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Abstract—Based on the equal-cycle nested graph, the power-

cycle nested graph is brought forward. In this paper, we 

research on the largest edge-balance index of the graph 

77m mC P ( 2(mod3))m  ( 5)m   by the methods and 

techniques of graph theory and combinatorial mathematics, and 

solve formula proof and graphic tectonic methods. 

 

Index Terms—Edge-friendly labeling, Edge-balanced index set, 

Graph 
77m mC P , the nested-cycle graph with claw. 

 

I.  INTRODUCTION 

Graph labeling problem starts from A. Rosa’s famous 

beautiful tree conjecture in 1966. Balance index sets are 

an important branch of graph labeling problem. Boolean 

index [1] set of graphs is that makes the vertex sets and 

the edge sets of graphs through the mapping function 

with 2Z , to study the characteristics, inherent 

characteristics of graphs, the structure and design 

techniques, and to complete the theoretical derivation of 

the index sets of graphs and formula proof. Balance index 

set [2] is an important branch of Boolean index sets, 

edge-balance index set is one of important issues of 

balance index sets. Its theory can be applied to 

information engineering, communication network, 

computer science, economic management, medicine, etc. 

Before the years 2006, people mainly studied the edge-

balance index of the finite graph. Since 2007, Yuge 

Zheng with her students has been committed to the 

research about the edge-balanced index sets of the graphs. 

In 2008-2009, Juan Lu has completely solved the edge-

balance index sets of the series of the infinite chain graph. 

In 2009, Yurong Ji and M. C. Kong with his partners 

used the different methods to solve the edge-balanced 

index sets of the complete graph, respectively in 

reference [3] [4]. In 2010-2012, Professor Zheng told 

Ying Wang and Jingjing Yao to completely solve the 

edge-balance index sets of the equal-cycle nested graph, 

for details, please refer to [5] [7]. In 2011-2012, elder 

sister Hongjuan Tian, Yanming Chang and Qingwen 

Zhang started to research infinite power-cycle nested 

graph in reference [6], and completed for n=2,3,4,6,8. 

The larger the value of n is, the more difficult the 

research of the graph design of odd n is, using the 

innovation of this mosaic design and the method of the 

foundation drawing validation. At the same time, using 

the foundation drawing and toothed nested-cycle graph, 

we  completed the labeling design of the edge-balance 

index sets of 
77m mC P    graphs and formula derivation. 

The rest of this article is organized as follows. In the 

second part, we give the definitions which will use in this 

paper. In section 3 we summarize the main results and 

give a brief overview of the key ideas of their proofs. The 

main theorem is presented in the fourth section. In the 

fifth part of the paper, we draw the conclusion. 

 

II.  PRELIMINARY NOTES 

In graph G ,  the edge set of labeled 0 or 1 is recorded 

as (0)E  or (1)E  , using (0)e  , (1)e  to present the 

number of (0)E , (1)E . The vertex set of labeled 0or 1 is 

recorded as V(0)  or V(1) , using v(0) , v(1)  to present 

the number of V(0) , V(1) . 

In graph G  , let 
2: ( )f E G Z  is an edge labeling 

function, That is to say, ( ), ( ) 0 1e E G f e or   . 

According to the edge labeling f  , we define an 

associated partial vertex labeling 
2: (G) Zf V   , as 

follow:  

0, (0) e (1)

( ) 1, (1) (0)

, (0) (1)

x x

x x

x x

e

f x e e

unlabled e e






 
 

 , where (0)ve  is 

the cardinality of the set { ( ) : ( ) 0}e E G v e   , (1)ve  is 

the cardinality of the set { ( ) : ( ) 1}e E G v e  . 

Definition 1 An edge labeling : ( ) {0,1}f E G   of the 

graphG  is said to be edge-friendly if (0) (1) 1f fe e   . 

Definition 2 If there is an edge-friendly labeling in a 

graph, { (0) (1) :f fv v f  is an edge friendly labeling of 

}G  is called on edge-balance index of G  and denoted by 

( )EBI G  . Specifically, the maximum of edge-balance 

index denoted by max{ )}EBI G（ . 
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Definition 3 
7mP  represents that every road contains m 

points, and that there are 7 branches at any points except 

the terminal point of each road. 

Definition 4 
7mC  shows the graph contains m  cycles, 

the cycles are denoted by the first cycle, the second cycle, 

the third cycle, , the m-th cycle from the inner cycle 

to the outer. And there are 7 i
 vertices on the i-th cycle. 

Definition 5 The nested graph with power-cycle is the 

embedded graph including 
7mC  and 

7mP  , denoted by 

77m mC P  . 

Example. Fig. 1 illustrates two graphs of  
77m mC P  

                  

2
727

C P                                3
737

C P  

Fig. 1. two graphs of 
77m mC P  

 

For convenience, we will have the following label for 

the nested network graph: The vertices of the most inner 

circle in clockwise order are labeled as follows: 

1 2 1(1) ,(1) , ,(1) ,(1)n n
; Similarly, from inside to outside 

the vertices of the most outside circle in clockwise are 

labeled as follows: 1 2 3 4 1
( ) ,( ) , ( ) , ( ) , , ( ) , ( )m mn n
m m m m m m


. 

Among them, symbols ( )ij  says the i th  vertex in the 

j th circle. The  paths begin with the vertex 
1(1)  , as 

follows: 

1 1 1 1 1(1) (2) (3) ( 1) ( )m m      ; 

1 1 1 1 2(1) (2) (3) ( 1) ( )m m      ; 

 

1 1 1 1(1) (2) (3) ( 1) ( )mm m      ; 

1 1 1 1 1(1) (2) (3) ( 1) ( )mm m       ; 

 

1 2 2 11 1
(1) (2) (3) ( 1) ( )m mn n n n

m m  
      ; 

1 2 2 11(1) (2) (3) ( 1) ( )m mn n n n
m m       ; 

similarly, the paths begin with the vertex (1)n
, as 

follows: 

2 3 2 1 2 11 1 1 1
(1) (2) (3) ( 1) ( )m m m mn n n n n n n n n

m m         
     

2 3 2 1 2 11 1 1 2
(1) (2) (3) ( 1) ( )m m m mn n n n n n n n n

m m         
     

 

2 3 2 1 2 11 1 1
(1) (2) (3) ( 1) ( )m m m mn n n n n n n n n n

m m         
     

2 3 2 1 2 11 1 1 1
(1) (2) (3) ( 1) ( )m m m mn n n n n n n n n n

m m          
     

 

2 3 1 1
(1) (2) (3) ( 1) ( )m mn n n n n

m m 
      ; 

2 3 1(1) (2) (3) ( 1) ( )m mn n n n n
m m      ; 

The above says that the m
nmn

C P  have 
mn  paths. 

Definition 6 A 1-vertex x  is considered to be 

saturated, if the n edges linked to x  satisfy (1)= (0)+1x xe e , 

when n is an odd number; (1)= (0)+2x xe e  ,when n is an 

even number ;otherwise, the 1-vertex x is unsaturated. A 

0-vertex x is considered to be saturated, if the n edges 

linked to x are all 0-edges; otherwise, the 0-vertex x is 

unsaturated. A vertex x  is considered to be empty, when 

the point x  satisfy (1) (0)x xe e  . 

Under the definition of power-cycle nested graph, in 

order to more convenient to figure symbols function. 

According to the recursive nature of power-cycle nested 

graph, given the concept of the clawed nested-cycle sub-

graph. 

Definition 7 In the power-cycle nested graph, the 

induced sub-graph of the vertices, which the ray paths 

through the points with the vertices on the ( 1)k t i   

cycle as starting points and the vertices on the kt i  

cycle as the terminal points, denoted by '

tV . And the 

graph '

tV  subtract the edge on ( 1)k t i   is thought as 

the clawed nested-cycle sub-graph ( 1,2, , )t

m i
V t

k


  . 

Specifically, k be decided by the m classification. In 

the graph 
77m mC P ( 5)m   , refers to all the clawed 

nested-cycle sub-graphs are the clawed 3 nested-cycle 

sub-graph. 

Under the definition of the clawed nested-cycle sub-

graph, in order to more convenient to figure symbols 

function. According to the dual nature of power-cycle 

nested graph, given the concept of the fan-shaped sub-

graph. 

Definition 8  For a given the clawed nested-cycle sub-

graph ( 1,2, , )t

m i
V t

k


 , based on the starting points of 

the ray paths, ( 1,2, , )t

m i
V t

k


  is divide from the 

middle the fan graphs, if the starting point in the   circle, 

it can be divided into k
 sector fan-shaped graphs, 

denoted by 
0 1, , ,

K
H H H   . 

Specifically, every the fan sub-graph of the single point 

does not include its own point. 

According to the definition of the clawed nested-cycle 

nested sub-graph, all of the clawed nested-cycle nested 

sub-graph ( 1,2, , )t

m i
V t

k


 ( 5,6,7)i   are 3 nested-

cycle nested sub-graph in the 
77m mC P ( 5)m  . So if 

given the clawed nested-cycle sub-graph starting point in 

the   circle, the corresponding the clawed nested-cycle 

sub-graph can be divided into 7
 sector fan-shaped 

graphs. 

In order to more convenient to figure symbols function, 

we introduce the concept of divisibility for power-cycle 

nested graph, it is obvious that 
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t

C P C P V





 
 

  
 
 
 

, according to the 3 

circles of the t   nested-cycle nested sub-graph 
tV  , from 

the side to the out, in turn, for the   circle, the 1   

circle, the 2   circle; 
tV  will be average divided into 

3 27 t
 sector fan-shaped sub-graph 

0H  , ensure that each 

0H  has the 7 i
  point and the 7 i

 edge on the i   circle , 

according to the clockwise order the points on the i   

circle denoted by 
1 2 7

( ) , ( ) , , ( ) ii i i . 

For the edge-friendly labeling of the graph 

77m mC P ( 5)m  . We discuss the edge-balance index set 

of this graph from the following three parts: 

0(mod3)m   , 1(mod3)m  , 2(mod3)m  . But, in this 

paper, we only research it when 2(mod3)m  . 

 

III.  LEMMAS AND PROOF 

Lemma 1 In the graph 
77m mC P ，for the fan sub-

graph 
0H  of the single point, 

0max{ } 323EBIH  . 

Proof: Because each part in the fan sub-graph of the 

single point have equal features, here we only give label  

0H , the others label as well as itself. 

There are 798 edges in the fan sub-graph 
0H  of the 

single point, because of (0) (1) 1e e  , there are 399 0-

edges. To put it simply, we only mark the 0-edges of the 

fan sub-graph 
0H  of the single point, the left edges are 1-

edges. 

The four edges are all 0-edges except 

6 7 5 6 4 5( ) ( ) ,( ) ( ) ,( ) ( )      in the   circle, and the 
27  

edges are all 0-edges in the 1  circle. The edges linked 

to the vertices ( ) (1 3)i i    are all 0-edges in the   

circle; The edges linked to the vertices 

( 1) (1 24,29 32,39 42,47 49)i i i i i           are all 0-

edges in the 1   circle; The 0-edges between the   

circle and the 1   circle: ( ) ( 1)i j    

( 4,22 24)( 5,29 32)( 6,39 42)i j i j i j        

( 7,47 49)i j   ; The 0-edges between the 1   

circle and the 2   circle: ( 1) ( 2)i j    

( 7( 1) , 25 2 ,0 1,4 6,9 10, 1,2)j i k i l l l l k              

( 7 , 26 2 ,0 1,4 6,9 10, 1,0)j i k i l l l l k            ; In 

the 2   circle the edges are all 0-edges: 

1( 2) ( 2)i i    ( 170 7 , 2 ,0 1,4 6,9 10, 1,3,5,7,9)i k j k l l l l j            

Then  (0) 38v  , (1) (0) 2 (0) 323v v v v    . 

We can get the edge-friendly labeling of the fan sub-

graph 
0H  of the single point by calculation, then not 

conclude the vertices are not defined and unsaturated. 

When we change the 0-vertex into 1-vertex or undefined 

vertex, we must take out five 0-edges. Thus, wherever we 

put the five 0-edges, the number of the 0-vertex will 

increase, meanwhile the number of the 1-vertex will not 

increase. So 323 is the maximum edge-balance index. 

So 0max{ } 323EBIH   . 

Lemma 2 For the power-cycle nested graph
77m mC P , 

when 5m  , 5
757

max{ ( )} 15873EBI C P   . 

Proof: There are 39207 edges in the power-cycle 

nested graph 5
757

C P , because of (0) (1) 1e e  , there 

are 19603 0-edges. To put it simply, we only mark the 0-

edges of the graph, the left edges are 1-edges. 

The edges are all 0-edges in the 2 circle and in the 3 

circle and in the 4 circle. In the 1 circle the edges are all 

0-edges: 
2 3 4 5 6 7 7 1(1) (1) ,(1) (1) ,(1) (1) ,(1) (1) . 

First of all, edges in all the paths which set out from 

the labeled point 
1(1) : the edges linked to the vertices 

(2) (1 3)i i   are all 0-edges in the 2 circle; The edges 

linked to the vertices (3) (1 23)( 33 ,1 4)( 48,49)i i i j j i        are all 

0-edges in the 3 circle; The 0-edges between the 2 circle 

and the 3 circle: 

4(2) (3) ( 22,23)i i   ,
5(2) (3) ( 34,35)i i   ,

6(2) (3) ( 36,37)i i  ,

7(2) (3) ( 48,49)i i  ;  

The edges linked to the vertices  
(4) (1 163)( 173 7 , 2 ,0 3, 1,2,3,4)i i i k j k l l j          

( 271 7 , 2 ,0 3, 1,2,3,4)(230 261)i k j k l l j i        

(328 343)i   are all 0-edges in the 4 circle; The 0-edges 

between the 3 circle and the 4 circle: 

(3) (4) ( 7( 1) , 24 2 ,0 4,7 11, 1,2)i j j i k i l l l k         

( 7 , 25 2 ,0 4,7 11, 1,0)j i k i l l l k          ; The 0-

edges between the 4 circle and the 5 circle: (4) (5)i j
 

( 7( 1) , 164 2 262 2 ,0 4,7 11,j i k i lor l l l           

14 18,21 25,28 32, 1,2)l l l k       ( 7 , 165 2 262 2 ,j i k i lor l    

0 4,7 11,14 18,21 25,28 32, 1,0)l l l l l k             ; In the 5 

circle the edges are all 0-edges 1(5) (5)i i   

( 1143 7 1829 7 , 2 ,0 4,7 11,i k jor k j k l l l         

14 18,21 25,28 32, 1,3,5,7,9)l l l j       . 

The second, edges in all the paths which set out from 

the labeled point 
7(1) : the 0-edges between the 1 circle 

and the 2 circle: 
7(1) (2) (43 49)i i  ; The edges linked 

to the vertices (2) ( 43,44)i i   are all 0-edges in the 2 

circle; The edges linked to the vertices 

(3) (295 308)( 315,316)( 329,330,343)i i i i     are all 0-edges in 

the 3 circle; The 0-edges between the 2 circle and the 3 

circle: 
45 315 46 316 47 329 48 330 49 343(2) (3) ,(2) (3) ,(2) (3) ,(2) (3) ,(2) (3) ; The 

edges linked to the vertices (4) (2059 2158)i i   

( 2168 7 , 2 ,0 2, 1,2,3,4)i k j k l l j        

( 2224 7 2322 7 , 2 ,0 4, 1,2,3,4)i k jor k j k l l j          

(2201 2214)(2295 2312)i i    (2393 2401)i    

are all 0-edges in the 4 circle; The 0-edges between the 

3 circle and the 4 circle: (3) (4) ( 7 , 310 2 ,i j j i k i l     
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0 2,4 9,11 16, 1,0)( 7( 1) ,l l l k j i k          

309 2 ,0 2,4 9,i l l l      11 16,k 1,2)l    ;  

The 0-edges between the 4 circle and the 5 circle: 

(4) (5)i j
 

( 7( 1) , 2159 2 ,0 4,7 11,j i k i l l l        

14 18,k 1,2)l    

( 7 , 2160 2 ,0 4,j i k i l l     

7 11,14 18,k 1,0)l l       

( 7( 1) , 2215 2j i k i l    

2313 2 ,0 4,7 11,14 18,21 25,or l l l l l          

28 32,35 39,k 1,2)l l      

( 7 , 2216 2j i k i l     

2314 2 ,0 4,7 11,14 18,21 25,or l l l l l        

28 32,35 39,k 1,0)l l       

( 2159,15107 15113)i j   ( 2160,15114 15120)i j   ;  

In the 5 circle the edges are all 0-edges: 

1(5) (5) ( 15500 7 16186 7 ,i i i k jor k j       

2 ,0 4,7 11,14 18,21 25,28 32,35 39, 1,3,5,7,9)k l l l l l l l j             

( 15134 7 , 2 ,0 2,5 9,12 16, 1,3,5,7,9)i k j k l l l l j            

The last, the label methods of the point (1) (2 6)i i     

set out the paths’ edge is the same as the point 
1(1) .

 
Then (0) 1867, (1) (0) 2 (0) 15873v v v v v     .

 

In this structure graph, the degree of the vertices is 9 

on the first cycle, the degree of the vertices is 10 on the 

second and third cycle and fourth cycle, the degree of the 

vertices on the fifth is 3. In the 1867 0-vertexes, the 

vertices are all saturated, except the vertices 2159 2160(4) ,(4)  . 

Therefore, in order to change the labeling of the 0-

vertexes, we need to interchange 5 0-edges and 5 1-edges. 

It is obvious that the interchanging must bring that the 

value of (0)v  increases or remains unchanged, and the 

value of (1)v certainly decreases. So the value of 

(0) (1)v v  reduces. 

Then the value of (0) (1)v v is maximum in the 

aforementioned structure graph, so 

5
757

max{ ( )} 15873EBI C P  . 

Lemma 3 For the power-cycle nested graph 
77m mC P  , 

when 2(mod3)m  and 5m    , 

77

17 7 5
max{ ( )}

18
m

m

mEBI C P
 

   . 

Proof: There are 
17 28

3

m 
  edges in the power-cycle 

nested graph 
77m mC P , because of (0) (1) 1e e  , there 

are 
17 31

6

m 
 0-edges. 

When 5m   , the formula can be proved by lemma 2. 

When 8m  , as the foundation graph 5
757

C P  by 

lemma 1, denoted by 5
70 57

U C P   ,  

7

2

3
5 8 3

0 0 0 0 07
0

7 7 7m

m

m

m t

t

C P U V U H H H







 
 

  
 
 
 

 . 

Each of the vertices of the outer circle be seen as the 

starting point to make the graph 
0H   in the figure 

3
737m mC P  , there are 3

07m H . In this graph 
77m mC P , 

3 6 8 5 7 4
(0) (7 7 7 7 ) 38 1867

9

m
m mv   

        ,  

17 7 7 4 17 7 5
(1) (0) 2 (0) 2

6 9 18

m m m

v v v v
    

       . 

In this structure graph 
77m mC P , the degree of the 

vertices is 9 on the first cycle, the degree of the vertices is 

3 on m cycle and all of the others are 10. All of  the 1-

vertexes are saturated, except the vertices 2159 2160(4) ,(4)  . 

The edges linked to the other 0-vertexes are all 0-edges. 

Therefore, in order to change the labeling of the 0-

vertexes, we need to interchange 5 0-edges and 5 1-edges. 

It is obvious that the interchanging must bring that the 

value of (0)v  increases or remains unchanged, and the 

value of (1)v certainly decreases. So the value of 

(0) (1)v v  reduces. 

So for the power-cycle nested graph 
77m mC P , when  

2(mod3) 5m m  , 
77

17 7 5
max{ ( )}

18
m

m

mEBI C P
 

  . 

Specifically, Each of the vertices of the outer circle be 

seen as the starting point to make the graph 
0H  in the 

figure 3
737m mC P  , the label of each starting point is the 

same as the boundary point of five laps foundation figure, 

and it stays the same. 

Lemma 4 For the power-cycle nested graph 
77m mC P , 

when 5m   , 5
757

{15872,15871, ,1,0} ( )EBI C P  . 

Proof: In the following proof, we use 

1(2 1) (2 ) (2 ) (2 )r s s sk k k k    to present that the edge 

(2 1) (2 )r sk k  is from 0-edge into1-edge, at the same time 

the edge 
1(2 ) (2 )s sk k 
 is from 1-edge into0-edge. Among 

them, we use 
7 7 7 1(5) (6) (6) (6)i i i i  to present that the 

edge 
7(5) (6)i i

 is from 1-edge into 0-edge, at the same time 

the edge 
7 7 1(6) (6)i i

 is from 0-edge into 1-edge.
 

First, build an odd index set: 

Step1: 
7( 1) 7( 1) 7( 1) 1(4) (5) (5) (5)i j i j i j i        

( 1, ,163, 1, ,4)i j    

and  

7 7 7 1(5) (6) (6) (6)i i i i  

( 7( 1), 1, ,163, 2, 5)i j k k j      , we can get 

(1) (0) 2 (0) {15871,15869, ,14569}v v v v     

Step2:  
7( 1) 7( 1) 7( 1) 1(4) (5) (5) (5)i j i j i j i        

( 230, ,261, 1, ,4)i j    

and  
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7 7 7 1(5) (6) (6) (6)i i i i  

( 7( 1), 230, ,261, 2, 5)i j k k j      , we can get 

(1) (0) 2 (0) {14567,14565, ,14313}v v v v     

Step3: 
7( 1) 7( 1) 7( 1) 1(4) (5) (5) (5)i j i j i j i        

( 328, ,343, 1, ,4)i j    

and  

7 7 7 1(5) (6) (6) (6)i i i i  

( 7( 1), 328, ,343, 2, 5)i j k k j      , we can get 

(1) (0) 2 (0) {14311,14309, ,14185}v v v v     

Step4: 
7( 1) 7( 1) 7( 1) 1(4) (5) (5) (5)i j i j i j i        

( 173 7 , 2 ,0 3,7 10, 1, 4,i n m n l l l m          

1, 4)j    

and  

7 7 7 1(5) (6) (6) (6) ( 7( 1),i i i i i j k     

173 7 , 2 ,0 3,7 10, 1, ,4, 2, ,5)k n m n l l l m j          , 

we can get (1) (0) 2 (0) {14183,14181, ,13929}v v v v     

Step5: 
7( 1) 7( 1) 7( 1) 1(4) (5) (5) (5)i j i j i j i        

( 164 2 262 2 ,0 4,7 11,14 18,21 25,i lor l l l l l          

28 32, 1,2)l j     

and   

7 7 7 1(5) (6) (6) (6)i i i i  

( 7( 1), 164 2 262 2 ,0 4,7 11,i j k k lor l l l           

14 18,21 25,28 32, 2,3)l l l j       , we can get 

(1) (0) 2 (0) {13927,13925, ,13729}v v v v     

Step6: 
7( 1) 7( 1) 7( 1) 1(4) (5) (5) (5)i j i j i j i        

( 165 2 263 2 ,0 4,7 11,14 18,21 25,i lor l l l l l          

28 32, 1,0)l j     

and  

7 7 7 1(5) (6) (6) (6)i i i i  

( 7 , 165 2 263 2 ,0 4,7 11,i j k k lor l l l          

14 18,21 25,28 32, 0,1)l l l j       , we can get 

(1) (0) 2 (0) {13727,13725, ,13529}v v v v     

Step7: Similar to the first, second, third, fourth, fifth, 

sixth step transformation, we can obtain these labeled 

graphs of edge-balance indexes which are 
{13527,13525, ,1809}  

Step8: 
7( 1) 7( 1) 7( 1) 1(4) (5) (5) (5)i j i j i j i        

( 2059, ,2158, 1, ,4)i j    

and  

7 7 7 1(5) (6) (6) (6)i i i i  

( 7( 1), 2059, ,2158, 2, 5)i j k k j      , we can get 

(1) (0) 2 (0) {1807,1805, ,1009}v v v v     

Step9: 
7( 1) 7( 1) 7( 1) 1(4) (5) (5) (5)i j i j i j i        

( 2197, ,2214,2295, ,2312,2393, ,2401, 1, ,4)i j   

and  

7 7 7 1(5) (6) (6) (6) ( 7( 1),i i i i i j k      

2197, ,2214,2295, ,2312,2393, ,2401, 1, ,4)k j   

we can get (1) (0) 2 (0) {1007,1005, ,649}v v v v     

Step10: 
7( 1) 7( 1) 7( 1) 1(4) (5) (5) (5)i j i j i j i        

( 2168 7 , 2 ,0 1,4 8,11 15, 1, 4,i n m n l l l l m            

1, 4)j    

and   

7 7 7 1(5) (6) (6) (6) ( 7( 1),i i i i i j k     

2168 7 , 2 ,0 1,4 8,11 15, 1, ,4, 2, ,5)k n m n l l l l m j            , 

we can get (1) (0) 2 (0) {647,645, ,265}v v v v     

Step11: 
7( 1) 7( 1) 7( 1) 1(4) (5) (5) (5)i j i j i j i        

( 2159 2 ,0 4,7 11,14 18,21 25,i l l l l l         

28 32,35 39,42 46,49 51, 1,2)l l l l j          

and  7 7 7 1(5) (6) (6) (6) ( 7( 1),i i i i i j k     

2159 2 ,0 4,7 11,14 18,21 25,k l l l l l           

28 32,35 39,42 46,49 51, 2,3)l l l l j         , 

we can get (1) (0) 2 (0) {263,261, ,133}v v v v     

Step12: 
7( 1) 7( 1) 7( 1) 1(4) (5) (5) (5)i j i j i j i        

( 2160 2 ,0 4,7 11,14 18,21 25,i l l l l l         

28 32,35 39,42 46,49 51, 1,0)l l l l j           

and  7 7 7 1(5) (6) (6) (6) ( 7 ,i i i i i j k    

2160 2 ,0 4,7 11,14 18,21 25,k l l l l l           

28 32,35 39,42 46,49 51, 0,1)l l l l j         , 

we can get (1) (0) 2 (0) {131,129, ,1}v v v v     

Even index set structures as follows: 

Step1: 
4 24 24 25(2) (3) (3) (3) ,

 
we can get (1) (0) 2 (0) 15872v v v v     

Step2: 
7( 1) 7( 1) 7( 1) 1(4) (5) (5) (5)i j i j i j i        

( 1, ,163, 1, ,4)i j    

and  

7 7 7 1(5) (6) (6) (6)i i i i  

( 7( 1), 1, ,163, 2, 5)i j k k j      , we can get 

(1) (0) 2 (0) {15870,15868, ,14568}v v v v     

Step3:  
7( 1) 7( 1) 7( 1) 1(4) (5) (5) (5)i j i j i j i        

( 230, ,261, 1, ,4)i j    

and  

7 7 7 1(5) (6) (6) (6)i i i i  

( 7( 1), 230, ,261, 2, 5)i j k k j      , we can get 

(1) (0) 2 (0) {14566,14564, ,14312}v v v v     

Step4: 
7( 1) 7( 1) 7( 1) 1(4) (5) (5) (5)i j i j i j i        

( 328, ,343, 1, ,4)i j    

and  

7 7 7 1(5) (6) (6) (6)i i i i  

( 7( 1), 328, ,343, 2, 5)i j k k j      , we can get 

(1) (0) 2 (0) {14310,14308, ,14184}v v v v     

Step5: 
7( 1) 7( 1) 7( 1) 1(4) (5) (5) (5)i j i j i j i        

( 173 7 , 2 ,0 3,7 10, 1, 4,i n m n l l l m          

1, 4)j    

and  

7 7 7 1(5) (6) (6) (6) ( 7( 1),i i i i i j k     

173 7 , 2 ,0 3,7 10, 1, ,4, 2, ,5)k n m n l l l m j          , 

we can get (1) (0) 2 (0) {14182,14180, ,13928}v v v v     

Step6: 
7( 1) 7( 1) 7( 1) 1(4) (5) (5) (5)i j i j i j i        

( 164 2 262 2 ,0 4,7 11,14 18,21 25,i lor l l l l l          

28 32, 1,2)l j     

and   
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7 7 7 1(5) (6) (6) (6)i i i i  

( 7( 1), 164 2 262 2 ,0 4,7 11,i j k k lor l l l           

14 18,21 25,28 32, 2,3)l l l j       , we can get 

(1) (0) 2 (0) {13926,13924, ,13728}v v v v     

Step7: 
7( 1) 7( 1) 7( 1) 1(4) (5) (5) (5)i j i j i j i        

( 165 2 263 2 ,0 4,7 11,14 18,21 25,i lor l l l l l          

28 32, 1,0)l j     

and  

7 7 7 1(5) (6) (6) (6)i i i i  

( 7 , 165 2 263 2 ,0 4,7 11,i j k k lor l l l          

14 18,21 25,28 32, 0,1)l l l j       , we can get 

(1) (0) 2 (0) {13726,13724, ,13528}v v v v     

Step8: Similar to the first, second, third, fourth, fifth, 

sixth step transformation, we can obtain these labeled 

graphs of edge-balance indexes which are 
{13526,13524, ,1808}  

Step9: 
7( 1) 7( 1) 7( 1) 1(4) (5) (5) (5)i j i j i j i        

( 2059, ,2158, 1, ,4)i j    

and  

7 7 7 1(5) (6) (6) (6)i i i i  

( 7( 1), 2059, ,2158, 2, 5)i j k k j      , we can get 

(1) (0) 2 (0) {1806,1804, ,1008}v v v v     

Step10: 
7( 1) 7( 1) 7( 1) 1(4) (5) (5) (5)i j i j i j i        

( 2197, ,2214,2295, ,2312,2393, ,2401, 1, ,4)i j   

and  

7 7 7 1(5) (6) (6) (6) ( 7( 1),i i i i i j k      

2197, ,2214,2295, ,2312,2393, ,2401, 1, ,4)k j   

we can get (1) (0) 2 (0) {1006,1004, ,648}v v v v     

Step11: 
7( 1) 7( 1) 7( 1) 1(4) (5) (5) (5)i j i j i j i        

( 2168 7 , 2 ,0 1,4 8,11 15, 1, 4,i n m n l l l l m            

1, 4)j   and  7 7 7 1(5) (6) (6) (6) ( 7( 1),i i i i i j k     

2168 7 , 2 ,0 1,4 8,11 15, 1, ,4, 2, ,5)k n m n l l l l m j            , 

we can get (1) (0) 2 (0) {646,644, ,264}v v v v     

Step12: 
7( 1) 7( 1) 7( 1) 1(4) (5) (5) (5)i j i j i j i        

( 2159 2 ,0 4,7 11,14 18,21 25,i l l l l l         

28 32,35 39,42 46,49 51, 1,2)l l l l j          

and   

7 7 7 1(5) (6) (6) (6) ( 7( 1),i i i i i j k     

2159 2 ,0 4,7 11,14 18,21 25,k l l l l l           

28 32,35 39,42 46,49 51, 2,3)l l l l j         , 

we can get (1) (0) 2 (0) {262,260, ,132}v v v v     

Step13: 
7( 1) 7( 1) 7( 1) 1(4) (5) (5) (5)i j i j i j i        

( 2160 2 ,0 4,7 11,14 18,21 25,i l l l l l         

28 32,35 39,42 46,49 51, 1,0)l l l l j           

and   

7 7 7 1(5) (6) (6) (6) ( 7 ,i i i i i j k    

2160 2 ,0 4,7 11,14 18,21 25,k l l l l l           

28 32,35 39,42 46,49 51, 0,1)l l l l j         , 

we can get (1) (0) 2 (0) {130,128, ,0}v v v v     

In conclusion, we can prove 

5
757

{15872,15871, ,1,0} ( )EBI C P  . 

Lemma 5  In the graph 
77m mC P ，for the fan sub-

graph 
0H  of the single point, 0{322,321, ,2,1,0} EBIH . 

Proof: In the following proof, we use 

1(2 1) (2 ) (2 ) (2 )r s s sk k k k    to present that the edge 

(2 1) (2 )r sk k  is from 0-edge into1-edge, at the same time 

the edge 
1(2 ) (2 )s sk k 
 is from 1-edge into 0-edge. Among 

them, we use 
7 7 7 1( 2) ( ) ( ) ( )i i i i       to present that the 

edge 
7( 2) ( )i i   is from 1-edge into 0-edge, at the same 

time the edge 
7 7 1( ) ( )i i  

 is from 0-edge into 1-edge.
 

First, build an even index set: 

Step1: 
4 25 25 26( ) ( 1) ( 1) ( 1)       ,

 
we can get (1) (0) 2 (0) 322v v v v     

Step2: 
7( 1) 7( 1) 7( 1) 1

( 1) ( 2) ( 2) ( 2)i j i j i j i   
      

      

( 1, ,24, 1, ,4)i j    

and  

7 7 7 1( 2) ( ) ( ) ( )i i i i       

( 7( 1), 1, ,24, 2, 5)i j k k j      , we 

can get (1) (0) 2 (0) {320,318, ,130}v v v v     

Step3: 
7( 1) 7( 1) 7( 1) 1

( 1) ( 2) ( 2) ( 2)i j i j i j i   
      

      

(29 32,39 42,47 49, 1, ,4)i i i j        

and 

7 7 7 1( 2) ( ) ( ) ( )i i i i       

( 7( 1),29 32,39 42,47 49, 2, 5)i j k k k k j          , 

we can get (1) (0) 2 (0) {128,126, ,42}v v v v     

Step4: 
7( 1) 7( 1) 7( 1) 1

( 1) ( 2) ( 2) ( 2)i j i j i j i   
      

      

( 25 2 ,0 1,4 6, 1,2)( 43, 1)i l l l j i j          

and  

7 7 7 1( 2) ( ) ( ) ( )i i i i       

( 7( 1), 25 2 ,0 1,4 6, 2,3)i j k k l l l j           , we 

can get (1) (0) 2 (0) {40,38, ,20}v v v v     

Step5: 
7( 1) 7( 1) 7( 1) 1

( 1) ( 2) ( 2) ( 2)i j i j i j i   
      

      

( 26 2 ,0 1,4 6, 1,0)i l l l j         and 7 7 7 1( 2) ( ) ( ) ( )i i i i       

( 7 , 26 2 ,0 1,4 6, 0,1)i j k k l l l j          , we 

can get (1) (0) 2 (0) {18,16, ,2,0}v v v v     

Odd index set structures as follows: 

Step1: 
7( 1) 7( 1) 7( 1) 1

( 1) ( 2) ( 2) ( 2)i j i j i j i   
      

      

( 1, ,24, 1, ,4)i j   and 7 7 7 1( 2) ( ) ( ) ( )i i i i       

( 7( 1), 1, ,24, 2, 5)i j k k j      , we 

can get (1) (0) 2 (0) {321,319, ,131}v v v v     

Step2: 
7( 1) 7( 1) 7( 1) 1

( 1) ( 2) ( 2) ( 2)i j i j i j i   
      

      

(29 32,39 42,47 49, 1, ,4)i i i j        

and  

7 7 7 1( 2) ( ) ( ) ( )i i i i       

( 7( 1),29 32,39 42,47 49, 2, 5)i j k k k k j           , 

we can get (1) (0) 2 (0) {129,127, ,43}v v v v     

Step3: 
7( 1) 7( 1) 7( 1) 1

( 1) ( 2) ( 2) ( 2)i j i j i j i   
      

      

( 25 2 ,0 1,4 6, 1,2)( 43, 1)i l l l j i j           

and  
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7 7 7 1( 2) ( ) ( ) ( )i i i i       

( 7( 1), 25 2 ,0 1,4 6, 2,3)i j k k l l l j           , we 

can get (1) (0) 2 (0) {41,39, ,21}v v v v     

Step4: 
7( 1) 7( 1) 7( 1) 1

( 1) ( 2) ( 2) ( 2)i j i j i j i   
      

      

( 26 2 ,0 1,4 6, 1,0)i l l l j          

and  

7 7 7 1( 2) ( ) ( ) ( )i i i i       

( 7 , 26 2 ,0 1,4 6, 0,1)i j k k l l l j          , we 

can get (1) (0) 2 (0) {19,17, ,3,1}v v v v     

In conclusion, we can prove 
0{322,321, ,1,0} EBIH . 

Lemma 6 For the power-cycle nested graph
77m mC P , 

when 2(mod3)m  and  5m   , 

77

17 7 23 17 7 41
, , ,1,0 ( )

18 18
m

m m

mEBI C P
    

  
 

. 

Proof: In the lemma 3, when 2(mod3)m  5m  , 

77

17 7 5
max{ ( )}

18
m

m

mEBI C P
 

  . 

Step 1: For the power-cycle nested graph, according to 

the edge transform method by lemma 5, each of the fan 

sub-graph 0H  of the single point index can decrease 323, 

so
0{322,321, ,1,0} EBIH . In the graph 

77m mC P ( 5)m  , there are 
5

5 8 3 7 7
7 7 7

342

m
m 

     the 

same fan sub-graph of the single point , the edge 

transform method of the fan sub-graph of single point is 

the same as lemma 5, then their index can decrease 
5 57 7 323(7 7 )

323
342 342

m m 
   , and 

517 7 5 323(7 7 )
15873

18 342

m m  
  . So 

we can 
57 7

342

m 
 the fan sub-graph of the single point to 

conduct edge transform, and we can obtain these labeled 

graphs of edge-balance indexes which are 

17 7 23 17 7 41
, , ,15873

18 18

m m    
 
 

. 

Step 2: At last, we can make the edge transform in the 

5 circle foundation figure. The edge transform method of 

the 5 lap is the same as lemma 4, the index can reduce 

15873, so we can obtain these labeled graphs of edge-

balance indexes which are  15872,15871, ,1,0 . 

In conclusion, we can prove 

77

17 7 23 17 7 41
, , ,1,0 ( )

18 18
m

m m

mEBI C P
    

  
 

. 

 

IV.  THEOREM 

According to lemma 3 and lemma 6, we can get the 

following theorem. 

Theorem 1: For the power-cycle nested 

graph
77m mC P , when 2(mod3)m  and 5m  , 

77

17 7 5 17 7 23
( ) , , ,1,0

18 18
m

m m

mEBI C P
    

   
 

. 

 

V.  CONCLUSION 

In this paper, in order to study the edge-balanced index 

sets of the power circle nested graph, we introduced the 

fan sub-graph of the single point, and showed the proofs 

of the computational formula, at the same time, we gave 

the construction of the corresponding graphs. 
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