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Abstract— Cloud computing is a type of parallel and 

distributed system consisting of a co llect ion of 

interconnected and virtual computers. With the 

increasing demand and benefits of cloud computing 

infrastructure, different computing can be performed on  

cloud environment. One of the fundamental issues in 

this environment is related to task scheduling. Cloud 

task scheduling is an NP-hard optimization problem, and 

many meta-heuristic algorithms have been proposed to 

solve it. A good task scheduler should adapt its 

scheduling strategy to the changing environment and the 

types of tasks. In this paper a cloud task scheduling 

policy based on ant colony optimizat ion algorithm for 

load balancing compared with different scheduling 

algorithms has been proposed. Ant Colony Optimization  

(ACO) is random optimization search approach that will 

be used for allocating the incoming jobs to the virtual 

machines. The main contribution of our work is to 

balance the system load while t rying to min imizing  the 

make span of a given tasks set. The load balancing 

factor, related to the job fin ishing rate, is proposed to 

make the job fin ishing rate at different resource being 

similar and the ability of the load balancing will be 

improved. The proposed scheduling strategy was 

simulated using Cloudsim toolkit package. Experimental 

results showed that, the proposed algorithm 

outperformed scheduling algorithms that are based on 

the basic ACO or Modified Ant Colony Optimization  

(MACO). 

 

Index Terms— Cloud Computing, Task Scheduling, 

Make Span, Ant Colony Optimization, Load Balancing 

 

I. Introduction 

Cloud computing has gained a lot of attention to be 

used as a computing model for a variety of application  

domains. Cloud computing services allow users to lease 

computing resources in the form of Virtual Machines 

(VMs) from large scale data centers operated by service 

providers [1]. Using cloud services, cloud users can 

deploy a wide variety of applications dynamically  and 

on-demand usually addressed from three fundamental 

aspects: Infrastructure as a Service (IaaS), Platform as a 

Service (PaaS) and Software as a Service (SaaS) [2]. 

Most cloud service providers use machine virtualization  

to provide flexible and cost effective resource sharing. It  

is the responsibility of the cloud service providers to 

manage its resources in an efficient way to make the 

needed resources available on demand to the cloud users.  

Consumers will be able to access applications and data 

from cloud anywhere in the world on demand [3]. In  

other words, the cloud appears to be a single point of 

access for all the computing needs of consumers. It is 

difficult to manually assign tasks to computing resources 

in clouds because hundreds of thousands of virtual 

machines (VMs) are used [4]. So, efficient algorithms 

are needed for task scheduling in the cloud environment 

with the goal of putting unused resource (virtual 

machines) cycles to work, distributing the load about 

them. A good task scheduler should adapt its scheduling 

strategy to the changing environment and the types of 

tasks [5, 6]. Therefore, a dynamic task scheduling 

algorithm, such as ant colony optimization (ACO), is 

appropriate for clouds. ACO algorithm is a random 

search algorithm [7]. This algorithm uses a positive 

feedback mechanis m and imitates the behavior of real 

ant colonies in nature to search for food and to connect 

to each other by pheromone laid on paths travelled. 

Many researchers used ACO to solve NP-hard problems 

such as travelling salesman  problem, graph co loring  

problem, vehicle routing problem, and scheduling 

problem [2, 8]. In this paper, cloud task scheduling 

based on Modified Ant Colony Optimization for Load  

Balancing (MACOLB) for cloud task scheduling is 

proposed. We use MACOLB algorithm to find the 

optimal resource allocation for tasks in the dynamic 

cloud system to min imize the makes pan of tasks on the 

entire system and increase the performance by balancing  

the load of the system.  Then, this scheduling strategy 

was simulated using the Cloudsim toolkit package. 

Experimental results compared to ACO and MACO 

satisfy expectation and show that, MACOLB algorithm 

decrease the degree of imbalancing between available 

virtual machines and increase the overall performance. 

The rest of the paper is organized as fo llows. Section 2 

introduces background and scans the related work. 

Cloudsim toolkit is presented in section 3. Section 4 

covers the details of cloud task scheduling based on 

ACO, MACO and MACOLB algorithm. The 

implementation and simulation results are seen in 

section 5. Finally, some conclusion is put forward in  

section 6.  
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II. Background and Related Work 

2.1 Cloud Computing Environment 

Due to fast growth of cloud computing in the 

informat ion technology landscape, several definitions 

have emerged. The cloud computing can be defined as a 

type of parallel and d istributed system consisting of a 

collection of inter-connected and virtualized computers 

that are dynamically  provisioned and presented as one or 

more unified computing resource(s) based on service-

level agreements established through negotiation 

between the service provider and consumers [9]. Cloud 

computing is a virtual pool of resources which are 

provided to users. It gives users virtually unlimited pay-

per-use computing resources without the burden of 

managing the underlying infrastructure. The goal of 

cloud computing service providers is to use the 

resources efficiently and gain maximum profit [10]. Th is 

leads to task scheduling as a core and challenging issue 

in cloud computing. Cloud has an extra layer called  

virtualizat ion layer. This layer acts as a creation, 

execution, management, and hosting environment for 

application services. The modeled VMs in  the above 

virtual environment are contextually isolated but still 

they need to share computing resources - processing 

cores, system bus etc. Hence, the amount of hardware 

resources available to each VM is constrained by the 

total processing powers such CPU, the memory  and 

system bandwidth available within the host [11].  

The layered design of Cloud computing architecture is  

shown in Fig. 1. The top layer SaaS allows users to run 

applications remotely from the cloud by making use of 

services provided by the lower-layer services. PaaS 

includes operating systems and required services for a 

particular applicat ion. IaaS includes virtualized  

computers with guaranteed processing power and 

reserved bandwidth for storage and Internet access. The 

data-Storage-as-a-Service (dSaaS) provides storage that 

the consumer is used including bandwidth requirements 

for the storage. 

 

 

Fig. 1: Layered Design of Cloud Computing Architecture 

2.2 Combinatorial Optimization Problem 

In combinatorial optimization problems, we are 

looking for an object from a finite or possibly countably 

infinite set. This object is typically an integer number, a  

subset, a permutation, or a graph structure [12]. A  

combinatorial optimization problem P=(S,f) can be 

defined by: 

 a set of variables X ={x1 ,x2,…,xn}; 

 variable domains D1,…,Dn; 

 constraints among variables ; 

 an objective function f to be minimized where  f :  

D1*…* Dn R
+
 

 

The set of all possible feasible assignments is: S={s= 

{(x1,v1),…(xn,vn)} | vi  Di s satisfies all the constraints} 

S is usually called a search (or solution) space, as each 

element of the set can be seen as a candidate solution. 

To solve a combinatorial optimization problem one has 

to find a solution s*S with minimum objective 

function value [12]. Examp les for combinatorial 

optimization problems are the Travelling Salesman  

Problem (TSP), the Quadratic Assignment Problem 

(QAP), timetabling and scheduling problems. Due to  the 

practical importance of combinatorial optimization  

problems, many algorithms to tackle them have been 

developed. These algorithms can be classified as either 

complete or approximate algorithms. Complete 

algorithms are guaranteed to find for every finite size 

instance of a combinatorial optimization problem an  

optimal solution in bounded time. In approximate 

methods we sacrifice the guarantee of finding optimal 

solutions for the sake of getting good solutions in a 

significantly reduced amount of time especially for 

combinatorial optimizat ion problems that are NP-hard  

[13]. Among the basic approximate methods we usually 

distinguish between constructive methods and local 

search methods. Constructive algorithms generate 

solutions from scratch by adding components to an 

initially empty partial solution until a solution is 

complete. Local search algorithms start from some 

initial solution and iteratively try to replace the current 

solution by a better solution in an appropriately defined 

neighborhood of the current solution [13]. 

In past four decades, a new kind of approximate 

algorithm has emerged which basically tries to combine 

basic heuristic methods in higher level frameworks 

aimed at  efficiently and effectively exp loring a search 

space. This class of algorithms includes ACO, simulated 

annealing, tabu search and others [12]. A metaheuristic  

is formally defined as an iterat ive generation process 

which guides a subordinate heuristic by combining  

intelligently different concepts for exploring and 

exploit ing the search space, learning strategies are used 

to structure informat ion in order to find efficiently near-

optimal solutions [13]. 
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2.3 Ant algorithms 

Ant algorithms are one of the most popular examples  

of swarm intelligence systems, in which  a number of ant 

inspired agents which are specialized  in  particular 

sophisticated functionality follow simple rules with no  

centralized control. The complex global behavior 

emerges from their local interactions using pheromone. 

There are many different kinds of ACO algorithm, i.e., 

Ant Colony System (ACS) [14], Max-Min Ant System 

(MMAS) [15], Rank-based Ant System (RAS) [16], Fast 

Ant System (FANT) [17] and Elitist Ant System (EAS) 

[18].  ACO uses the pseudo-random-proportional ru le to 

replace state transition rule fo r decreasing computation 

time of selecting paths and update the pheromone on the 

optimal path only. It is proved that it helps ants search 

the optimal path. In this paper, MACOLB approach has 

been proposed. The tasks/requests (application services) 

are assigned or allocated to these VMs of different 

processing powers (to the most powerful VM and then 

to the lowest) with balancing the load of the virtual 

machines. Hence, the performance parameter such as 

overall makespan time is optimized. 

 

2.4 Related Work 

Millions of user share cloud resources by submitting  

their computing task to the cloud system. Scheduling  

these millions of task is a challenge to cloud computing 

environment. Optimal resource allocation or task  

scheduling in the cloud should decide optimal number of 

systems required in the cloud so that the total cost is 

minimized. Task scheduling is well studied within  the 

computer operating systems [19]. Most of them can be 

applied to cloud environment with suitable 

modifications. In the following we introduce several 

methods for Cloud. The Round Robin (RR) algorithm 

focuses on the fairness problem. RR uses the ring as its 

queue to store jobs. Each job in queue has the same 

execution time and it will be executed in turn. If a job  

can’t be completed during its turn, it will store back to  

the queue waiting for the next  turn. The advantage of 

RR algorithm is that each job will be executed in turn 

and they don’t have to wait for the previous one to 

complete. But if the load is heavy, RR will take long 

time to complete all jobs. Priority  scheduling algorithm 

gives each job a priority value and uses it to dispatch 

jobs. The prio rity value of each job depends on the job 

status such as the requirement of memory sizes, CPU 

time and so on. The main problem of this algorithm is 

that it may cause indefin ite blocking or starvation if the 

requirement of a job is never being satisfied. The First 

Come First Serve (FCFS) algorithm is a simple job  

scheduling algorithm. A  job which  makes the first 

requirement will be executed first. The main problem of 

FCFS is its convoy effect. If all jobs are wait ing for a 

big job  to finish, the convoy effect occurs. The convoy 

effect may lead to longer average waiting t ime and 

lower resource utilizat ion [19]. The Fastest Processor to 

Largest Task First (FPLTF) algorithm schedules tasks to 

resources according to the workload of tasks in the grid  

system. The algorithm needs two main parameters such 

as the CPU speed of resources and workload of tasks. 

The scheduler sorts the tasks and resources by their 

workload and CPU speed then assigns the largest task to 

the fastest available resource. If there are many tasks 

with heavy workload, its performance may be very  bad 

[20]. Cloud scheduling is categorized at user level and 

system level [3].  At  user  level  scheduling  deals  with  

problems  raised  by   service  provision  between   

providers and  customers [4, 11].  The system level 

scheduling handles resource management within  

datacenters [2, 9, 10]. A novel approach  of heuristic-

based request scheduling at each server, in each of  the  

geographically distributed datacenters,  to globally 

minimize  the  penalty  charged  to  the  cloud  

computing system  is  proposed  in  [21]. A new fault  

tolerant scheduling algorithm MaxRe is proposed in [22].  

This algorithm incorporates the reliability analysis into 

the active replication schema, and explo its a dynamic 

number of replicas for different tasks. Scheduling based 

genetic algorithm is proposed in [23-25]. Th is 

algorithms  optimizes the  energy  consumption,  carbon  

dioxide  emissions  and the generated profit  of a 

geographically distributed cloud computing  

infrastructure. The QoS Min-Min scheduling algorithm 

is proposed in [26]. Min-min is heuristic used for batch 

mode scheduling (In batch mode, tasks are scheduled 

only at some predefined time). This  enables  batch  

heuristics  to  know about  the  actual  execution  times  

of  a  larger  number  o f tasks. An optimized algorithm 

for virtual machine p lacement in  cloud computing 

scheduling based on  multi-ob jective ant colony system 

algorithm in  cloud computing is proposed in [2]. 

Scheduling in grid environment based ACO algorithms 

are proposed in [27-29]. The existing scheduling 

techniques in clouds, consider parameter or various 

parameters like performance, makespan, cost, scalability, 

throughput, resource utilization, load balancing, fault  

tolerance, migrat ion time or associated overhead. In this 

paper, cloud task scheduling based ACO approach has 

been proposed for allocation of incoming jobs to virtual 

machines (VMs) considering in our account only 

makespan and load balancing to help in ut ilizing the 

available resources optimally, minimize the resource 

consumption and achieve a high user satisfaction. 

 

III. Cloudsim 

Simulation is a technique where a program models the 

behavior of the system (CPU, network etc.) by  

calculating the interaction between its different entities 

using mathematical formulas, or actually capturing and 

playing back observations from a production system 

[30]. Cloudsim is a framework developed by the GRIDS 

laboratory of university of Melbourne which enables 

seamless modeling, simulation and experimenting on 

designing cloud computing infrastructures [30]. 
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3.1 Cloudsim Characteristics 

Cloudsim can be used to model datacenters, host, 

service brokers, scheduling and allocation policies of a 

large scaled cloud platform. Hence, the researcher has 

used Cloudsim to model datacenters, hosts, VMs for 

experimenting in  simulated cloud environment [31]. 

Cloud supports VM provisioning at two levels:- 

1. At the host level – It is possible to specify how much  

of the overall processing power of each core will be 

assigned to each VM. Known as VM policy  

Allocation.  

2. At the VM level – the VM assigns a fixed amount of 

the available processing power to the individual 

application services (task units) that are hosted within  

its execution engine (Known as VM Scheduling) [31]. 

In this paper, the ACO algorithm will be used for 

allocation of incoming batch jobs to virtual machines 

(VMs) at  the VM level (VM Scheduling). A ll the VMs 

in a datacenter not necessary have a fixed amount of 

processing power but it can vary with different 

computing nodes.  And then to these VMs of different 

processing powers, the tasks/requests (application 

services) are assigned or allocated to the most powerful 

VM and then to the lowest and so on. Hence, the 

performance parameter such as overall makespan time is 

optimized (increasing resource utilization ratio.) and the 

cost will be decreased. 

 

3.2 Cloudsim Data Flow 

Each datacenter entity registers with the Cloud  

Information Service reg istry (CIS). CIS provides 

database level match-making services; it maps user 

requests to suitable cloud providers. The 

DataCenterBroker consults the CIS service to obtain the 

list of cloud providers who can offer infrastructure 

services that match application’s quality of service, 

hardware, and software requirements. In the case match 

occurs the broker deploys the application with the cloud 

that was suggested by the CIS [30].  

 

3.3 The Cloudsim Platform 

The main parts of Cloudsim that are related to our 

experiments in this paper and the relationship between 

them are shown in Fig. 2. 

 CloudInformationService: It is an entity that registers 

datacenter entity and discovers the resource. 

 Datacenter: It models the core infrastructure-level 

services (hardware), which is offered by cloud  

providers. It encapsulates a set of compute hosts that 

can either be homogeneous or heterogeneous. 

 DatacenterBroker: It models a broker, which is  

responsible for mediat ing negotiations between SaaS 

and cloud providers. 

 VmAllocation: A provisioning policy which is run in  

datacenter level helps to allocate VMs to hosts. 

 VmScheduler: This is an abstract class implemented 

by a host component that models the policies (space-

shared, time-shared) required for allocating processor 

cores to VMs. It is run on every host in datacenter. 

 Host: It models a physical server. 

 Vm: It models a virtual machine which is run on 

cloud host to deal with the cloudlet. 

 Cloudlet: It models the cloud-based application  

services. 

 CloudletScheduler: This abstract class is extended by 

the implementation of different policies that 

determine the share (space-shared, time-shared) of  

processing power among cloudlets in a VM [31]. 

 

 

Fig. 2: Main Parts of Cloudsim Related To Our Experiments 

 

IV. Cloud Scheduling Based ACO, MACO and 

MACOLB 

4.1 Cloud Scheduling Based ACO 

The basic idea of ACO is to simulate the foraging  

behavior of ant colonies. When an ants group tries to 

search for the food, they use a special kind of chemical 

to communicate with each other. That chemical is 

referred to as pheromone. Init ially ants start search their 

foods randomly.  Once the ants find a path to food 

source, they leave pheromone on the path. An ant can 

follow the trails of the other ants to the food source by 

sensing pheromone on the ground. As this process 

continues, most of the ants attract to choose the shortest 

path as there have been a huge amount of pheromones 

accumulated on this path [8]. The advantages of the 

algorithm are the use of the positive feedback 

mechanis m, inner parallelism and extensible. The 

disadvantages are overhead and the stagnation 
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phenomenon, or searching for to a certain extent, all 

individuals found the same solution exactly, can’t  

further search for the solution space, making the 

algorithm converge to local optimal solution [7]. It is 

clear that an ACO algorithm can be applied to any 

combinatorial problem as far as it is possible to define: 

1. Problem representation which allows ants to 

incrementally build/modify solutions. 

2. The heuristic desirability η of edges. 

3. A constraint satisfaction method which forces the 

construction of feasible solutions. 

4. A pheromone updating rule which specifies how to 

modify pheromone trail τ on the edges of the graph. 

5. A probabilistic transition rule of the heuristic 

desirability and of pheromone trail [32]. 

 

In this section, cloud task scheduling based ACO 

algorithm will be presented. Decreasing the makespan of 

tasks is the basic ideas from the Proposed Method. 

1. Problem representation: The problem is represented as 

a graph G = (N, E) where the set of nodes N 

represents the VMs and tasks and the set of edges E 

the connections between the task and VM as shown in  

Fig. 3. A ll ants are p laced at the starting VMs  

randomly.  During an iteration ants build solutions to 

the cloud scheduling problem by moving from one 

VM to another for next task until they complete a tour 

(all tasks have been allocated). Iterations are indexed  

by t, 1 < t < tmax, where t max is the maximum number  

of iterations allowed. 

 

 

Fig. 3: Problem Representation of Task Scheduling Based ACO 

 

2. Heuristic desirability: A very simple heuristic is used: 

the inverse of expected execution  time of the task i on  

VM j. 

3. Constraint satisfaction: The constraint satisfaction 

method is implemented as a simple, short-term 

memory, of the visited VM, in order to avoid visiting  

a VM more than once in one ACO procedure and 

minimize t ime of the assigned couplings (task and 

VM). 

4. Pheromone updating rule: It is the one typical of Ant  

System (see (3) to (7)): pheromone evaporates on all  

edges and new pheromone is deposited by all ants on 

visited edges; its value is proportional to the quality of 

the solution built by the ants. 

5. Probabilistic transition ru le: The probabilistic  

transition rule, called random proportional, is the one 

typical of Ant System as in (1). 

 

The pseudo code of the proposed ACO procedure and 

scheduling based ACO are shown in Fig. 4 and Fig. 5 

respectively [32]. The main operations of the ACO 

procedure are init ializing pheromone, choosing VM for 

next task and pheromone updating as following: 

Input: List of Cloudlet (Tasks) and List of VMs  

Output: the best solution for tasks allocation on VMs 

Steps: 

 1. Initialize:  

  Set Current_iteration_t=1. 

  Set Current_optimal_solution=null. 

          Set Initial value τij(t)=c for each path between 

tasks and VMs. 
2.  Place m ants on the starting VMs randomly. 

3.  For k  :=1 to m do 

  Place the starting VM of the k -th ant in tabuk. 

  Do ants_trip while all ants don't end their trips 

             Every  ant chooses the VM for the next task 

according to (1). 
            Insert the selected VM to tabuk. 

  End Do 

4. For k  :=1 to m do  

          Compute the length Lk of the tour described by the 

k-th ant according to (4). 
        Update the current_optimal_solution with the best 

founded solution. 

     5. For every edge (i,j), apply the local pheromone  

according to  (5). 
     6. Apply global pheromone update according to (7). 

7. Increment Current_iteration_t by one. 

8. If (Current_iteration_t < tmax)   

       Empty all tabu lists. 

       Goto step 2 

    Else 

       Print current_optimal_solution. 

   End If 

9. Return 

Fig. 4: Pseudo Code of ACO Procedure 

 

A. Initializing Pheromone 

The amount of virtual pheromone trail τij(t) on the 

edge connects task i to VM j. The init ial amount of 

pheromone on edges is assumed to be a small positive 

constant τ0 (homogeneous distribution of pheromone at 

time t = 0). 
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B. VM Choosing Rule for Next Task 

During an iteration of the ACO algorithm each ant k,     

k = 1, ..., m (m is the number of the ants), builds a tour 

executing n (n is number of tasks) steps in which a 

probabilistic transition rule is applied. The k-ant chooses 

VM j for next  task i with a probability that is computed 

by (1). 

Input: incoming Cloudlets and VMs List 

Output: print "scheduling completed and waiting for 

more Cloudlets” 

Steps: 

 1. Set Cloudlet List =null and 

temp_List_of_Cloudlet=null 

 2. Put any incoming Cloudlets in Cloudlet List in order 

of their arriving time  
 3. Do ACO_P while Cloudlet List not empty or there 

are more incoming Cloudlets 
      Set n= size of VMs list 

      If (size of Cloudlet List greater than n) 

           Transfer the first arrived n Cloudlets from 

Cloudlet List and put them on temp_List_of_Cloudlet  
      Else 

           Transfer all Cloudlets.from Cloudlet List and put 

them on temp_List_of_Cloudlet 
      End If 

      Execute ACO procedure with input 

temp_List_of_Cloudlet and n 
  End Do 

 4.  Print “scheduling completed and waiting for more 

Cloudlets” 
5.  Stop 

Fig. 5: Pseudo Code of Scheduling Based ACO 

 

  (1) 

 

Where τij(t) shows the pheromone concentration at the 

t time on the path between task i and VM j, allowedk 

={0,1,…,n-1}-tabuk  express the allowed VMs for ant k 

in next  step and tabuk   records  the traversed VM by  ant 

k, and ηij=1/dij  is the visibility for the t moment, 

calculated with heuristic algorithm and d ij which 

expresses the expected execution time and transfer t ime 

of the task i on VM j can be computed with (2). 

              (2) 

Where TL_Taski is the total length of the task that has 

been submitted to VM j, Pe_numj is the number of VM j  

processors, Pe_mips j is the MIPS of each processor of 

VMj, InputFileSize is the length of the task before 

execution and VM_bwj is the communication bandwidth 

ability of the VMj. Finally, the two parameters α and β in  

(1) are used to control the relative weight of the 

pheromone trail and the visib ility information  

respectively. 

 

C. Pheromone Updating 

After the completion of a tour, each ant k lays a 

quantity of pheromone  computed by (3) on  

each edge (i,j) that it has used. 

                  (3) 

Where T
k
(t) is the tour done by ant k at iterat ion t, L

k
(t) 

is its length (the expected makespan of this tour) that is 

computed by (4), and Q is a adaptive parameter. It  is 

very helpful in  the cloud environment to depend on the 

result in the past task scheduling. 

                         (4) 

Where, IJ is the set of tasks that assigned to the VM j. 

After each iteration pheromone updating which is 

applied to all edges is refreshed by (5). 

                             (5) 

Where  is the trail decay, 0 <  < 1 and ij(t) is  

computed by (6). 

                                                 (6) 

When all ants complete a traverse, an elitis t is an ant 

which reinforces pheromone on the edges belonging to 

the best tour found from the beginning of the trial (T
+
), 

by a quantity Q/L
+
, where L

+
 is the length of  the best 

tour (T
+
). Th is rein forcement is called global pheromone 

update and computed by (7). 

                        (7) 

 

4.2 Cloud Scheduling Based MACO 

The MACO algorithm inherits the basic ideas from 

ACO algorithm to decrease the computation time of 

tasks executing [33]. It is similar to ACO but has four 

major differences as following: 

 

A. VM Choosing Rule for Next Task 

The Rule o f choosing VM for next task is modified to  

(8). 

    (8) 
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Where α is a parameter that allow a user to control the 

relative importance of pheromone trail and q is a random 

number uniformly distributed in [0, 1]. If q is greater 

than q0, this process is called exp loration; otherwise it is 

called explo itation [34]. Our princip le to progressively 

adapt the system by tuning q0 goes from 0 to 1, in order 

to favor explorat ion in the in itial part of the algorithm 

and then favor explo itation. J is a random variable 

selected according to the following random-proportional 

rule probability d istribution (9) which is the probability  

that ant k chooses to assign VM j to task i. 

  (9) 

There are two reasons for adopting the above method 

to calculate the selection p robability. The first is the 

simplicity as only  one control parameter, i.e. α, is used 

to map  the relative importance of quantity of pheromone 

and the desirability of each movement [35]. The second 

reason is the computational efficiency of this method as 

multip licat ion operations are used instead of 

exponentiations. 

 

B. Local Pheromone Updating 

The local pheromone update rule, which is applied to  

all edges, is replaced by (10). 

                         (10) 

Where  l is the trail decay, 0 <  l < 1, the following  

adaptive formula (11)  is proposed to compute  l: 

                                             (11) 

This formula removes pheromone from edges that 

belong to the worst tours. This has the effect of making  

the visited edges of worst tours less and less attractive. 

So, giving negative reinforcement to bad tours increases 

the convergence speed toward good solutions. 

 

C. Global Pheromone Updating  

The global pheromone update rule, which is applied  

to all edges belonging to the best tour (T
+
), is modified  

by (12).  The modification of global pheromone update 

is applied but in different shape in [2]. 

                             (12) 

Where  is an adaptive coefficient and ρg (0 < ρg < 1)  

is the pheromone evaporation parameter of g lobal 

updating, they computed by (13) and (14) respectively: 

                                                             (13) 

and 

                                                                    (14) 

The  coefficient used to control how a solution s 

contributes to pheromone informat ion over time, m is 

the number of ants , nis represents the number of 

iterations that the best solution not changed. This global 

updating rule tries to increasing the learning of ants. 

 

D. The Control Parameter α  

The Parameter α controls the relative weight of the 

pheromone trail and the visibility informat ion, and 

computed by the following adaptive formulas: 

                                                         (15) 

This adaptive rule tries to enhance the selection of 

weight pheromone trail and the visibility information. 

When the variation of pheromone concentration is high  

we give the visibility informat ion high weight over 

pheromone trail and vice versa 

 

4.3 Cloud Scheduling Based MACOLB 

The MACOLB algorithm inherits the basic ideas from 

ACO and MACO algorithm to improve the execution of 

cloud tasks. In this section we introduce MACOLB 

algorithm to improve the performance of the scheduling 

problems in cloud computing. It  is similar to MACO but 

has an added load balancing factor. The Rule of 

choosing VM for next task is modified to (16). 

 (16) 

Where, LBs is the load balancing factor of VM s to  

minimize the degree of imbalance which is defined by 

(17). The LBs here learn from the result in the past task 

scheduling. 

                                        (17) 

Where LTavg is the average execution time of the 

virtual machines in  the last calling of ACO procedure 

and Tots is the expected execution time of the tasks that 

have been submitted to VM s which is defined by (18).   

                                              (18) 
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Equation (9) that computes the value J also modified  

to (19). 

 (19) 

 

V. Implementation and Experimental Results 

We assume that tasks are mutually independent i.e. 

there is no precedence constraint between tasks and 

tasks are not preemptive and they cannot be interrupted 

or moved to another processor during their execution. 

 

5.1 Parameters Setting of Cloudsim 

The experiments are implemented with 10  

Datacenters with 50 VMs and 100-1000 tasks under the 

simulation platform. The length of the task is from 1000 

MI (Million Instructions) to 20000 MI. The parameters 

setting of cloud simulator are shown in Table 1. 

 
Table 1: Parameters setting of Cloudsim 

Entity Type  Parameters Value  

Task 
(cloudlet) 

Length of task 1000-20000 

Total number of task 100-1000 

Virtual 
Machine 

Total number of VMs 50 

MIPS 500-2000 

VM memory(RAM) 256-2048 

Bandwidth 500-1000 

cloudlet Scheduler 
Space_shared and 

T ime_shared 

Number of PEs 

requirement 
1-4 

Datacenter 

Number of Datacenter 10 

Number of Host  2-6 

VmScheduler 
Space_shared and 

T ime_shared 

 

5.2 ACO Parameters Evaluation and Setting 

We implemented the ACO algorithm and investigated 

their relative strengths and weaknesses by 

experimentation. The parameters (α, β, p, t max, m the 

number of ants and Q) considered here are those that 

affect directly  or indirectly the computation of the 

algorithm. We tested several values for each parameter 

while all the others were held constant on 100 tasks.  

The default value of the parameters was α=1, β=1, ρ=0.5, 

Q=100, tmax=150 and m=8.  In each experiment only  

one of the values was changed, The values tested were: 

α  {0, 0.1, .2, .3, .4, .5}, β {0, .5, 1.5, 2, 2.5, 3}, ρ 

{0, 0.1, .2, .3, .4, .5} , Q{1, 100,500,1000}, 

tmax{50,75,100,150} and m{1,5,8,10,15,20}. We also 

use the time in the Cloudsim to record the makespan. 

The ACO performance for d ifferent values of 

parameters (α, β, p, tmax, m the number of ants and Q) 

has been evaluated. The ACO performance for different 

values of parameters (α, β,p ,tmax ,m the number of ants 

and Q) are shown from Fig.6 to   Fig.11.  It can be seen 

that the best value of α is .3, the best value of β is 1, the 

best value of  is .4, the best value of Q is 100, the best 

value of t max is 150 and the best values of m is 10. In  the 

following experiments we select the best value for α, β, 

, Q and m  parameters but the value100 is selected for  

the tmax parameter to reduce the overhead of the ACO 

algorithm. 

 

Fig. 6: ACO Performance for Different Values of Alpha 

 

 

Fig. 7: ACO Performance for Different Values of Beta 

 

 

Fig. 8: ACO Performance for Different Values of Rho 
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Fig. 9: ACO Performance for Different Values of Q 

 

 

Fig. 10: ACO Performance for Different Values of Tmax 

 

 

Fig. 11: ACO Performance for Different Values of Ants Number 

 

Table 2 shows the selected best parameters of ACO.  

The MACO and MACOLB parameters are calcu lated 

using the proposed self-adaptive formulas. The m and  

tmax parameters are the same in all algorithms. 

Table 2: Selected Parameters of ACO 

Parameter α β   Q m tmax 

Value  . 3 1 .4 100 10 100 

 

5.3 Implementation Results of ACO, FCFS and RR 

In the following experiments, we compared the 

average makespan with different tasks set. The average 

makespan of the ACO, MACO and MACOLB 

algorithms are shown in Fig.12. The average makespan 

of the First Come First Served (FCFS) and Round Robin  

(RR) and ACO algorithms are shown in Fig.13 [32]. It  

can be seen that, with the increase of the quantity task, 

ACO takes the time less than FCFS and RR algorithms 

and MACOLB takes the time less than MACO and ACO 

algorithms. This indicates that MACOLB algorithm is 

better than MACO, ACO, FCFS and RR algorithms. 

 

Fig. 12: Average Makespan of ACO, MACO and MACOLB 

 

 

Fig. 13:  Average Makespan of FCFS, RR and ACO 

 

In statistics and probability theory, standard deviation 

(σ) shows how much variat ion or dispersion exists from 

the average (mean), or expected value. A low standard 

deviation indicates that the data points tend to be very 

close to the mean; high standard deviation indicates that 

the data points are spread out over a large range of 

values (solving stagnation problem). Since the standard 

deviation of never drops to zero, we are assured that the 

algorithm actively searches solutions which differ from 

the best-so-far found, which g ives it the possibility of 

finding better ones. Fig.14 shows the evolution of the 

standard deviation of the ACO, MACO and MACOLB 

over 10 runs. 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Sigma
http://en.wikipedia.org/wiki/Statistical_dispersion
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Mean
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Fig. 14: Standard Deviation of ACO, MACO and MACOLB 

 

The Degree of Imbalance (DI) measures the 

imbalance among VMs, which is computed by (20). 

                                                   (20) 

Where, Tmax, Tmin and Tavg are the maximum,  

minimum and average execution time of VMs 

respectively. The average degree of imbalance of each  

algorithm with the number of tasks varying from 100 to  

1000 is shown in  Fig.15. It can be seen that the 

MACOLB can achieve better system load balance than 

ACO and MACO algorithms. 

 

Fig. 15: Average Degree of Imbalance of ACO, MACO and MACOLB 

 

VI. Conclusions and Future Work 

In this paper MACOLB algorithm has been proposed 

to improve the cloud tasks scheduling for load balancing. 

MACOLB is used to find the optimal resource allocation 

for batch tasks in the dynamic cloud system and 

minimize the makespan of tasks on the entire system. 

The proposed algorithm uses the same self -adapting 

criteria for the MACO control parameters but has an 

added load balancing factor. MACOLB, MACO and 

ACO algorithms in applications with the number of 

tasks varying from 100 to 1000 evaluated using 

Cloudsim toolkit. Firstly the best values of parameters 

for ACO algorithm, experimentally determined. Then 

the makespan of the above algorithms evaluated. 

Simulation results demonstrate that MACOLB algorithm 

outperforms MACO and ACO algorithms. MACOLB 

algorithm can be extended with improvements to handle 

precedence between tasks and costs of resources. Also 

the comparison between our approach and other 

metaheuristics approaches will be performed. 
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