
I.J. Intelligent Systems and Applications, 2014, 05, 70-75

Published Online April 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2014.05.07

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 05, 70-75

Dynamic Load Balancing using Graphics

Processors

R Mohan

Department of Computer Science and Engineering, National Institute of Technology, Tiruchirappalli, India

E-mail: rmohan@nitt.edu

N P Gopalan

Department of Computer Applications, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India

E-mail: npgopalan@nitt.edu

Abstract— To get maximum performance on the many-

core graphics processors , it is important to have an even

balance of the workload so that all processing units

contribute equally to the task at hand. This can be hard

to achieve when the cost of a task is not known

beforehand and when new sub-tasks are created

dynamically during execution. Both the dynamic load

balancing methods using Static task assignment and

work stealing using deques are compared to see which

one is more suited to the highly parallel world of

graphics processors. They have been evaluated on the

task of simulating a computer move against the human

move, in the famous four in a row game. The

experiments showed that synchronization can be very

expensive, and those new methods which use graphics

processor features wisely might be required.

Index Terms— Dynamic Load Balancing, Task

assignment, GPU, Task stealing, SMP

I. Introduction

Today’s graphic processors have ventured from the

multicore to the many-core domain; with many

problems in the graphics being of the so called

embarrassingly parallel kind; [1, 2] there is no question

that the number of processing units will continue to

increase.

GPU can handle a great amount of data parallel

applications with its massive parallel processing

functionality. Many applications are highly suitable for

GPU computation, the most effective of them being

Interactive visualization. With the possibility of

simultaneous execution of multiple tasks on different

GPU'S, and the ability to perform computations that

overlap; mult iple GPU'S can easily increase the

efficiency of these applications. This opens the window

for processing large scale problems in contrast to a

single GPU model that cannot handle these problems in

real time.

Popular GPU computing environments like CUDA

and OpenCL ease the uphill prob lems of scheduling jobs

whose computation costs are unknown by achieving

load balancing. Load balancing is established by

decomposing the main job into subtasks which can be

executed concurrently by assigning fresh unfinished

tasks to cores that finish early. However load balancing

requires all tasks to be available before the kernel is

called. Subtasks created during runtime wait for the

kernel as a whole to fin ish and then get executed in a

new kernel invocation. Subtasks are also executed by

making each core perform all of its own subtasks .

To be able to take advantage of this parallelis m in

general purpose computing, it is imperat ive that the

problem to be solved can be divided into sufficiently

fine-grained tasks to allow the performance to scale [3]

when new processors arrive with more processing units.

However, the more fine-grained a task set gets, the

higher the cost of the required synchronization becomes.

Several popular load balancing schemes have been hard

to implement efficiently on graphics processors due to

lack of hardware support, but this has changed with the

advent of scatter operations and atomic hardware

primitives such as Compare-And-Swap. It is now

possible to design more advanced concurrent data

structures and bring some of the more elaborate dynamic

load balancing schemes from the conventional SMP

systems domain to the graphics processor domain. The

load balancing in these schemes is achieved by having a

shared data object that stores all tasks created before and

under execution. When a p rocessing unit has finished its

work it can get a new task from the shared data object.

As long as the tasks are sufficiently fine-grained the

work load will be balanced between processing units.

Synchronization of the memory access to the shared

data can be achieved either through blocking or non-

blocking. Blocking methods employ the usage of locks

to grant permission to only one processing unit to access

the object. As is evident, the method assumes conflicts

to exist even when there are no conflicts. Non-b locking

methods on the other hand, makes several processing

units to simultaneously access the shared data object

only when a conflict arises. It takes a more hands on

approach for conflict resolution. Delays occurs only

 Dynamic Load Balancing using Graphics Processors 71

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 05, 70-75

when there is an actual conflict Th is feature allows

algorithms using non-blocking methods to perform

better with increase in number of processing units.

Fig. 1: Diagrammatic Representation of Static Task Assignment (left) and Dynamic Task Assignment

The paper compares two different methods of

dynamic load balancing:

 Static Task List: Tasks are stored in a static list [4].

 Task Stealing: Each processing unit has a local double

ended queue where it stores new tasks. Tasks can be

stolen from other processing units if required [5].

II. Load Balancing Methods

This section gives an overview of the two different

load balancing methods we have compared in this paper.

2.1 Static Assignment

The default method for load balancing used in CUDA

is to divide the data that is to be processed into a list of

blocks or tasks. Each processing unit then takes out one

task from the list and executes it. When the list is empty

all processing units stop and control is returned to the

CPU. This is a lock-free method and it is excellent when

the work can be easily div ided into chunks of similar

processing time, but it needs to be improved upon when

this information is not known beforehand. Any new

tasks that are created during execution will have to wait

until all the statically as-signed tasks are done, or be

processed by the thread block that created them, which

could lead to an unbalanced work-load on the

multiprocessors.

To evaluate the performance of the work-stealing

scheme, a load balancing scheme using a static

assignment of the tasks to each thread block was

implemented [6]. Thread b locks were considered instead

of threads because for some applications , (e.g., where

control flow across tasks can diverge heavily) it would

be more efficient to have multiple threads within a b lock

collaborate on a single task rather than to have each

thread work on its own task.

The work-pool in this scheme is implemented using

two arrays (Fig. 2). The first array holds all the tasks to

be performed, and the other array holds the subtasks

created at runtime. In the first iteration, the input array

holds all in itial tasks. The array is then partitioned so

that each thread block gets an equal number of tasks.

Since no writing is allowed to the input array, there is no

need for any synchronization.

When new tasks are created during runtime, they are

written to the output array with the help of the atomic

primitive Fetch-And-Add (FAA). This primitive

atomically increments the value of a variable and can

thus be used to find a unique position in the array. When

all tasks have been completed, the two arrays switch

roles and the kernel is invoked again. Th is is repeated

until no more new tasks are created.

Fig. 2: Static assignment using two arrays

A pseudocode for Static Task List [7] is,

function DEQUEUE(q,id)

 return q.in[id]

function ENQUEUE(q,task)

 localtail ← atomicAdd(&q.tail,1)

 q.out[localtail] = task

function NEWTASKCNT(q)

 q.in,q.out,oldtail,q.tail ← q.out,q.in,q.tail,0

 return oldtail

procedure MAIN(task init)

q.in,q.out ← newarray(maxsize),newarray(maxsize)

q.tail ← 0

enqueue(q,task init)

blockcnt ← newtaskcnt(q)

while blockcnt ≠ 0 do

 run blockcnt blocks in parallel

 t ← dequeue(q,TBid)

 subtasks ← doWork (t)

 for each nt in subtasks do

72 Dynamic Load Balancing using Graphics Processors

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 05, 70-75

 enqueue(q,nt)

 blocks ← newtaskscnt(q)

Additionally, the pseudocode for Blocking Based

Dynamic Queue [7] is,

function DEQUEUE(q)

 while atomicCAS(&q.lock,0,1) == 1 do

 If q.beg! = q.end then

 q.beg++

 result ← q.data[q.beg]

 else

 result ← NIL

 q.lock ← 0

 return result

function ENQUEUE(q,task)

 while atomicCAS(&q.lock,0,1) == 1 do

 q.end ++

 q.data[q.end] ← task

 q.lock ← 0

2.2 Work-Stealing

Static assignment as a solution to load balancing

scheme has not found traction. A more popular approach

is Task Stealing. The basic princip le is that a processor

which is allotted a set of tasks, once it has completed

them tries to ―steal‖ a task from another processor which

is yet to complete the assignment done. If the processor

manages to steal as task, a new task is created and added

to its own set of tasks.

As already illustrated, a thread block is allocated a

work-pool for it to work with. Th is work-pool can

init ially contain some pre-allocated tasks to begin with.

When a new task is created at run time, the task is added

to the work-pool. If a part icular thread block is not

allotted a task, it checks to see if all the tasks assigned to

the system are completed. If the check fails, task stealing

is done by that particular thread block.

The modeling that we have used to achieve work

stealing finds its application in several tradit ional

systems. The main aspects of the modeling are two

features: Lock-free and avoid atomic operations.

As is evident from the design of the task-stealing

algorithm, mult iple blocks have access to the same

work-pool. To support this feature, the implementation

of the work-pool should be able to manage and

synchronize the various actions operated on it by the

blocks. To ach ieve this economically, lock-free

techniques have been put to use. Lock-freedom is

essentially an assurance that no deadlock occurs and at

any particular t ime, progress is made on the tasks by at

least one block independent of the situation at the other

blocks. This assurance implies the fact that the delay

burden on a block, for a lock to be released is zero.

The work-stealing algorithm uses double-ended

queues (deques) for work-pools and each thread block is

assigned its own unique deque. A deque is a queue

where it is possible to enqueue and dequeue from both

sides, in contrast to a normal queue where you enqueue

on one side and dequeue on the other. Tasks are added

and removed from the tail of the deque in a Last-In-

First-Out (LIFO) manner [8].

When the deque is empty, the thread block tries to

steal from the head of another thread block’s deque.

Since only the owner of the deque is accessing the tail of

the deque, there is no need for expensive

synchronization when the deque contains more than one

element. Several thread blocks might however try to

steal at the same time, and for this case synchronization

is required, but stealing is expected to occur less often

than a normal local access.

We base our implementation on an array that holds

the tasks, and have a head and a tail pointer that points

to the first and last task in the deque. The head pointer is

divided into two fields due to the ABA-problem which

can occur if the head pointer is written to by two

different thread blocks. The ABA problem is the

situation where a value has changed its value from A to

B and then back to A again without the system

discovering the change in between.

As each thread block needs to have its own deque, we

have to allocate memory for as many deques as we have

thread blocks. We cannot use the shared memory to

store the deques, as other thread blocks need to be able

to access them to steal tasks. The maximum number of

tasks to make room for in the deque will have to be

decided for the specific application and must be decided

on beforehand. The tasks can be of any size. If they are

larger than a single word, one should try to make sure

that mult iple threads read them in a coalesced manner

[11].

Fig. 3: Task Sharing using Work stealing and work pools

III. FOUR-IN-A-ROW

Four-in-a-row game also known as Connect Four is a

game involv ing two players. Each player chooses a

colour and then takes turns dropping the respective

coloured tokens into a seven column-six row grid. The

objective of the game is to win by getting four of the

 Dynamic Load Balancing using Graphics Processors 73

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 05, 70-75

same tokens in a row. The player achieving this is

declared the winner. Several d imensions of the grid

exists, here we restrict ourselves to a 6X7 grid. Fig. 3

shows a possible game beginning and follows up.

3.1 Design

To help the computer pick the optimal move, n moves

need to be looked ahead, and a min -max algorithm is

used to pick the move that gives the best worst case

scenario. In Figure 4 we see the decision tree used in the

algorithm. The nodes at the first level represent one of

possible moves that the player makes.

The child ren of these nodes represent the moves that

the computer can take in the next turn, g iven the first

move. The children of these nodes in turn represent the

move that the user can make and so on, until we have

looked n moves ahead.

When a leaf node is reached, either due to one of the

players winning or because we have looked n moves

ahead, a heuristic function e(p) is used to give each leaf

node a value depending on how good that outcome is.

The computer winning is infin itely positive and the

player winning is infinitely negative.

Fig. 4: A min-max decision tree for four-in-a-row. Each node is a task

The other scenarios are valued by the difference in

how many two or three token sequences each of the

players have. The nodes at even levels, which represent

the computer player, take the value of the child node

with the highest value, as this represents the computer’s

optimal move. On the other hand, the nodes at odd levels

which represent the human player, take the value of the

child with the lowest value. In the end, the node on the

first level with the lowest value represents the worst next

move for the human opponent.

Fig. 5: The min-max tree showing the dynamic nature of tasks created developed for a particular user move with look ahead of 2 moves

It is hard to predict how much time will be spent in

each branch. By making each node in the min-max

decision tree a task, we can use dynamic load balancing

to achieve an even load. We set each task to hold

informat ion on what level the node is on, its parent node,

its value and the moves taken by its ancestor nodes. We

save memory by only storing the moves taken and not

the entire board state, as the new board state can be

generated quickly from the current board state, and the

moves can be taken. To know when the problem has

been solved, we keep a counter at each node that keeps

track of the number of ch ild nodes it has received a

value from. When the root nodes have received values

from all of their children, the work is complete [9, 10].

74 Dynamic Load Balancing using Graphics Processors

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 05, 70-75

e(P): static evaluation function for tip nodes

This is given by,

e(p) = (No. of 2 or 3 sequences for MAX nodes) – (No.

of 2 or 3 sequences open for MIN nodes)

e(p) = ∞ if p is a win for MAX node

e(p) = -∞ if p is a win for MIN node

After calculat ing the e(p) values for the tip nodes we

come back towards the root calculating the backed up

values as follows:-

Backed up value for a MAX node = Maximum (e(p)

values of all successor MIN nodes)

Backed up value for a MIN node = Minimum (e(p)

values of all successor MAX nodes)

IV. Experimental Evaluation

The performance of the computer player is evaluated

by playing the starting game scenario shown in Fig. 3

with different number of look ahead moves. Fig. 6

shows the numbers of tasks per millisecond performed

by the two different load balancing schemes using 240

thread blocks. We see that the dynamic load balancing

scales much better, when faced with a higher load, than

the static load balancing. At 7 look ahead moves it is

twice as fast as the static scheme [12].

Fig. 6: Four-in-a-row: Tasks performed per millisecond for different number of look ahead moves and thread blocks

Fig. 7 also shows the number of tasks that needs to be

allocated space. It is to be noted that, the scale is

logarithmic. For the static load balancing, this is the

maximum number of tasks that can be created in a

kernel invocation. The dynamic load balancing has a

deque for every thread block, so here the maximum

number of elements needs to be mult iplied with the

number of thread blocks.

Fig. 7: Four-in-a-row: Tasks performed per millisecond and memory usage in number of tasks for 240 thread blocks

 Dynamic Load Balancing using Graphics Processors 75

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 05, 70-75

V. Conclusion

The two different load balancing schemes namely the

ABP task stealing and static list were compared with

each other by simulating a computer move for a human

opponent in the classic game of four in a row game.

Since the number of tasks increased quickly, and the

tree itself was relative ly shallow the static queue

performed well. The ABP task stealing method, however

outperformed its static counterpart and produced better

results for the said game.

For 7 look ahead moves, the static load balancing

requires around 800,000 tasks to be stored, while the

dynamic only requires 12, 000 tasks around 50 times the

number of thread blocks.

References

[1] Stanley Tzeng, Brandon Lloyd, John D. Owens. A

GPU Task-Parallel Model with Dependency

Resolution. Computer, vol. 45, Aug 2012, no. 8, pp.

34-41.

[2] Christopher P. Stone, Earl P. N. Duque, Yao Zhang,

David Car, John D. Owens, and Roger L. Davis.

GPGPU parallel algorithms for structured-grid

CFD codes. Proceedings of the 20th AIAA

Computational Fluid Dynamics Conference,

number 2011-3221, June 2011.

[3] Shubhabrata Sengupta, Mark Harris, Michael

Garland, and John D. Owens. Efficient Parallel

Scan Algorithms for many-core GPUs. In Jakub

Kurzak, David A. Bader, and Jack Dongarra,

editors, Scientific Computing with Mult icore and

Accelerators, Chapman & Hall/CRC

Computational Science, chapter 19, pages 413–442.

Taylor & Francis, January 2011.

[4] Arora N.S., Blumfoe R. D., Plaxton C.G. Thread

Scheduling for Mult iprogrammed Multip rocessors.

In Proceedings of the ACM Symposium on Parallel

Algorithms and Architectures (1998), pp. 119–129.

[5] Blumfoe R., Leiserson C. Scheduling multithreaded

computations by work stealing. In Proceedings of

the 35th Annual Symposium on Foundations of

Computer Science, Santa Fe, New Mexico. (1994),

pp. 356–368.

[6] Heirich A., Arvo J. A Competit ive Analysis of

Load Balancing Strategies for Parallel Ray Tracing.

J. Supercomputer. 12, 1-2 (1998), 57–68

[7] Daniel Cederman and Philippas Tsigas . On

Dynamic Load Balancing on Graphics Processors.

Graphics Hardware (2008)

[8] Nyland L., Harris M., Prins J. Fast NBody

Simulation with CUDA. In GPU Gems 3. Addison-

Wesley, 2007, ch. 31, pp. 677–695

[9] R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E.

Leiserson, K.H. Randall, Y. Zhou, Cilk: an efficient

multithreaded runtime system, in : R.L. Wexelb lat

(Ed.), Proceedings of the Fifth ACM SIGPLAN

Symposium on Princip les and Practice of Parallel

Programming (PPoPP), ACM, Santa Barbara, CA,

1995, pp. 207–216

[10] N.S. Arora, R.D. Blumofe, C. Greg Plaxton, Thread

scheduling for multiprogrammed multip rocessors,

in: Proceedings of the ACM Symposium on

Parallel Algorithms and Architectures, ACM,

Puerto Vallarta, Mexico, 1998, pp. 119–129.

[11] Daniel Cederman and Philippas Tsigas. Dynamic

load balancing using work-stealing. In Wen-mei W.

Hwu, ed itor, GPU Computing Gems, volume 2,

chapter 35, pages 485–499. Morgan Kaufmann,

October 2011.

[12] Stanley Tzeng, Anjul Patney, and John D. Owens.

Task management for irregular-parallel workloads

on the GPU. In Proceedings of High Performance

Graphics 2010, pages 29–37, June 2010.

Authors’ Profiles

R.Mohan is an Assistant Professor of Computer Science

and Engineering Department, Nat ional Institute of

Technology, Tiruchirappalli, Tamil Nadu, India. His

research interests include Distributed Computing, Data

Structures and Algorithms.

N.P.Gopalan is Professor of Computer Applications

Department at National Institute of Technology,

Tiruchirappalli, Tamil Nadu, India. He obtained his

Ph.D from the Indian Institute of Science, Bangalore.

His research interests lie in Data Mining, Web

Technology, Distributed Computing and Theoretical

Computer Science.

How to cite this paper: R Mohan, N P Gopalan,"Dynamic

Load Balancing using Graphics Processors", International

Journal of Intelligent Systems and Applications(IJISA), vol.6,

no.5, pp.70-75, 2014. DOI: 10.5815/ijisa.2014.05.07

