ρ=0.5,

Q=100, tmax=150 and m=8. In each experiment only

one of the values was changed, The values tested were:

α {0, 0.1, .2, .3, .4, .5}, β {0, .5, 1.5, 2, 2.5, 3}, ρ

{0, 0.1, .2, .3, .4, .5} , Q{1, 100,500,1000},

tmax{50,75,100,150} and m{1,5,8,10,15,20}. We also

use the time in the Cloudsim to record the makespan.

The ACO performance for d ifferent values of

parameters (α, β, p, tmax, m the number of ants and Q)

has been evaluated. The ACO performance for different

values of parameters (α, β,p ,tmax ,m the number of ants

and Q) are shown from Fig.6 to Fig.11. It can be seen

that the best value of α is .3, the best value of β is 1, the

best value of is .4, the best value of Q is 100, the best

value of t max is 150 and the best values of m is 10. In the

following experiments we select the best value for α, β,

, Q and m parameters but the value100 is selected for

the tmax parameter to reduce the overhead of the ACO

algorithm.

Fig. 6: ACO Performance for Different Values of Alpha

Fig. 7: ACO Performance for Different Values of Beta

Fig. 8: ACO Performance for Different Values of Rho

 Cloud Task Scheduling for Load Balancing based on Intelligent Strategy 33

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 05, 25-36

Fig. 9: ACO Performance for Different Values of Q

Fig. 10: ACO Performance for Different Values of Tmax

Fig. 11: ACO Performance for Different Values of Ants Number

Table 2 shows the selected best parameters of ACO.

The MACO and MACOLB parameters are calcu lated

using the proposed self-adaptive formulas. The m and

tmax parameters are the same in all algorithms.

Table 2: Selected Parameters of ACO

Parameter α β Q m tmax

Value . 3 1 .4 100 10 100

5.3 Implementation Results of ACO, FCFS and RR

In the following experiments, we compared the

average makespan with different tasks set. The average

makespan of the ACO, MACO and MACOLB

algorithms are shown in Fig.12. The average makespan

of the First Come First Served (FCFS) and Round Robin

(RR) and ACO algorithms are shown in Fig.13 [32]. It

can be seen that, with the increase of the quantity task,

ACO takes the time less than FCFS and RR algorithms

and MACOLB takes the time less than MACO and ACO

algorithms. This indicates that MACOLB algorithm is

better than MACO, ACO, FCFS and RR algorithms.

Fig. 12: Average Makespan of ACO, MACO and MACOLB

Fig. 13: Average Makespan of FCFS, RR and ACO

In statistics and probability theory, standard deviation

(σ) shows how much variat ion or dispersion exists from

the average (mean), or expected value. A low standard

deviation indicates that the data points tend to be very

close to the mean; high standard deviation indicates that

the data points are spread out over a large range of

values (solving stagnation problem). Since the standard

deviation of never drops to zero, we are assured that the

algorithm actively searches solutions which differ from

the best-so-far found, which g ives it the possibility of

finding better ones. Fig.14 shows the evolution of the

standard deviation of the ACO, MACO and MACOLB

over 10 runs.

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Sigma
http://en.wikipedia.org/wiki/Statistical_dispersion
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Mean

34 Cloud Task Scheduling for Load Balancing based on Intelligent Strategy

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 05, 25-36

Fig. 14: Standard Deviation of ACO, MACO and MACOLB

The Degree of Imbalance (DI) measures the

imbalance among VMs, which is computed by (20).

 (20)

Where, Tmax, Tmin and Tavg are the maximum,

minimum and average execution time of VMs

respectively. The average degree of imbalance of each

algorithm with the number of tasks varying from 100 to

1000 is shown in Fig.15. It can be seen that the

MACOLB can achieve better system load balance than

ACO and MACO algorithms.

Fig. 15: Average Degree of Imbalance of ACO, MACO and MACOLB

VI. Conclusions and Future Work

In this paper MACOLB algorithm has been proposed

to improve the cloud tasks scheduling for load balancing.

MACOLB is used to find the optimal resource allocation

for batch tasks in the dynamic cloud system and

minimize the makespan of tasks on the entire system.

The proposed algorithm uses the same self -adapting

criteria for the MACO control parameters but has an

added load balancing factor. MACOLB, MACO and

ACO algorithms in applications with the number of

tasks varying from 100 to 1000 evaluated using

Cloudsim toolkit. Firstly the best values of parameters

for ACO algorithm, experimentally determined. Then

the makespan of the above algorithms evaluated.

Simulation results demonstrate that MACOLB algorithm

outperforms MACO and ACO algorithms. MACOLB

algorithm can be extended with improvements to handle

precedence between tasks and costs of resources. Also

the comparison between our approach and other

metaheuristics approaches will be performed.

References

[1] A. Weiss, "Computing in the Clouds" netWorker on

Cloud computing: PC functions move onto the web,

vol. 11, pp. 16-25, 2007.

[2] Gao Y., et al., "A mult i-object ive ant colony system

algorithm for v irtual machine placement in cloud

computing," J. Comput. System Sci. vol.79 ,no. 8,

pp. 1230–1242, 2013.

[3] F. Chang, J. Ren, and R. Viswanathan, "Optimal

Resource Allocation in Clouds" in 2010 IEEE 3rd

International Conference on Cloud Computing,

pp.418-425, 2010.

[4] Qiyi, H., Tinglei, H., "An Optimistic Job

Scheduling Strategy based on QoS for Cloud

Computing" in 2010 IEEE International Conference

on Intelligent Computing and Integrated Systems

(ICISS), pp.673-675, 2010.

[5] F. Chang, J. Ren, and R. Viswanathan, "Optimal

resource allocation for batch testing" in ICST, 2009

IEEE International Conference on Software Testing

Verification and Validation, pp.91-100, 2009.

[6] Rubing Duan, Radu Prodan and Xiaorong Li, "A

sequential cooperative game theoretic approach to

scheduling mult iple large-scale applications in

grids" J. Comput. System Sci. vol.30 , pp. 27–43,

2014.

[7] M. Dorigo, C. Blum, "Ant colony optimizat ion

theory: A survey" in Theoretical Computer Science

344 (2–3) (2005), pp.243–278, 2005.

[8] M. Dorigo, M. Birattari, T. Stutzel, "Ant colony

optimization", in IEEE Computational Intelligence

Magazine, pp.28-39, 2006.

[9] Paul, M., Sanyal, G., "Survey and analysis of

optimal scheduling strategies in cloud

environment", IEEE International Conference on

Information and Communication Technologies

(WICT), pp. 789 – 792, 2012

[10] Jeyarani, R., Ram, R. Vasanth, Nagaveni, N.,

"Design and Implementation of an Efficient Two-

Level Scheduler for Cloud Computing

Environment", IEEE International Conference on

Cloud and Grid Computing (CCGrid), PP. 585 –

586, 2010

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6132196
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6132196

 Cloud Task Scheduling for Load Balancing based on Intelligent Strategy 35

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 05, 25-36

[11] Meng Xu, Lizhen Cui, Haiyang Wang, Yanbing Bi,

"A Multiple QoS Constrained Scheduling Strategy

of Mult iple Workflows for Cloud Computing",

IEEE International Conference on Parallel and

Distributed Processing with Applications , PP. 629 -

634, 2009

[12] G. L. Nemhauser and A. L. Wolsey. "Integer and

Combinatorial Optimizat ion" John Wiley & Sons,

New York, 1988.

[13] C. R. Reeves, editor. "Modern Heuristic

Techniques for Combinatorial Problems" Blackwell

Scientific Publishing, Oxford, England, 1993.

[14] M. Dorigo, L.M. Gambardella, Ant colony system:

A cooperative learning approach to the traveling

salesman problem, IEEE Transactions on

Evolutionary Computation 1 (1) (1997) 53–66.

[15] T. Stutzle,MAX-MINAnt Systemfor Quadratic

Assignment Problems Technical Report AIDA-97-

04, Intellect ics Group, Department of Compute

Science, Darmstadt University of Technology,

Germany, July 1997.

[16] B. Bullnheimer, R.F. Hartl, C. Strauss, A new rank-

based version of the ant system: A computational

study, Central European Journal for Operat ions

Research and Economics 7 (1) (1999) 25–38.

[17] E.D. Taillard, L.M. Gambardella, Adaptive

memories for the quadratic assignment problem,

Technical Report IDSIA-87-97, IDSIA, Lugano,

Switzerland, 1997.

[18] M. Dorigo, V.Maniezzo, A. Colorni, The ant

system: Optimization by a colony of cooperating

agents, IEEE Transactions on Systems, Man, and

Cybernetics, Part B 26 (1) (1996) 29–41.

[19] Abraham Silberschatz, Peter Baer Galvin, Greg

Gagne, Operat ing System Concepts, 7th edition,

JohnWiley & Sons, 2005.

[20] D. Saha, D. Menasce, S. Porto, Static and dynamic

processor scheduling disciplines in heterogeneous

parallel architectures, Journal of Parallel and

Distributed Computing 28 (1) (1995) 1–18.

[21] Boloor, K., Chirkova, R., Salo, T., Viniotis, Y.,

"Heuristic-Based Request Scheduling Subject to a

Percentile Response Time SLA in a Distributed

Cloud". IEEE International Conference on Global

Telecommunications Conference (GLOBECOM),

PP.1-6 , 2010

[22] Laiping Zhao, Yizhi Ren, Yang Xiang, Sakurai, K.,

"Fault-tolerant scheduling with dynamic number of

replicas in heterogeneous systems", IEEE

International Conference on High Performance

Computing and Communications (HPCC), PP. 434

– 441, 2010

[23] Chenhong Zhao, Shanshan Zhang, Qingfeng Liu,

Jian Xie, Jicheng Hu, "Independent Tasks

Scheduling Based on Genetic Algorithm in Cloud

Computing", IEEE International Conference on

Wireless Communications, Networking and Mobile

Computing, PP. 1 – 4, 2009

[24] Kai Zhu, Huaguang Song, Lijing Liu, Jinzhu

Gao, Guojian Cheng, "Hybrid Genetic Algorithm

for Cloud Computing Applications", IEEE

International Conference on Asia-Pacific Services

Computing Conference (APSCC), PP. 182 – 187,

2011

[25] Kessaci, Y., Melab, N., Talb i, E.-G., "A pareto-

based GA for scheduling HPC applications on

distributed cloud infrastructures", IEEE

International Conference on High Performance

Computing and Simulation (HPCS), PP. 456 –

462,2011

[26] Ching-Hsien Hsu, Tai-Lung Chen, "Adaptive

Scheduling Based on Quality of Service in

Heterogeneous Environments", IEEE International

Conference on Mult imedia and Ubiquitous

Engineering (MUE), PP. 1 - 6, 2010

[27] Manpreet Singh, " GRAAA: Grid Resource

Allocation Based on Ant Algorithm" in 2010

Academy Publisher DOI: 10.4304/ jait.1.3.133-135,

2010.

[28] Ku Ruhana Ku-Mahamud, Husna Jamal Abdul

Nasir, "Ant Colony Algorithm for Job Scheduling

in Grid Computing" in ams, 2010 Fourth Asia

International Conference on

Mathematical/Analytical Modelling and Computer

Simulation, pp.40-45, 2010.

[29] Lorpunmanee, S., Sap, M.N, Abdul Hanan

Abdullah, A.H., "An Ant Colony Optimization for

Dynamic Job Scheduling in Grid Environment" in

Proceedings of World Academy of Science,

English and Technology Volume 23 august 2007,

ISSN 1307-6884, 2007.

[30] Buyya, R., Ranjan, R., Calheiros, R.N., "Modeling

and Simulat ion of Scalable Cloud Computing

Environments and the CloudSim Toolkit:

Challenges and Opportunities" in Proceedings of

the 7th High Performance Computing and

Simulation (HPCS 2009) Conference, Leipzig,

Germany, 2009 .

[31] Ghalem, B., Fatima Zohra, T., and Wieme, Z.

"Approaches to Improve the Resources

Management in the Simulator CloudSim" in ICICA

2010, LNCS 6377, pp. 189–196, 2010.

[32] Medhat A. Tawfeek, Ashraf El-Sisi, Arabi E. keshk

and Fawzy A. Torkey, " Cloud Task Scheduling

Based on Ant Colony Optimizat ion" in

International Conference on Computer Engineering

& Systems ICCES, 2013.

[33] Medhat A. Tawfeek, Ashraf El-Sisi, Arabi E. keshk

and Fawzy A. Torkey, " An Ant Algorithm for

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5207830
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5207830
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5682081
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5682081
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5581177
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5581177
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5300798
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5300798
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5979720
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5979720
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5557894
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5557894
https://cmt.research.microsoft.com/ICCES2013/Protected/Author/www.icces2013.org.eg

36 Cloud Task Scheduling for Load Balancing based on Intelligent Strategy

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 05, 25-36

Cloud Task Scheduling" in International Workshop

on Cloud Computing and Information Security

CCIS, 2013.

[34] Eric Bonabeau, Marco Dorigo, Guy Theraulaz,

"Swarm intelligence: from natural to art ificial

intelligence",ISBN 0-19-513158-4, Published by

Oxford University Press, Inc.198 Madison Avenue,

New York,1999.

[35] V. Maniezzo, Exact and approximate

nondeterministic tree-search procedures for the

quadratic assignment problem, INFORMS J.

Comput. 11 (4) pp. 358–369, 1999.

Authors’ Profiles

Arabi E. keshk received the B.Sc. in

Electronic Engineering and M.Sc. in

Computer Science and Engineering

from Menoufia University, Faculty of

Electronic Engineering in 1987 and

1995, respectively and received his

PhD in Electronic Engineering from

Osaka University, Japan in 2001. His

research interest includes software testing, software

engineering, distributed system, database, data mining,

and bioinformatics.

Ashraf B. El -Sisi received the

B.Sc. and M.Sc. in Electronic

Engineering and Computer Science

Engineering from Menoufia

University, Facu lty of Electronic in

1989 and 1995, respectively and

received his PhD in Computer

Engineering & Control from

Zagazig University, Faculty of Engineering in 2001. His

research interest includes cloud computing, privacy

preserving data mining, and Intelligent systems.

Medhat A. Tawfeek received the

B.Sc. and M.Sc. in computers and

informat ion from Menofia University,

Faculty of computers and information

in 2005 and 2010, respectively.

Currently hold PhD student in

Faculty of computers and information

Menoufia University. His research

interest includes cloud computing, smart card security,

intelligent systems, distributed system, fault tolerance.

How to cite this paper: Arabi E. keshk, Ashraf B. El-Sisi,

Medhat A. Tawfeek,"Cloud Task Scheduling for Load
Balancing based on Intelligent Strategy", International Journal

of Intelligent Systems and Applications(IJISA), vol.6, no.5,

pp.25-36, 2014. DOI: 10.5815/ijisa.2014.05.02

