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Abstract— Automated, i.e. machine vision based fabric defect 
inspection systems have been drawing plenty of attention of the 

researchers in order to replace manual inspection. Two difficult 

problems are mainly posed by automated fabric defect 

inspection systems. They are defect detection and defect 
classification. Counterpropagation neural network (CPN) is a 

robust classifier and very promising for defect classification. In 

general, works reported to date have claimed varying level of 

successes in detection and classification of different types of 

defects through CPN; but in particular, no claimed has been 
made for successful application of CPN for fabric defects 

detection and classification. In those published works, no 

investigation has been reported regarding to the variation of 

major performance parameters of NN based classifiers such as  

learning time and classification accuracy based on network 
topology and training parameters. As a result, application 

engineer has little or no guidance to take design decisions for 

reaching to optimum structure of NN based defect classifiers in 

general and CPN based in particular. Our work focuses on 
empirical investigation of interrelationship between design 

parameters and performance of CPN based classifier for fabric 

defect classification. It is  believed that such work will be laying 

the ground to empower application engineers to decide about 

optimum values of design parameters for realizing most 
appropriate CPN based classifier. 

 

Index Terms— Fabric Defect, Machine Vision, Defect 

Classification, Neural Network (NN), Counterpropagation 

Neural Network, Optimization Problem, Optimum Design 
Parameter. 

 

I. INTRODUCTION 

Product quality assurance is treated as one of the most 

significant focuses in the industrial production. Product 

quality is severely lessened by defects. Failure to early  

defect detection incurs costs in terms of time, money and 

consumer satisfaction. So, early and accurate defect 

detection is an important aspect of quality control. 

Manual inspection is time consuming and the accuracy 

level is not good enough to meet  the present demand of 

the highly competit ive national and international market. 

The solution to the problems posed by manual inspection 

id automated, i.e. machine vision based defect inspection 

system. This is why, machine vision based defect 

inspection system is very challenging topic for research 

in various domains of industrial products, e.g. integrated 

circuits, printed circuit boards , ball grid arrays [1], 

ceramic tiles [2], sandpaper, castings, leather [3] and even 

cigarettes packaged in a tin container  [4]. Likewise 

machine vision based fabric defect inspection system is a 

good thrust for the researchers of many countries. 

Automated fabric defect inspection systems mainly  

involve two challenging problems, namely  defect 

detection and defect classification. 

Automated fabric defect inspection systems are real-

time applications. So they require real-t ime computation, 

which exceeds the capability o f trad itional computing. 

Neural networks (NNs) are suitable enough for real-t ime 

systems because of their parallel-processing capability. 

Moreover, NNs have strong capability to handle 

classification problems with good classification accuracy. 

They vary in network architecture as well as training or 

learning algorithm. There is a number of performance 

metrics of NN mode ls. Classification accuracy, model 

complexity  and train ing time are three o f the most 

important performance metrics of NN models. 

Counterpropagation neural networks (CPNs) can  have 

good performance as classifiers. They can be employed in  

real-t ime systems. They are hybrid network, which are 

capable of handling complex classification problems with 

good classification accuracy [5-7]. Again, the number of 

computing units in  a CPN model is low. This makes 

network topology simple, i.e. model complexity becomes 

low. Moreover, d ifferent types of learning algorithms are 

employed for each layer in a CPN, which results in short 

training time of the network [7, 8]. So a CPN appears to 

be a very good choice as a classifier in order to address 

the problem of fabric defect classification. 

Although there have been some reports about the 

feasibility of neural network based classifier development 

for fabric defect classificat ion, but there has been no 

reported work investigating interrelat ionship between 

design parameters and performance of NN based 

classifier. Concept demonstration alone is not sufficient 

to empower an application engineer to design optimum 
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classifier. Therefore, this work not only focuses on the 

study of the feasibility of CPN model in the context of 

fabric defect classification, but also reports the findings 

of empirical investigation about the implications of CPN 

design parameters on the training and classification 

performance. In particu lar, we empirically discover the 

interrelationship between the performance metrics, 

accuracy and training t ime and the CPN design 

parameters, Kohonen learning constant (ηK), Grossberg 

learning constant (ηG) and model complexity (number of 

computing units in the hidden layer). Finally, we compare 

the performance of the CPN model with that of the 

classification models described in different articles. 

The rest of the paper is organized as follows. Section II 

describes current state of solution to address the problem 

of fabric defect classification and Section III describes 

the design of CPN model. In Sect ion IV, the defects and 

features set are presented describing our approach to 

solve the problem. Section V describes how we 

implement our CPN model and the results achieved after 

implementation. In  Sect ion VI, we have reviewed 

automated fabric defect classification results to develop 

an understanding of the merits of our CPN model. Finally,  

we g ive conclusion along with  limitations and scope for 

future work in Section VII. 

 

II. LITERATURE REVIEW 

NNs have been deployed in order to solve the 

classification problem of d ifferent automated systems [9-

15]. Likewise NNs have been involved in the research of 

automated fabric defect inspection system. Many efforts 

have been given for automated fabric defect  inspection [8,  

17-36]. Most of them have focused on defect detection, 

where few of them have focused on classification. NNs 

have been used as classifiers in a number o f articles. 

Different learn ing algorithms have been used in order to 

train the NNs. None of them has performed a thorough 

investigation on finding an appropriate NN model. That 

means none of them has performed a thorough 

investigation on interrelationship between design 

parameters and performance of NN model. 

Habib and Rokonuzzaman [17] have deployed CPN in  

order to classify four types of defects. Basically, they 

concentrated on feature selection rather than giving 

attention to the CPN model. They have not performed in-

depth investigation on interrelationship between design 

parameters and performance of CPN model. 

Backpropagation learning algorithm has been used in 

[18], [19], [20], [21] and [22]. Habib and Rokonuzzaman 

[18] main ly focused on feature selection rather than 

focusing on the NN model. They have used four types of 

defects and two types of features. Saeidi et al. [19] have 

first performed off-line experiments and then performed 

on-line implementation. In both cases, they have used six 

types of defects. Karayiannis  et al. [20] have used seven 

types of defect. They have used statistical texture features. 

Kuo and Lee [21] have used four types of defect.  

Mitropulos et al. [22] have used seven types of defects in 

their research. Detailed investigation on interrelat ionship 

between design parameters and performance of NN 

model has not been performed  in  any of these works 

discussed. 

Resilient backpropagation learning algorithm has been 

used to train NN in [23] and [24]. They have worked with 

several types of defects considering two of them as major 

types and all other types of defects as a single major type. 

They have not reported anything detailed regarding the 

investigation of finding an appropriate NN model. 

Shady et al. [25] have used learning vector 

quantization (LVQ) algorithm in  order to train their NNs. 

They have used six types of defects. They have separately 

worked on both spatial and frequency domains for defect 

detection. Kumar [28] has used two NNs separately. The 

first one was trained by backpropagation algorithm. He 

has shown that the inspection system with this network is 

not cost-effective. So he has further used linear NN 

trained by least mean square error (LMS) algorithm. The 

inspection system with this NN is cost-effective. Karras 

et al. [30] have also separately used two NNs. They have 

trained one NN by backpropagation algorithm and the 

other one by Kohonen’s Self-Organizing Feature Maps 

(SOFM). Thorough investigation on interrelat ionship 

between design parameters and performance of NN 

model has not been reported in any of these reviewed 

works. 

 

III. CPN MODEL 

CPN is a hybrid network having two training phases: 

unsupervised learning and supervised learning. The 

unsupervised learning takes place between the input layer 

and hidden layer, and the supervised one takes place 

between the hidden layer and output layer. For our CPN, 

the unsupervised and supervised learning are Kohonen 

unsupervised and Grossberg supervised learning 

algorithms respectively. 

A.  Choice of Activation Function 

The selection of an inappropriate activation function 

increases the complexities of the subsequent steps of 

CPN model design and makes the classificat ion task 

difficult. On the contrary, the choice of an appropriate 

activation function smoothes out the difficult ies ly ing in  

the subsequent steps of CPN model design and results in 

good performance. 

B.  Initialization of Weights 

Each t rain ing phase in our CPN, i.e. Kohonen 

unsupervised learning and Grossberg supervised learning, 

begins with initial weight values that are randomly  

chosen. Large range of weight values may lead the 

training phases to take more number of training cycles. 

C. Choice of Kohonen Learning Constant (ηK) and 

Grossberg Learning Constant (ηG) 

ηK and ηG are independent parameters, which  

determine how quickly learning being performed. Large 

values of ηK and ηG cause rapid learning, but there is a 

risk that the learn ing, i.e. search process, may oscillate. 

Again, small values of ηK lead to slow learn ing [6]. In  
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fact, the right values of ηK and ηG depend on the nature of 

the classification problem of intended application such as 

fabric defects inspection system. 

D.  Reduction of Computing Units 

Computation is too expensive with a large number of 

computing units. Again, train ing process does not 

converge with too small number o f computing units. That 

means the NN will not be powerful enough to solve the 

classification problem with too small number of 

computing units. In fact, the right size of NN depends on 

the specific classification problem that is being solved 

using NN. 

 

IV. APPROACH AND METHODOLOGY 

We are to address the problem of empirically  

discovering the interrelationship between  performance 

metrics, accuracy and training time, and the network 

design parameters, Kohonen learning constant (ηK), 

Grossberg learning constant (ηG) and model complexity  

(number of computing units in the hidden layer). We 

want to maximize accuracy and minimize train ing time. 

Both accuracy and train ing time depend on model 

complexity, Kohonen learning cons tant and Grossberg 

learning constant. If accuracy, training t ime, model 

complexity, the number of computing units in the input, 

hidden and output layer are represented by A, T, CM, NI, 

NH and HO respectively, then 

),,(1 GKMCfA   

and ),,,(2 GKMCfT   

where ).,,( OHIM NNNC   

So the optimization problem is defined as follows: 

),,(1 GKMCfmaximize  and ),,(2 GKMCfminimize   
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A.  Defect Types 

In this article, we have worked with four defect types, 

which frequently occur in knitted fabrics, namely  color 

yarn, hole, missing yarn (horizontal and vert ical) and spot. 

All of the defects are shown in Figure 1. 

    
(a)                                                    (b) 

    
(c)                                                                   (d) 

Fig. 1. Different types of defect occurred in knitted fabrics. (a) Color 
yarn. (b) Hole. (c) Missing yarn. (d) Spot. 

B.  An Appropriate Feature Set 

An appropriate feature set is  selected for classifying 

the defects. All of these four features can be found in 

detail in [17] for readers. 

 

V. IMPLEMENTATION 

We start with inspection images of knitted fabric of 

size 512×512 pixels, which are converted into a gray-

scale image. In order to s mooth these images and remove 

noises, they are filtered by 7×7 low-pass filter 

convolution mask. Then gray-scale histograms of the 

images are formed. Two threshold values θL and θH are 

calculated from each of these histograms using histogram 

peak technique [37]. Using the two threshold values θL 

and θH, images with p ixels P(x, y) are converted to binary 

images with pixels IB(x, y), where 
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These binary images contain objects (defects) if any 

exists, background (defect-free fabric), and some no ises. 

These noises are smaller than the min imum defect wanted 

to detect. In our approach, we want to detect a defect of 

minimum size 3mm×1mm. So, any object s maller than 

the minimum-defect size in pixels is eliminated from the 

binary images. If the minimum defect size in pixels is θMD 

and an object with p ixels Obj(x, y) is of size Nobj pixels, 

then 

.
,0

,1
),(



 


otherwise

Nif
yxObj

MDobj 
                                   (2) 

Then a number of features of defects are calculated, 

which forms feature vectors corresponding to defects 

present in images. 

The classificat ion step consists of the tasks of finding  

proper CPN model from a number of CPN models. 

Building a CPN model involves two phases, namely  

training phase and testing phase. For this purpose, one 

hundred color images of defective and defect-free knitted 

fabrics of seven colors are acquired. So, the number of 

calculated features or input vectors is 100. That means 

our sample consists  of 100 feature vectors. Table 1 shows 

the frequency of each defect and defect-free class in our 

sample of 100 images. 
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Table 1. Frequency of Each Defect and Defect -Free Class 

No. Class Frequency 

1 Color Yarn 6 

2 Vertical Missing Yarn 16 

3 Horizontal Missing Yarn 16 

4 Hole 11 

5 Spot 18 

6 Defect-Free 33 

 Total 100 

 

The features provided by the feature ext ractor are of 

values of different ranges, which  causes imbalance 

among the differences of feature values of d ifferent 

defect types and makes the training phase difficult. The 

scaling, shown in (3), (4), (5), and (6), of the features is 

made in order to have proper balance among the 

differences of feature values of defect types. If H
/
DW , 

W
/
DW , R

/
H/W  and N

/
DR represent the scaled values of the 

features provided by the feature ext ractor HDW , WDW , RH/W, 

and NDR, respectively, then 

100
512

 DW
DW

H
H .                                                (3) 

100
512

 DW
DW

W
W .                                                 (4) 

WHWH RR // 100 .                                                (5) 

 500 999101  DRDR NN .                                     (6) 

We split all feature vectors into two parts. One part 

consisting of 53 feature vectors is for both testing and 

training the CPN model and the other part consisting of 

the rest of the feature vectors is for testing only. The 

target values are set to 1 and 0s for the corresponding 

class and the rest of the classes, respectively. That means 

if a feature vector is presented to the CPN model during 

training, the corresponding computing unit in the output 

layer of the corresponding class of the feature vector is 

assumed to fire 1 and all other units in the output layer 

are assumed to fire 0. The CPN model is trained with 

maximum number of train ing cycle 10
6
, maximum 

amount of training time 1 hour and maximum to lerable 

error less than 10
-3

. That means training continues until 

10
6
 training cycles and 1 hour is elapsed and error less 

than 10
-3

 is found. After the train ing phase is completed, 

the CPN model is tested with all the feature vectors of the 

both parts. Then all feature vectors are again  split into 

two parts. The first fifty percent of the part for training 

comes from the previous part for train ing and the rest 

fifty percent comes from the previous part for only testing. 

All other feature vectors form the new part for only  

testing. The CPN model is trained with these new parts 

and then is tested. In this way, for a specific combination 

of CPN design parameters, the model is trained and tested 

from 3 to 5 times in total. We take the results which 

mostly occur. If the results are un i-modal, we take the 

results that are the closest to their averages. 

In accordance with CPN architecture, we use three-

layer feedforward NN for our model assuming that input 

layer contributes one layer. We started with a large CPN 

that has 4 computing units in the input layer, 48 

computing units in  the hidden layer and 6 computing 

units in the output layer (since we have six d ifferent 

classes according to Table 1). We describe the entire 

training, where the number of feature is 4, in detail in  the 

following parts of this section, i.e. Section V. 

A.  Choice of Activation Function 

For our CPN, the unsupervised and supervised learning 

are the Kohonen and Grossberg learning respectively. For 

Kohonen unsupervised learning, we implement a 

piecewise activation function, which is defined as follows: 

  .

,0

,1











otherwise

criterionclosenessthe

toaccordingclosesttheisxif

xf                 (7) 

Here in (7), the closeness criterion is distance-based, 

i.e. the Euclidean distance between feature vectors and 

the weights of each computing unit in the hidden layer. 

For Grossberg supervised learning, we implement a linear 

activation function, which is defined as follows: 

  xxf  .                                                                     (8) 

B.  Initialization of Weights 

In our implementation, we randomly choose initial 

weight values of small range, i.e. between -1.0 and 1.0 

exclusive, rather than large range, e.g. between -10
3
 and 

10
3
 exclusive for each of the two training phases in our 

CPN. 

C. Choice of Kohonen Learning Constant (ηK) and 

Grossberg Learning Constant (ηG) 

We first train  as well as test the CPN for ηK = 0.01 and 

ηG = 0.01. We gradually increase the value of ηK, and 

train as well as test the NN for that value of ηK keeping 

the value of ηG fixed.  Obtained results are shown in 

Table 2. We find that the error function (sum of squared 

error, E) is tolerable, i.e. less than 10
-3

, and the accuracy 

is maximum, i.e. 100%, for 0.2 ≤ ηK  ≤ 0.35. We choose 

0.2 as the value of ηK since the number of elapsed 

training cycle is the minimum, i.e. 305 at 0.2 for 0.2 ≤ ηK 

≤ 0.35. 

Likewise we first train as well as test the CPN for ηG = 

0.01 and ηK = 0.2. We gradually increase the value of ηG, 

and train as well as test the NN for that value of ηG 

keeping the value of ηK fixed. The results achieved are 

shown in Table 3. We find that E is tolerable and the 

accuracy is the maximum for 0.01 ≤ ηG ≤ 0.8. Although 

the number of elapsed training cycle is the minimum, i.e. 

2 for ηG = 0.99, we choose 0.8 as the value of ηG since E 

is the minimum, i.e. 1.604471 × 10
-10

 for ηG = 0.8. 

The classifier design objective of an application  

engineer is to peak such values of Kohonen and 

Grossberg learning constants which require min imum 

training t ime and produces maximum classification 

accuracy. From this investigation, it  appears that the 



34 An Empirical Method for Optimization of   

Counterpropagation Neural Network Classifier Design for Fabric Defect Inspection  

Copyright © 2014 MECS                                                           I.J. Intelligent Systems and Applications, 2014, 09, 30-39 

Kohonen learning constant having value in between 0.2 

and 0.35 and Grossberg learning constant having value in  

between 0.1 and 0.8 require min imum training time and 

produces the highest accuracy. minimum t rain ing time 

and produces the highest accuracy. 

 
 

Table 2. Results of Tuning Kohonen Learning Constant ηK 

Network Topology 
(Number of Computing Units) 

Kohonen 
Learning 

Constant (ηK) 

Grossberg 
Learning 

Constant (ηG) 

Error 
Function (E) 

Number of Elapsed 
Training Cycle 

Accuracy 

Input Layer Hidden Layer Output Layer 

4 48 6 

0.01 

0.01 

5.386981 81 83% 

0.05 6.839689 41 81% 

0.1 2.886601 1754 89% 

0.15 2.886601 1777 89% 

0.2 9.803619 × 10
-4

 305 100% 

0.25 9.822536 × 10
-4

 322 100% 

0.3 9.852246 × 10
-4

 351 100% 

0.35 9.879542 × 10
-4

 362 100% 

0.4 1.855984 1806 92% 

0.45 1.875984 1846 92% 

 

Table 3. Results of Tuning Grossberg Learning Constant ηG 

Network Size 

(No. of Computing Units) 
Kohonen 
Learning 

Constant (ηK) 

Grossberg 
Learning 

Constant (ηG) 

Error 

Function (E) 

Number of Elapsed 

Training Cycle 
Accuracy 

Input Layer Hidden Layer Output Layer 

4 48 6 0.2 

0.01 9.824014 × 10
-4

 304 100% 

0.1 9.742609 × 10
-4

 36 100% 

0.2 6.035657 × 10
-4

 31 100% 

0.3 3.962778 × 10
-4

 30 100% 

0.4 6.430443 × 10
-6

 30 100% 

0.5 1.102199 × 10
-4

 29 100% 

0.6 4.222798 × 10
-6

 29 100% 

0.7 4.762689 × 10
-8

 29 100% 

0.8 1.604471 × 10
-10

 29 100% 

0.9 8.264628 × 10
-5

 17 94.85% 

0.99 9.314982 × 10
-4

 2 65.98% 

 

Table 4. Results of Reducing Computing Units in Hidden Layer 

Network Topology 

(No. of Computing Units) 
Kohonen  

Learning  
Constant (ηK) 

Grossberg  

Learning  
Constant (ηG) 

Error  

Function (E) 

Number of Elapsed  

Training Cycle 
Accuracy 

Input Layer Hidden Layer Output Layer 

4 

48 

6 0.2 0.8 

1.268166 × 10
-10

 29 100% 

45 0.08264256 6 93.81% 

42 1.690904 × 10
-10

 29 100% 

39 0.08264299 6 93.81% 

36 1.766581 × 10
-10

 29 100% 

33 0.08264259 6 93.81% 

30 2.483729 × 10
-10

 29 100% 

27 0.08264286 6 93.81% 

24 1.628943 × 10
-10

 29 100% 

21 0.06835751 6 93.81% 

18 0.001111822 17 94.85% 

15 0.06832235 6 93.81% 

12 0.08264268 6 93.81% 
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D.  Reduction of Computing Units 

One approach to find the right size of NN is to start 

training and testing with a large NN. Then some 

computing units and their associated incoming and 

outgoing edges are eliminated, and the NN is retrained 

and retested. This procedure continues until the network 

performance reaches an unacceptable level [38, 39]. 

Following the approach, we first train as well as test a 

large CPN, which has 4 computing units in the input layer, 

48 computing units in the hidden layer and 6 computing 

units in the output layer. Then we successively eliminate 

3 computing units in the hidden layer, and train as well as 

test the reduced CPN. We carry on the procedure until the 

network performance reaches an unacceptable level. The 

achieved results are shown in Table 4. We find that there 

are fluctuations in error function (E) and the accuracy as 

the number of computing units in  the hidden layer 

decreases from 48. E is tolerable, i.e. less than 10
-3

 and 

the accuracy is the maximum, i.e. 100%, for mult iple 

values of the number of computing units in the hidden 

layer. We also find that training fin ishes at the min imum 

number of training cycle, i.e. 6 for multiple values of the 

number of computing units in the hidden layer. 

The classifier design objective of an application  

engineer is to choose such network topology that requires 

minimum training time and produces maximum 

classification accuracy. From this investigation, it appears 

that the network topology with 6i (4 ≤ i ≤ 8) computing 

units in hidden layer requires much training t ime and 

produces the highest accuracy and the network topology 

with 3+6i (3 ≤ i ≤ 7) computing units in hidden layer 

requires min imum training time and produces less 

accuracy. All of these investigations are summarized in  

Table 5. 

 
Table 5. Summary of the results of all investigations 

Design Parameter O ptimum Band Number of Elapsed Training Cycle  Accuracy 

Kohonen learning constant (ηK) 0.2 – 0.35 305 – 362 100% 

Grossberg learning constant (ηG) 0.1 – 0.8 36 – 29 100% 

Network topology (no. of computing units) 4-6i-6 (4 ≤ i ≤ 8) 29 100% 

 

We find that the min imum number of computing units 

in hidden layer, for which accuracy is highest, is 24. 

Where the number of classes is 6 only, 24 seems to be 

large enough. So, we rescale the feature, the number of 

defective regions (NDR), to accentuate the differences 

between the number of defect ive regions and all other 

features so that the performance can be improved. 

E.  Introduction of Rescaling 

W If N
//

DR represents the rescaled value of N
/
DR in (6), 

then N
//

DR is defined by the following equation: 

DRDR NN  10 .                                                        (9) 

We start training and testing a CPN, which has 24 

computing units in the hidden layer, with the rescaled 

feature or input vectors. Then we gradually eliminate 

some computing units in the h idden layer, and train as 

well as test the reduced CPN. We carry on the procedure 

until the network performance reaches an unacceptable 

level. The results achieved are shown in Table 6. We find 

that the accuracy is tolerable, i.e. less than 10
-3

 and the 

accuracy is the maximum, i.e. 98.97% as long as the 

number of computing units in the hidden layer is greater 

than 6. Moreover, the number of elapsed training cycle is 

only 6 as long as the number of computing units in the 

hidden layer is greater than 6 too. 

Table 6. Results of Reducing Computing Units in Hidden Layer after Rescaling 

Network Topology 
(No. of Computing Units) 

Kohonen 
Learning 

Constant (ηK) 

Grossberg 
Learning 

Constant (ηG) 

Error 
Function (E) 

Number of Elapsed 
Training Cycle  

Accuracy 

Input Layer Hidden Layer O utput Layer 

4 

24 

6 0.2 0.8 

2.627666 × 10
-6

 6 98.97% 

21 2.640732 × 10
-6

 6 98.97% 

18 2.653941 × 10
-6

 6 98.97% 

15 2.677102 × 10
-6

 6 98.97% 

12 2.709638 × 10
-6

 6 98.97% 

9 2.66666 × 10
-6

 6 98.97% 

8 2.66666 × 10
-6

 6 98.97% 

7 2.66666 × 10
-6

 6 98.97% 

6 0.1498665 11 92.78% 

 

VI. COMPARATIVE PERFORMANCE ANALYSIS 

In order to assess merits of our implemented CPN 

model for classifying fabric defects, let’s compare some 

recently reported relevant research results. It is to be 

noted that assumptions taken by researchers in collecting 

samples and reporting results of their research activities 

in processing those samples will have serious 

implications on our attempt of comparative performance 
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evaluation. The review of literature reveals that most of 

research reports are limited to the demonstration of 

concepts of machine vision based approach to fabric 

defect classification without the support of adequate 

numerical results and their comparison with similar 

works. Moreover, the absence of use of common database 

of samples of fabric defects makes it difficult to have a 

fair comparison of merits of different algorithms. Similar 

observation has been reported by Kumar in a 

comprehensive survey [16]. 

Kumar has also mentioned in h is conclusion that 

although last few years have shown some encouraging 

trends in fabric defect inspection research, 

systematic/comparative performance evaluation based on 

realistic assumptions is not sufficient. Despite such 

limitat ions, we have made an attempt to review numerical 

results related to fabric defect classification to assess 

comparative merits of our work. 

A number of learning algorithms have been used in 

order to train the NNs. Backpropagation learn ing 

algorithm has been used in [18], [19], [20], [21] and [22]. 

Habib and Rokonuzzaman [18] have worked with knitted 

fabrics. Their sample consisted of 100 images. They have 

used a three-layer feedforward NN, which had 4, 12 and 

6 computing units in  the input, hidden and output layers 

respectively. It took 88811 cycles for the NN to  be 

trained. A 100%-accuracy has been found. Although the 

accuracy and model complexity (number of computing 

units) have been good and medium respectively, the 

training time has been long. Saeidi et al. [19] have 

worked  with knitted fabrics. They have first performed  

off-line experiments and then performed on-line 

implementation. In case of off-line experiments, the 

sample size was 140. They have employed a three-layer 

feedforward NN, which had 15, 8 and 7 computing units 

in the input, hidden and output layers, respectively. It  

took 7350 epochs for the NN to be trained. An accuracy 

of 78.4% has been achieved. The model complexity has 

been modest. Moreover, the training time has been long 

and the accuracy has been poor. In case of on-line 

implementation, the sample size was 8485. An accuracy 

of 96.57% has been achieved by employing a 

feedforward NN. The accuracy has  been good although 

the model complexity and training time have not been 

mentioned. Karay iannis et al. [20] have worked with web 

text ile fabrics. They have used a three-layer NN, which 

had 13, 5 and 8 computing units in the input, hidden and 

output layers, respectively. A sample of size 400 was 

used. A 94%-accuracy has been achieved. Although the 

accuracy and model complexity  have been good and 

small, respectively, nothing has been mentioned about the 

training time. 

Kuo and Lee [21] have used plain white fabrics and 

have got accuracy varying from 95% to 100%. The 

accuracy has been modest. Moreover, the model 

complexity and train ing time have not been reported. 

Mitropulos et al. [22] have used web text ile fabrics for 

their work. They have used a three-layer NN, which had 

4, 5 and 8 computing units in the input, hidden and output 

layers, respectively. They have got an accuracy of 91%, 

where the sample size was 400. The accuracy has been 

modest although the model complexity  has been small. 

Nothing has been mentioned about the training time. 

Resilient backpropagation learning algorithm has been 

used in [23] and [24]. Islam et al. [23] have used a fully  

connected four-layer NN, which contained 3, 40, 4, and 4 

computing units in the input, first hidden, second hidden 

and output layers, respectively. They have worked with a 

sample of over 200 images. They have got an accuracy of 

77%. The accuracy has been poor and the model 

complexity  has been large. Moreover, the training t ime 

has not been given. Islam et al. [24] have employed a 

fully connected three-layer NN, which had 3, 44 and 4 

computing units in the input, hidden and output layers, 

respectively. 220 images have been used as sample. An 

accuracy of 76.5% has been achieved. The accuracy and 

model complexity have been poor and large, respectively. 

Moreover, nothing has been mentioned about the train ing 

time. 

Habib and Rokonuzzaman [17] have worked  with CPN. 

Their sample consisted of 100 images of kn itted fabrics. 

Their CPN had 4, 12 and 6 computing units in the input , 

hidden and output layers respectively. About 200 cycles 

was taken for the training of CPN. An accuracy of 100% 

has been achieved. Although the accuracy and training 

time have been good, the model complexity (number of 

computing units) has been too long in the context o f CPN.  

Shady et al. [25] have separately worked on both 

spatial and frequency domains in  order to ext ract features 

from images of knitted fabric. They have used the LVQ 

algorithm in  order to t rain  the NNs for both domains. A 

sample of 205 images was used. In case of spatial domain,  

they employed a two-layer NN, which contained 7 

computing units in the input layer and same number of 

units in the output layer. They achieved a 90.21%-

accuracy. The accuracy has been modest although the 

model comp lexity has been small. Moreover, the train ing 

time has not been given. In case of frequency domain, 

they employed a two-layer NN, which  had 6 and 7 

computing units in the input and output layers, 

respectively. An accuracy of 91.9% has been achieved. 

Although the model complexity has been small, the 

accuracy has been modest. Moreover, nothing has been 

mentioned about the training time. 

Table 7 shows the comparison of our CPN model and 

others’ NN models. For our CPN model as shown in  

Table 7, we consider the best result found after entire 

implementation. 

Kumar [16] has found that more than 95% accuracy  

appears to be industry benchmark. In that survey, it has 

been reported by Kumar in  reviewing 150 articles that a 

quantitative comparison between the various defect 

detection schemes is difficult as the performance of each 

of these schemes have been assessed/reported on the 

fabric test images with varying resolution, background 

texture and defects. 

With respect to such observation, our obtained 

accuracy of more than 98% appears to be quite good. 

Moreover, our model complexity (4, 7 and 6 computing 

units in the input, hidden and output layer respectively) 
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has been small and training time short (6 cycles). As we 

have mentioned earlier, due to the lack of uniformity in  

the image data set, performance evaluation and the nature 

of intended application, it is not prudent to explicitly  

compare merits of our approach with other works. 

Therefore, it may not be unfair to claim that our 

implemented CPN model have enough potential to 

classify fabric defects with very good accuracy. 

 
Table 7. Results of the Comparison of CPN Model We Implemented and Others Implemented 

Reference 
Type of 
Fabric 

Number 
of Input 

Sites 

Number 
of 

Classes 

Sample Size 
(No. of  

Feature  

Vectors) 

Performance Metrics 

Training Time 

(Number of 
Elapsed Cycle) 

Model Complexity 

Accuracy 
Number of 

Computing Units 
Connectivity 

Our work Knitted fabric 4 6 100 6 4-7-6 
Fully connected 

feedforward 
98.97% 

[13] Knitted fabric 4 6 100 191 4-12-6 
Fully connected 

feedforward 
100% 

[14] Knitted fabric 4 6 100 88811 4-12-6 
Fully connected 

feedforward 
100% 

[15] 
Knitted  
fabric 

15 7 140 7350 15-8-7 Feedforward 78.4% 

NM
1
 NM 8485 NM NM Feedforward 96.57% 

[16] 
Web textile 

fabric 
13 8 400 NM 13-5-8 NM 94% 

[18] 
Web textile 

fabric 
4 8 400 NM 4-5-8 NM 91% 

[19] NM 3 4 Over 200 NM 3-40-4-4 
Fully connected 

feedforward 
77% 

[20] NM 3 4 220 NM 3-44-4 
Fully connected 

feedforward 
76.5% 

[21] 
Knitted  

fabric 

7 7 205 NM 7-7 NM 90.21% 

6 7 205 NM 6-7 NM 91.9% 

1
NM: Not Mentioned 

 

VII. CONCLUSION 

In this paper, we have investigated the feasibility of 

CPN model in the context of fabric defect classification. 

We have found that the CPN model is suitable enough for 

automated fabric defect classification. We have found an 

appropriate CPN model in the context of fabric defect 

classification by empirically investigating the inter-

relationship among the performance metrics, accuracy, 

training time and model complexity, and the network 

parameters, Kohonen and Grossberg learning constant 

empirically. It’s believed that such investigative approach 

will be laying the basis to guide application engineers to 

decide about optimum values of design parameters for 

realizing most appropriate CPN based classifier. Finally, 

we have compared  the performance of the CPN model 

with  that of the classification  models described in  

different articles. In comparison to classification 

performances of reported research findings, our obtained 

accuracy of more than 98% appears to be quite good. 

Due to small samp le size, our finding is not 

comprehensive enough to make conclusive comment 

about the merits of our implemented CPN model. 

Moreover, during acquiring images, lighting was not 

good enough to produce very high quality images. 

Further work remains to successfully classify commonly  

occurring fabric defects for a sample of a very large 

number of high-quality images. 
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