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Abstract— To get maximum performance on the many-

core graphics processors , it is important to have an even 

balance of the workload so that all processing units 

contribute equally to the task at hand. This can be hard  

to achieve when the cost of a task is not known 

beforehand and when new sub-tasks are created 

dynamically during execution. Both the dynamic load 

balancing methods using Static task assignment and 

work stealing using deques are compared to see which 

one is more suited to the highly parallel world of 

graphics processors. They have been evaluated on the 

task of simulating a computer move against the human 

move, in the famous four in a row game. The 

experiments showed that synchronization can be very  

expensive, and those new methods which use graphics 

processor features wisely might be required.  

 

Index Terms— Dynamic Load Balancing, Task 

assignment, GPU, Task stealing, SMP 

 

I. Introduction 

Today’s graphic processors have ventured from the 

multicore to the many-core domain; with many 

problems in the graphics being of the so called 

embarrassingly parallel kind; [1, 2] there is no question 

that the number of processing units will continue to 

increase. 

GPU can handle a great amount of data parallel  

applications with its massive parallel processing 

functionality. Many applications are highly suitable for 

GPU computation, the most effective of them being  

Interactive visualization. With the possibility of 

simultaneous execution of multiple tasks on different 

GPU'S, and the ability to perform computations that 

overlap; mult iple GPU'S can easily increase the 

efficiency of these applications. This opens the window 

for processing large scale problems in contrast to a 

single GPU model that cannot handle these problems in  

real time. 

Popular GPU computing environments like CUDA  

and OpenCL ease the uphill prob lems of scheduling jobs 

whose computation costs are unknown by achieving  

load balancing. Load balancing is established by 

decomposing the main  job into subtasks which can be 

executed concurrently by assigning fresh unfinished 

tasks to cores that finish early. However load balancing  

requires all tasks to be available before the kernel is 

called. Subtasks created during runtime wait for the 

kernel as a whole to fin ish and then get executed in a 

new kernel invocation. Subtasks are also executed by 

making each core perform all of its own subtasks . 

To be able to take advantage of this parallelis m in  

general purpose computing, it  is imperat ive that the 

problem to be solved can be divided into sufficiently  

fine-grained tasks to allow the performance to scale [3] 

when new processors arrive with more processing units. 

However, the more fine-grained a task set gets, the 

higher the cost of the required synchronization becomes. 

Several popular load balancing schemes have been hard 

to implement efficiently  on graphics processors due to 

lack of hardware support, but this has changed with the 

advent of scatter operations and atomic hardware 

primitives such as Compare-And-Swap. It is now 

possible to design more advanced concurrent data 

structures and bring some of the more elaborate dynamic 

load balancing schemes from the conventional SMP 

systems domain to the graphics processor domain. The 

load balancing in these schemes is achieved by having a 

shared data object that stores all tasks created before and 

under execution. When a p rocessing unit has finished its 

work it can get a new task from the shared data object. 

As long as the tasks are sufficiently  fine-grained the 

work load will be balanced between processing units.  

Synchronization of the memory access to the shared 

data can be achieved either through blocking or non-

blocking. Blocking methods employ the usage of locks 

to grant permission to only one processing unit to access 

the object. As is evident, the method assumes conflicts 

to exist even when there are no conflicts. Non-b locking  

methods on the other hand, makes several processing 

units to simultaneously access the shared data object 

only when a conflict arises. It takes a more hands on 

approach for conflict resolution. Delays occurs only 
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when there is an actual conflict Th is feature allows 

algorithms using non-blocking  methods to perform 

better with increase in number of processing units. 

 

 

Fig. 1: Diagrammatic Representation of Static Task Assignment (left) and Dynamic Task Assignment  

 

The paper compares two different methods of 

dynamic load balancing: 

 Static Task List: Tasks are stored in a static list [4]. 

 Task Stealing: Each processing unit has a local double 

ended queue where it stores new tasks. Tasks can be 

stolen from other processing units if required [5]. 

 

II. Load Balancing Methods 

This section gives an overview of the two  different  

load balancing methods we have compared in this paper.  

 

2.1 Static Assignment  

The default method for load balancing used in  CUDA 

is to divide the data that is to be processed into a list of 

blocks or tasks. Each processing unit then takes out one 

task from the list and executes it. When the list is empty  

all processing units stop and control is returned to the 

CPU. This is a lock-free method and it  is excellent when 

the work can  be easily  div ided into chunks of similar 

processing time, but it needs to be improved upon when 

this information is not known beforehand. Any new 

tasks that are created during execution will have to wait  

until all the statically as-signed tasks are done, or be 

processed by the thread block that created them, which  

could lead to an unbalanced work-load on the 

multiprocessors. 

To evaluate the performance of the work-stealing  

scheme, a load balancing scheme using a static 

assignment of the tasks to each thread block was 

implemented [6]. Thread b locks were considered instead 

of threads because for some applications , (e.g., where 

control flow across tasks can diverge heavily) it would  

be more efficient to have multiple threads within  a b lock 

collaborate on a single task rather than to have each 

thread work on its own task. 

The work-pool in this scheme is implemented using 

two arrays (Fig. 2). The first array holds all the tasks to 

be performed, and the other array holds the subtasks 

created at runtime. In the first iteration, the input array 

holds all in itial tasks. The array is then partitioned so 

that each thread block gets an equal number of tasks. 

Since no writing is allowed to the input array, there is no 

need for any synchronization. 

When new tasks are created during runtime, they are 

written to the output array with the help of the atomic 

primitive Fetch-And-Add (FAA). This primitive 

atomically increments the value of a variable and can 

thus be used to find a unique position in the array. When 

all tasks have been completed, the two arrays switch 

roles and the kernel is invoked again. Th is is repeated 

until no more new tasks are created.  

 

Fig. 2: Static assignment using two arrays 

 

A pseudocode for Static Task List [7] is, 

 

function DEQUEUE(q,id) 

     return q.in[id] 

function ENQUEUE(q,task) 

     localtail ← atomicAdd(&q.tail,1) 

     q.out[localtail]  = task  

function NEWTASKCNT(q) 

     q.in,q.out,oldtail,q.tail ← q.out,q.in,q.tail,0 

     return oldtail 

procedure MAIN(task init) 

q.in,q.out ← newarray(maxsize),newarray(maxsize) 

q.tail ← 0 

enqueue(q,task init)  

blockcnt ← newtaskcnt(q) 

while blockcnt ≠ 0 do 

     run blockcnt blocks in parallel 

          t ← dequeue(q,TBid) 

          subtasks ← doWork (t) 

          for each nt in subtasks do 
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               enqueue(q,nt) 

     blocks  ← newtaskscnt(q) 

 

Additionally, the pseudocode for Blocking Based 

Dynamic Queue [7] is, 

function DEQUEUE(q) 

     while atomicCAS(&q.lock,0,1) == 1 do 

     If q.beg! = q.end then 

          q.beg++ 

          result ← q.data[q.beg] 

     else 

          result ← NIL 

     q.lock ← 0 

     return result 

function ENQUEUE(q,task ) 

     while atomicCAS(&q.lock,0,1) == 1 do 

     q.end ++ 

     q.data[q.end] ← task  

     q.lock ← 0 

 

2.2 Work-Stealing 

Static assignment as a solution to load balancing 

scheme has not found traction. A more popular approach 

is Task Stealing. The basic princip le is that a processor 

which is allotted a set of tasks, once it has completed 

them tries to ―steal‖ a task from another processor which  

is yet to complete the assignment done. If the processor 

manages to steal as task, a new task is created and added 

to its own set of tasks. 

As already illustrated, a thread block is allocated a 

work-pool for it to work with. Th is work-pool can 

init ially contain some pre-allocated tasks to begin with. 

When a new task is created at run time, the task is added 

to the work-pool. If a part icular thread block is not 

allotted a task, it checks to see if all the tasks assigned to 

the system are completed. If the check fails, task stealing  

is done by that particular thread block. 

The modeling that we have used to achieve work 

stealing finds its application in several tradit ional 

systems. The main aspects of the modeling are  two  

features: Lock-free and avoid atomic operations. 

As is evident from the design of the task-stealing 

algorithm, mult iple blocks have access to the same 

work-pool. To support this feature, the implementation 

of the work-pool should be able to manage and 

synchronize the various actions operated on it by the 

blocks. To ach ieve this economically, lock-free 

techniques have been put to use. Lock-freedom is 

essentially an assurance that no deadlock occurs and at 

any particular t ime, progress is made on the tasks by at 

least one block independent of the situation at the other 

blocks. This assurance implies the fact that the delay 

burden on a block, for a lock to be released is zero.  

The work-stealing algorithm uses double-ended 

queues (deques) for work-pools and each thread block is 

assigned its own unique deque. A deque is a queue 

where it is possible to enqueue and dequeue from both 

sides, in contrast to a normal queue where you enqueue 

on one side and dequeue on the other. Tasks are added 

and removed from the tail of the deque in a Last-In-

First-Out (LIFO) manner [8]. 

When the deque is empty, the thread block tries to 

steal from the head of another thread block’s deque. 

Since only the owner of the deque is accessing the tail of 

the deque, there is no need for expensive 

synchronization when the deque contains more than one 

element. Several thread blocks might however try to 

steal at the same time, and for this case synchronization 

is required, but stealing is expected to occur less often 

than a normal local access. 

We base our implementation on an array that holds 

the tasks, and have a head and a tail pointer that points 

to the first and last task in the deque. The head pointer is 

divided into two fields due to the ABA-problem which  

can occur if the head pointer is written to by two 

different thread blocks. The ABA problem is  the 

situation where a value has changed its value from A to 

B and then back to A again without the system 

discovering the change in between. 

As each thread block needs to have its own deque, we 

have to allocate memory  for as many deques as we have 

thread blocks. We cannot use the shared memory to 

store the deques, as other thread blocks need to be able 

to access them to steal tasks. The maximum number  of 

tasks to make room for in the deque will have to be 

decided for the specific application and must be decided 

on beforehand. The tasks can be of any size. If they are 

larger than a single word, one should try to make sure 

that mult iple threads read them in a coalesced manner 

[11]. 

 

Fig. 3: Task Sharing using Work stealing and work pools 

 

III. FOUR-IN-A-ROW 

Four-in-a-row game also known as Connect Four is a 

game involv ing two  players. Each  player chooses a 

colour and then takes turns dropping the respective 

coloured tokens into a seven column-six row grid. The 

objective of the game is to win by getting four of the 
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same tokens in a row. The player achieving this is 

declared the winner. Several d imensions of the grid  

exists, here we restrict ourselves to a 6X7 grid. Fig. 3 

shows a possible game beginning and follows up. 

 

3.1 Design 

To help the computer pick the optimal move, n  moves  

need to be looked ahead, and a min -max algorithm is 

used to pick the move that gives the best worst case 

scenario. In Figure 4 we see the decision tree used in  the 

algorithm. The nodes at the first level represent one of 

possible moves that the player makes. 

The child ren of these nodes represent the moves that 

the computer can take in  the next turn, g iven the first 

move. The children of these nodes in turn represent the 

move that the user can make and so on, until we have 

looked n moves ahead. 

When a leaf node is reached, either due to one of the 

players winning or because we have looked n moves 

ahead, a heuristic function e(p) is used to give each leaf 

node a value depending on how good that outcome is. 

The computer winning is infin itely positive and  the 

player winning is infinitely negative. 

 

Fig. 4: A min-max decision tree for four-in-a-row. Each node is a task 

 

The other scenarios are valued by the difference in  

how many two or three token sequences each of the 

players have. The nodes at even levels, which represent 

the computer player, take the value of the child node 

with the highest value, as this represents the computer’s 

optimal move. On the other hand, the nodes at odd levels 

which represent the human player, take the value of the 

child with the lowest value. In the end, the node on the 

first level with the lowest value represents the worst next  

move for the human opponent.  

 

 

 

Fig. 5: The min-max tree showing the dynamic nature of tasks created developed for a particular user move with look ahead of 2 moves  

 

It is hard to predict how much time will be spent in 

each branch. By making each node in the min-max 

decision tree a task, we can use dynamic load balancing 

to achieve an even load. We set each task to hold  

informat ion on what level the node is on, its parent node, 

its value and the moves taken by its ancestor nodes. We 

save memory by only storing the moves taken and not 

the entire board state, as the new board state can be 

generated quickly from the current board state, and the 

moves can be taken. To know when the problem has 

been solved, we keep a counter at each node that keeps 

track of the number of ch ild nodes it has received a 

value from. When the root nodes have received values 

from all of their children, the work is complete [9, 10]. 
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e(P): static evaluation function for tip nodes  

This is given by, 

e(p) = (No. of 2  or 3 sequences for MAX nodes) – (No. 

of 2 or 3 sequences open for MIN nodes) 

e(p) =  ∞ if p is a win for MAX node 

e(p) = -∞ if p is a win for MIN node  

 

After calculat ing the e(p) values for the tip nodes we 

come back towards the root calculating the backed up  

values as follows:- 

Backed up value for a MAX node = Maximum (e(p) 

values of all successor MIN nodes) 

Backed up value for a MIN node = Minimum (e(p) 

values of all successor MAX nodes) 

 

IV. Experimental Evaluation 

The performance of the computer player is evaluated 

by playing the starting game scenario shown in Fig. 3 

with  different number of look ahead moves. Fig. 6 

shows the numbers of tasks per millisecond performed  

by the two different load balancing schemes using 240 

thread blocks. We see that the dynamic load balancing 

scales much better, when faced with a higher load, than 

the static load balancing. At 7 look ahead moves it is 

twice as fast as the static scheme [12]. 

 

 

Fig. 6: Four-in-a-row: Tasks performed per millisecond for different number of look ahead moves and thread blocks 

 

Fig. 7 also shows the number of tasks that needs to be 

allocated space. It is to be noted that, the scale is 

logarithmic. For the static load balancing, this is the 

maximum number of tasks that can be created in a 

kernel invocation. The dynamic load balancing has a 

deque for every thread block, so here the maximum 

number of elements needs to be mult iplied with the 

number of thread blocks.  

 

 

Fig. 7: Four-in-a-row: Tasks performed per millisecond and memory usage in number of tasks for 240 thread blocks 
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V. Conclusion 

The two different load balancing schemes namely the 

ABP task stealing and static list were compared with  

each other by simulating a computer move for a human 

opponent in the classic game of four in a row game. 

Since the number of tasks increased quickly, and the 

tree itself was relative ly shallow the static queue 

performed well. The ABP task stealing method, however 

outperformed its static counterpart and produced better 

results for the said game. 

For 7 look ahead moves, the static load balancing  

requires around 800,000 tasks to be stored, while the 

dynamic only requires 12, 000 tasks around 50 times the 

number of thread blocks. 
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